Предматематическая подготовка старших дошкольников на занятиях по математике.
Вложение | Размер |
---|---|
predmatematicheskaya_podgotovka_starshih_doshkolnikov_na_zanyatiyah_po_matematike.doc | 225.5 КБ |
ОГЛАВЛЕНИЕ
1. Теоретические основы методологии формирования математических представлений у дошкольников 5
1.1. Значение и задачи математического развития детей дошкольного возраста 5
1.2. Становление и современные подходы к методике математического развития детей дошкольного возраста 6
1.3. Психологические особенности математического развития детей дошкольного возраста………………. 9
1.4 Общая характеристика методики преподавания математики дошкольникам 12
2. Преемственность в математическом развитии детей детского сада и школы 18
2.1. Возникновение и развитие проблемы готовности детей к школе 18
2.2. Преемственность в работе школы и детского сада 19
Список использованных источников 27
Приложение 1. Выписки из программ 29
ВВЕДЕНИЕ
Современная начальная школа требует от выпускников детского сада целостной комплексной подготовки их к обучению.
Одно из главных требований начального обучения к математической подготовке заключается в дальнейшем развитии мышления дошкольников. Математика - это глубоко логическая наука. Введение ребенка даже в начальную элементарную математику абсолютно невозможно без достаточного уровня развития логического мышления.
Современная школа требует от ребенка, который начинает обучение в первом классе, высокой работоспособности, сложных форм умственной деятельности, сформированных морально-волевых качеств уже в дошкольные годы.
Дальнейшее обучение в школе обычно зависит от качества усвоенных знаний: осознанности, гибкости и прочности. Поэтому современная дошкольная дидактика направлена на отработку путей оптимизации обучения с целью повышения этих качеств. Выпускники дошкольных учреждений должны осознанно, с пониманием сути явлений уметь использовать приобретенные знания и навыки не только в обычной, стереотипной, но и в измененной ситуации, в новых необычных обстоятельствах (игра, труд).
Источником познания дошкольника является чувственный опыт. Спонтанно накопленный чувственный и интеллектуальный опыт может быть объемным, но не упорядоченным, неорганизованным. Направить его в нужное русло призван педагог, который не только знает, чему учить ребенка, но и как учить, чтобы обучение было развивающим.
Психолог и педагог А.Н. Леушина [7] считала, что формирование у детей математических представлений должно опираться на предметно-чувственную деятельность, в процессе которой легче усвоить весь объем знаний и умений, осознанно овладеть навыками счета.
Формированию у ребенка математических представлений способствует использование разнообразных дидактических игр и игровых упражнений. В игре ребенок приобретает новые знания, умения, навыки. Игры, способствующие развитию восприятия, внимания, памяти, мышления, развитию творческих способностей, направлены на умственное развитие дошкольника в целом.
Следовательно, одной из наиболее важных задач воспитателя и родителей - развить у ребенка интерес к математике в дошкольном возрасте. Приобщение к этому предмету в игровой и занимательной форме поможет ребенку в дальнейшем быстрее и легче усваивать школьную программу.
В данной работе мы рассмотрим особенности предшкольной подготовки по математике и усвоения дошкольниками начальных математических представлений, ознакомимся с методикой обучения, которая обеспечивает успешное развитие способностей и мышления детей.
В разное время вопросами формирования математических понятий, развития способностей, психологии игры, проблемами обучения в детском саду занимались Л.С. Выготский, А.П. Усова, Н.А. Ветлугина, А.А. Смоленцева, Т.С. Комарова, Я.А. Коменский, И.Г Песталоцци, К.Д. Ушинский, Л.Н. Толстой, М. Монтессори, Д.В. Волковский.
Неоценимый вклад в теорию и методику предматематической подготовки дошкольников детского сада внесли Е.И. Тихеева, A.M. Леушина, А.П. Усова [22], Е.И. Удальцова, Л.С. Метлина [12], и многие другие педагоги, методисты и исследователи.
Объект – процесс организации предматематической подготовки.
Предмет – предматематическая подготовка старших дошкольников на занятиях по математике.
Цель исследования: изучение процесса предматематической подготовки старших дошкольников на занятиях по математике.
Задачи исследования:
Методы исследования:
1. Аналитический (анализ и обобщение литературы по теме исследования).
2. Описательный (описание возможностей совместной работы учителей начальных классов и воспитателей дошкольных образовательных учреждений).
Структура и объем работы: курсовая работа состоит из введения, двух глав, заключения, списка использованных источников и приложения.
1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ МЕТОДОЛОГИИ ФОРМИРОВАНИЯ МАТЕМАТИЧЕСКИХ ПРЕДСТАВЛЕНИЙ У ДОШКОЛЬНИКОВ
1.1. Значение и задачи математического развития детей дошкольного возраста
Доказано, что ознакомление детей с разными видами математической деятельности в процессе целенаправленного обучения ориентирует их на понимание связей и отношений. Формирование начальных математических знаний и умений у детей дошкольного возраста должно осуществляться так, чтобы обучение давало не только непосредственный практический результат (навыки счета, выполнение элементарных математических операций), но и широкий развивающий эффект. Под математическим развитием дошкольников, как правило, понимают качественные изменения в формах познавательной активности ребенка, которые происходят в результате формирования элементарных математических представлений и связанных с ними логических операций [1].
В процессе систематического обучения математике дети овладевают специальной терминологией названиями чисел, геометрических фигур (круг, квадрат, треугольник, ромб и другое.), элементов фигур (сторона, вершина, основание) и тому подобное Занятия по математике приобретают особое значение в связи с развитием у детей познавательных интересов, умений проявлять волевые усилия в процессе решения математических задач.
Как правило, учебные задачи на занятиях решаются в сочетании с воспитательными. Так, воспитатель учит детей быть организованными, самостоятельными, внимательно слушать, выполнять работу качественно и в срок. Это дисциплинирует детей, способствует формированию у них целенаправленности, организованности, ответственности. Таким образом, обучение детей математике с раннего возраста обеспечивает их всестороннее развитие.
Среди задач по формированию элементарных математических знаний и последующего математического развития детей следует выделить главные, а именно:
-приобретение знаний о множестве, числе, величине, форме, пространстве и времени как основах математического развития;
-формирование широкой начальной ориентации в количественных, пространственных и временных отношениях окружающей действительности;
-формирование навыков и умений в счете, вычислениях, измерении, моделировании, общеучебных умений;
-овладение математической терминологией;
-развитие познавательных интересов и способностей, логического мышления, общее интеллектуальное развитие ребенка [12].
Эти задачи чаще всего решаются воспитателем одновременно на каждом занятии по математике, а также в процессе организации разных видов самостоятельной детской деятельности.
На занятиях по математике в детском саду формируются простейшие виды практической и умственной деятельности детей. Под видами деятельности в этом случае способами обследования, счета, измерения понимают объективные последовательные действия, которые должен выполнять ребенок для усвоения знаний: поэлементное сравнение двух множеств, накладывание меры и другие. Овладевая этими действиями, ребенок усваивает цель и способы деятельности, а также правила, обеспечивающие формирование знаний.
Центральной задачей математического развития детей в детском саду является обучение счету. Основными способами при этом являются накладывание и прикладывание, овладение которыми предвосхищает обучение счету с помощью слов-числительных.
Одновременно дошкольников учат сравнивать предметы по величине (размеру) и результаты сравнения обозначать соответствующими словами-понятиями («больше -меньше», «узкий - широкий» и другие), строить ряды предметов по их размеру в порядке возрастания или уменьшения (большой, маленький, еще меньше, самый маленький). Однако, для того чтобы ребенок усвоил эти понятая, необходимо сформировать у него конкретные представления, научить его сравнивать предметы между собой сначала непосредственно накладыванием, а потом опосредованно с помощью измерения.
На основе практических действий у детей формируются такие мыслительные операции, как анализ, синтез, сравнение, обобщение. Воспитатель должен ориентироваться в оценке результатов своей работы прежде всего на эти показатели, на то, как дети умеют сравнивать, анализировать, обобщать, делать выводы. Уровень овладения детьми умственными операциями зависит от использования специальных методических приемов, которые позволяют детям упражняться в сравнении, обобщении. Так, дети учатся сравнивать множества по количеству, осуществляя при этом структурный и количественный анализ множества. Сравнивая предметы по форме, дети выделяют размер отдельных элементов, сопоставляя их между собою.
Таким образом, математическое развитие детей предполагает широкую программу приобщения их к деятельности, в данном случае математической, которой руководит взрослый (воспитатель, родители). [14]
1.2. Становление и современные подходы к методике математического развития детей дошкольного возраста
Вопросы математического развития детей дошкольного возраста своими корнями уходят в классическую и народную педагогику. Различные считалки, пословицы, поговорки, загадки, потешки были хорошим материалом в обучении детей счету, позволяли сформировать у ребенка понятия о числах, форме, величине, пространстве и времени. Например,
Сорока-белобока Кашу варила,
Деток кормила.
Этому дала,
И этому дала,
А этому не дала.
Ты воды не носил,
Дрова не рубил,
Кашу не варил
Нет тебе ничего.
Первая печатная учебная книжка И. Федорова «Букварь» (1574) включала мысли о необходимости обучения детей счету в процессе различных упражнений. Вопросы содержания методов обучения детей дошкольного возраста математике и формирования у них знаний о размере, измерении, времени и пространстве мы находим в педагогических трудах Я.А. Коменского, И.Г. Песталоцци, К.Д. Ушинского, Ф. Фребеля, Л.Н. Толстого и других.
В классических системах сенсорного обучения Ф. Фребеля (1782—1852) и М. Монтессори (1870—1952) представлена методика ознакомления детей с геометрическими фигурами, величинами, измерением и счетом. Созданные Фребелем «дары», разработанные игры -занятия по ознакомлению детей с числом, формой, величиной и пространственными отношениями, а также его оригинальный подход к организации обучения и в настоящее время используются в качестве бесценного научного наследия [15].
О значении обучения детей счету до школы неоднократно писал К.Д. Ушинский (1824—1871). Он полагал, что важно научить ребенка считать отдельные предметы и их группы, выполнять действия сложения и вычитания, сформировать понятие о десятке как единице счета. Следует отметить, что во времена К.Д. Ушинского в России почти не было общественного дошкольного воспитания и его советы относительно математического развития были в основном адресованы учителям и родителям.
Особое значение вопросы методики математического развития приобретают в педагогической литературе начальной школы на рубеже XIX-XX вв. Авторами методических рекомендаций тогда были передовые учителя и методисты. (В этот период методики обучения математике детей дошкольного возраста еще не было.) Опыт практических работников не всегда был научно обоснованным, зато был проверен на практике. Значительный вклад сделали передовые учителя и методисты П. С. Гурьев, А. И. Гольденберг, Д. Ф. Егоров, В. А. Евтушевский, Д. Д. Галанин и другие.
Большинство педагогов 20-30-х гг. были увлечены педагогикой свободного воспитания, поэтому весьма критически относились к строгому систематическому целенаправленному обучению на основе типовых (унифицированных) программ для детского сада.
Е.И. Тихеева внесла определенный вклад в развитие методики обучения детей счету, определив объем знаний, доступных «дошколятам». Большое внимание она уделяла ознакомлению детей с отношениями между предметами разной величины: больше - меньше, шире - уже, короче - длиннее и другие.
В конце 30-х гг. происходит отход от неорганизованного обучения в детском саду, и с этого момента возникают проблемы, связанные с определением содержания, методов обучения детей разных возрастных групп детского сада.
Значительным этапом в разработке методик развития математических представлений были работы Ф. Н. Блехер. Так, в методических рекомендациях воспитателям нулевых групп детских садов (1932) она раскрывает методику организации упражнений, направленных на формирование понятий о величине, количестве, пространстве, времени и измерении.
В 40-50-х гг. началось экспериментальное изучение особенностей формирования у детей умений и навыков в области числа и счета. Были проведены психологические исследования по этой проблеме И.А. Френкелем, Л. Я. Яблоковым, Е. И. Корзаковой, Г. С. Костюком и другие. Обосновано положение о необходимости формирования у детей умения различать отдельные элементы во множестве, о зависимости восприятия множества от способа пространственного размещения элементов, об усвоении ими числительных и этапах овладения детьми счетными операциями. [24]
Создание системы обучения счету в детском саду является заслугой А.М. Леушиной. На основании глубокого экспериментального исследования ею доказано преимущество систематического обучения на специальных занятиях по математике. А. М. Леушина проанализировала различные точки зрения, различные подходы и концепции математического развития детей, критически оценила предыдущие направления и разработала новый подход в обучении детей счету.
На основании принципов и методов, предложенных А. М. Леушиной, и в настоящее время осуществляется математическое развитие дошкольников.
А.М. Леушина разработала принципиально новый, теоретико-множественный подход в обучении детей счету. Исходным понятием в обучении дошкольников взято не число, как это считалось раньше, а конкретное множество. Практические действия детей с множествами рассматриваются как начальные этапы счетной деятельности. [8]
В 70-80-е гг. проведен ряд исследований по отдельным проблемам методики формирования элементарных математических представлений (Т. В. Тарунтаева, В. В. Данилова, Г. А. Корнеева, Т. Д. Рихтерман и другие.), что значительно обогатило методику обучения математики в целом.
В исследованиях А. М. Леушиной формирование понятия о числе основывалось главным образом на восприятии множества (дискретной величины). Однако ознакомление детей с числом только на основе сравнения конкретных множеств дает неполное представление о числе. Исследования П.Я. Гальперина и Л.С. Георгиева показали, что число должно восприниматься детьми, прежде всего как результат измерения, как отношение измеряемой величины к избранной мере. В результате такого обучения дети раньше, чем по традиционной системе обучения, знакомятся с числом не только как характеристикой количества отдельных предметов, но и как показателем отношений. С самого начала обучения дети осознают тот факт, что число зависит, прежде всего от выбранной меры, что мера составная часть измеряемой величины и она не всегда идентична понятию единицы как отдельности. Современные исследования дали возможность включить в программу обучения в детском саду ознакомление детей с измерением.
В современных исследованиях психологов и педагогов (В. В. Давыдов, В. В. Данилова, А. Я. Савченко, Л. А. Парамонова, Н. И. Непомнящая, Г. А. Корнеева и другие.) все больше подчеркивается необходимость обучать детей обобщенным приемам и способам деятельности. [23]
Таким образом, на протяжении последних лет методика пополнилась теоретическими исследованиями в разных конкретных направлениях, что значительно повысило общеразвивающий эффект обучения. Однако в теории и практике дошкольного воспитания есть еще ряд нерешенных проблем.
Изучение математики в начальной школе предусматривает достаточно широкую и глубокую ориентацию детей в количественных и пространственных отношениях окружающей действительности. Современное обучение в детском саду не всегда в полной мере решает эти задачи. Нередко математические знания дети усваивают формально, без должного их понимания. Одной из причин такого уровня знаний является недостаточная разработка отдельных методических вопросов. Так, современное обучение математике в детском саду во многом ориентируется на вербальные (словесные) методы, которые дают возможность формировать у детей конкретные знания, умения и навыки, и недостаточно ориентируется на методы, которые содействуют развитию у них познавательных интересов и способностей, логического мышления.
1.3. Психологические особенности математического развития детей дошкольного возраста
И родители, и педагоги знают, что математика - это мощный фактор интеллектуального развития ребенка, формирования его познавательных и творческих способностей. Известно и то, что от эффективности математического развития ребенка в дошкольном возрасте зависит успешность обучения математике в начальной школе.
Однако, многим детям трудно дается математика. В современных обучающих программах начальной школы важное значение придается логической составляющей. Развитие логического мышления ребенка подразумевает формирование логических приемов мыслительной деятельности, а также умения понимать и прослеживать причинно-следственные связи явлений и умения выстраивать простейшие умозаключения на основе причинно-следственной связи. Чтобы школьник не испытывал трудности буквально с первых уроков и ему не пришлось учиться с нуля в дошкольный период нужно готовить ребенка соответствующим образом. Многие родители полагают, что главное при подготовке к школе - это познакомить ребенка с цифрами и научить его писать, считать, складывать и вычитать (на деле это обычно выливается в попытку выучить наизусть результаты сложения и вычитания в пределах десяти). Однако при обучении математике по учебникам современных развивающих систем эти умения очень недолго выручают ребенка на уроках математики. Запас заученных знаний кончается очень быстро (через месяц-два), и несформированность собственного умения продуктивно мыслить (то есть самостоятельно выполнять указанные выше мыслительные действия на математическом содержании) очень быстро приводит к появлению "проблем с математикой". В то же время ребенок с развитым логическим мышлением всегда имеет больше шансов быть успешным в математике, даже если он не был заранее научен элементам школьной программы (счету, вычислениям и тому подобное).
Однако не следует думать, что развитое логическое мышление - это природный дар, с наличием или отсутствием которого следует смириться. Существует большое количество исследований, подтверждающих, что развитием логического мышления можно и нужно заниматься (даже в тех случаях, когда природные задатки ребенка в этой области весьма скромны).
Прежде всего, разберемся в том, из чего складывается логическое мышление. Логические приемы умственных действий - сравнение, обобщение, анализ, синтез, классификация, сериация, аналогия, систематизация, абстрагирование - в литературе также называют логическими приемами мышления. При организации специальной развивающей работы над формированием и развитием логических приемов мышления наблюдается значительное повышение результативности этого процесса независимо от исходного уровня развития ребенка
Развивать логическое мышление дошкольника целесообразнее всего в русле математического развития. Еще более повышает процесс усвоения ребенком знаний в этой области использование заданий, активно развивающих мелкую моторику, то есть заданий логико-конструктивного характера. Кроме того, существуют различные приемы умственных действий, которые помогают усилить эффективность использования логико-конструктивных заданий.
Сериация - построение упорядоченных возрастающих или убывающих рядов по выбранному признаку. Классический пример сериации: матрешки, пирамидки, вкладные мисочки и так далее.
Сериации можно организовать по размеру, по длине, по высоте, по ширине, если предметы одного типа (куклы, палочки, ленты, камешки и так далее), и просто по величине (с указанием того, что считать величиной), если предметы разного типа (рассадить игрушки по росту). Сериации могут быть организованы по цвету, например по степени интенсивности окраски (расставить баночки с окрашенной водой по степени интенсивности цвета раствора).
Анализ - выделение свойств объекта, или выделение объекта из группы, или выделение группы объектов по определенному признаку.
Например, задан признак: "Найти все кислые". Сначала у каждого объекта множества проверяется наличие или отсутствие этого признака, а затем они выделяются и объединяются в группу по признаку "кислые".
Синтез - соединение различных элементов (признаков, свойств) в единое целое. В психологии анализ и синтез рассматриваются как взаимодополняющие друг друга процессы (анализ осуществляется через синтез, а синтез - через анализ). [20]
Задания на формирование умения выделить элементы того или иного объекта (признаки), а также на соединение их в единое целое можно предлагать с первых же шагов математического развития ребенка.
Аналитико-синтетическая мыслительная деятельность позволяет ребенку рассматривать один и тот же объект с различных точек зрения: как большой или маленький, красный или желтый, круглый или квадратный и так далее. Однако речь не идет о введении большого количества объектов, как раз наоборот, способом организации всестороннего рассмотрения является прием постановки различных заданий к одному и тому же математическому объекту.
Традиционной формой заданий на развитие визуального анализа являются задания на выбор "лишней" фигуры (предмета).
Более сложной формой такого задания является задание на выделение фигуры из композиции, образованной наложением одних форм на другие. Такие задания можно предлагать детям пяти - семи лет.
В качестве подготовительных полезно использовать задания, требующие от ребенка синтеза композиций из геометрических фигур на вещественном уровне (из вещественного материала).
Психологически способность к синтезу формируется у ребенка раньше, чем способность к анализу. То есть, если ребенок знает, как это было собрано (сложено, сконструировано), ему легче анализировать и выделять составные части. Именно поэтому столь серьезное значение уделяется в дошкольном возрасте деятельности, активно формирующей синтез, - конструированию.
Сначала это деятельность по образцу, то есть выполнение заданий по типу "делай как я". На первых порах ребенок учится воспроизводить объект, повторяя за взрослым весь процесс конструирования; затем - повторяя процесс построения по памяти, и, наконец, переходит к третьему этапу: самостоятельно восстанавливает способ построения уже готового объекта (задания вида "сделай такой же"). Четвертый этап заданий такого рода - творческий: "построй высокий дом", "построй гараж для этой машины", "сложи петуха". Задания даются без образца, ребенок работает по представлению, но должен придерживаться заданных параметров: гараж именно для этой машины.
Для конструирования используются любые мозаики, конструкторы, кубики, разрезные картинки, подходящие этому возрасту и вызывающие у ребенка желание возиться с ними. Взрослый играет роль ненавязчивого помощника, его цель - способствовать доведению работы до конца, то есть до получения задуманного или требуемого целого объекта.
Сравнение - логический прием умственных действий, требующий выявления сходства и различия между признаками объекта (предмета, явления, группы предметов).
Выполнение сравнения требует умения выделять одни признаки объекта (или группы объектов) и абстрагироваться от других. Для выделения различных признаков объекта можно использовать игру "Найди это по указанным признакам": "Что (из этих предметов) большое желтое? (Мяч и медведь.) Что большое желтое круглое? (Мяч.)" и так далее.
Рекомендуется сначала учить ребенка сравнивать два объекта, затем группы объектов. Маленькому ребенку легче сначала найти признаки различия объектов, затем - признаки их сходства.
Типы заданий на сравнение:
Для ребенка двух - четырех лет набор признаков, по которым ищется сходство, должен быть четко обозначен. Для более старших детей предлагаются упражнения, в которых количество и характер признаков сходства может широко варьироваться.
Умение выделять признаки объекта и, ориентируясь на них, сравнивать предметы является универсальным, применимым к любому классу объектов. Однажды сформированное и хорошо развитое, это умение затем будет переноситься ребенком на любые ситуации, требующие его применения.
Показателем сформированности приема сравнения будет умение ребенка самостоятельно применять его в деятельности без специальных указаний взрослого на признаки, по которым нужно сравнивать объекты. [26]
Классификация - разделение множества на группы по какому-либо признаку, который называют основанием классификации. Классификацию можно проводить либо по заданному основанию, либо с заданием поиска самого основания (этот вариант чаще используется с детьми шести-семи лет, так как требует определенного уровня сформированности операций анализа, сравнения и обобщения).
Следует учитывать, что при классификационном разделении множества полученные подмножества не должны попарно пересекаться и объединение всех подмножеств должно составлять данное множество. Иными словами, каждый объект должен входить только в одно множество и при правильно определенном основании для классификации ни один предмет не останется вне определенных данным основанием групп.
Классификацию с детьми дошкольного возраста можно проводить:
- по названию (чашки и тарелки, ракушки и камешки, кегли и мячики и так далее.);
- по размеру (в одну группу большие мячи, в другую - маленькие, в одну коробку длинные карандаши, в другую - короткие и так далее);
- по цвету (в эту коробку красные пуговицы, в эту - зеленые);
- по форме (в эту коробку квадраты, а в эту - кружки; в эту коробку - кубики, в эту - кирпичики и так далее);
- по другим признакам нематематического характера: что можно и что нельзя есть; кто летает, кто бегает, кто плавает; кто живет в доме и кто в лесу; что бывает летом и что зимой; что растет в огороде и что в лесу и так далее.
Все перечисленные выше примеры - это классификации по заданному основанию: взрослый сообщает его ребенку, а ребенок выполняет разделение. В другом случае классификация выполняется по основанию, определенному ребенком самостоятельно. Здесь взрослый задает количество групп, на которые следует разделить множество предметов (объектов), а ребенок самостоятельно ищет соответствующее основание. При этом такое основание может быть определено не единственным образом.
Обобщение - это оформление в словесной (вербальной) форме результатов процесса сравнения.
Обобщение формируется в дошкольном возрасте как выделение и фиксация общего признака двух или более объектов. Обобщение хорошо понимается ребенком, если является результатом деятельности, произведенной им самостоятельно, например классификации: эти все - большие, эти все - маленькие; эти все - красные, эти все - синие; эти все - летают, эти все - бегают и другие.
Все приведенные выше примеры сравнений и классификаций завершались обобщениями. Для дошкольников возможны эмпирические виды обобщения, то есть обобщения результатов своей деятельности. Для подведения детей к такого рода обобщениям взрослый соответствующим образом организует работу над заданием: подбирает объекты деятельности, задает вопросы в специально разработанной последовательности, чтобы подвести ребенка к нужному обобщению. При формулировке обобщения следует помогать ребенку правильно его построить, употребить нужные термины и словесные обороты.
При подборе материала для задания взрослый должен следить за тем, чтобы не получился набор, ориентирующий ребенка на несущественные признаки объектов, что будет подталкивать к неверным обобщениям. Следует помнить, что при эмпирических обобщениях ребенок опирается на внешние видимые признаки объектов, что не всегда помогает правильно раскрыть их сущность и определить понятие.
Логическое развитие ребенка предполагает также формирование умения понимать и прослеживать причинно-следственные связи явлений и умения выстраивать простейшие умозаключения на основе причинно-следственной связи. Легко убедиться, что при выполнении всех приведенных выше примеров заданий и систем заданий ребенок упражняется в этих умениях, поскольку в их основе также лежат умственные действия: анализ, синтез, обобщение и другое [3].
1.4. Общая характеристика методики преподавания математики дошкольникам
Одним из главных принципов дидактики в дошкольной педагогике является принцип развивающего обучения. Суть его заключается в том, что под влиянием обучения не только приобретаются знания, формируются умения, но и развиваются все познавательные психические процессы, связанные с ощущением, восприятием, памятью, вниманием, речью, мышлением, а также волевые и эмоциональные процессы, то есть развивается личность ребенка в целом.
Принцип воспитывающего обучения отражает необходимость обеспечения в учебном процессе благоприятных условий воспитания ребенка, его отношение к жизни, к знаниям, к самому себе. Воспитание и обучение две стороны единого процесса формирования личности. Они неразрывны, хотя и нетождественны.
Обучение элементам математики имеет особое значение в воспитании познавательной активности детей, т. е. стремления и умения решать разнообразные познавательные задачи.
Современная педагогика как один из ведущих принципов выделяет принцип гуманизации педагогического процесса. В основе этого принципа лежит личностно-ориентированная модель воспитания и обучения. При этом главным в обучении должна стать не передача знаний, умений, а развитие самой возможности приобретать знания и умения и использовать их в жизни, обеспечение чувства психологической защищенности ребенка с учетом его возможностей и потребностей.
Принцип индивидуального подхода к ребенку предусматривает организацию обучения на основе глубокого знания его индивидуальных способностей, создание условий для активной познавательной деятельности всех детей группы и каждого ребенка в отдельности.
Индивидуальный подход к ребенку осуществляется в процессе организации как коллективных (занятия по математике), так и индивидуальных форм работы. При организации работы воспитатель должен опираться на такие показатели:
-характер переключения умственных процессов (гибкость и стереотипность ума, быстрота или вялость установления взаимосвязей, наличие или отсутствие собственного отношения к изучаемому материалу);
-уровень знаний и умений (осознанность, действенность);
-работоспособность (возможность действовать длительное время, степень интенсивности деятельности, отвлечение внимания, утомляемость);
-уровень самостоятельности и активности;
-отношение к обучению;
-характер познавательных интересов;
-уровень волевого развития.
Принцип научности обучения и его доступности означает, что у детей дошкольного возраста формируются элементарные, но по сути научные, достоверные математические знания. Представления о количестве, размере, форме, пространстве и времени даются детям в таком объеме и на таком уровне конкретности и обобщенности, чтобы это было им доступно и чтобы эти знания не искажали содержания. При этом учитывается возраст детей (младший, средний, старший дошкольный), особенности их восприятия, памяти, внимания, мышления. В процессе усвоения математических знаний и умений дети овладевают специальной математической терминологией (названия чисел, геометрических фигур, параметров величины, арифметических действий и др.). Принцип научности и доступности реализуется как в содержании, так и в методике обучения.
Принцип доступности предусматривает подбор такого материала, чтобы он был не слишком трудным, но и не слишком легким. Обучение, не предполагающее напряжения, применения усилий, становится неинтересным. Поэтому в организации обучения воспитатель должен исходить из доступного уровня трудностей для детей определенного возраста.
Принцип осознанности и активности в усвоении и применении знаний предусматривает организацию обучения на таком уровне, когда наилучшим образом соединяется активность педагога и каждого ребенка. Одним из важных показателей знаний является их осознанность, осмысленность. Осмысленность, понимание материала осуществляется более результативно, если ребенок принимает участие в процессе усвоения знаний, часто оперирует ими. Осознанное усвоение учебного материала предусматривает активизацию умственных (познавательных) процессов у ребенка.
Принцип систематичности и последовательности предполагает такой логический порядок изучения материала, при котором знания опираются на ранее полученные. Этот принцип особенно важен именно при изучении математики, где каждое новое знание вытекает из старого, известного.
В методике обучения детей математике принцип наглядности тесно связывается с активностью ребенка. Осознанное овладение элементами математических знаний возможно лишь при наличии у детей некоторого чувственного познавательного опыта, приобретение которого всегда связано с непосредственным восприятием окружающей действительности или познанием этой действительности через изобразительные и технические средства.
Основными методами обучения дошкольников элементам математики являются наглядные, словесные, игровые и практические.
Методы подбираются в соответствии с возрастными и индивидуальными особенностями детей. А также в соответствии с личным опытом воспитателя, и от конкретных условий в детском саду.
При выборе методов учитываются:
Наглядные и словесные методы в обучении математике не являются самостоятельными. Они сопутствуют практическим и игровым методам.
К наглядным методам обучения относятся: демонстрация объектов и иллюстраций, наблюдение, показ, рассматривание таблиц, моделей. К словесным методам относятся: рассказывание, беседа, объяснение, пояснения, словесные дидактические игры. Часто на одном занятии используются разные методы в разном их сочетании.
Одним из существенных словесных приемов в обучении детей математике является инструкция, отражающая суть той деятельности, которую предстоит выполнить детям. В старшей группе инструкция носит целостный характер, дается до выполнения задания. В младшей группе инструкция должна быть короткой, нередко дается по ходу выполнения действий.
Место игрового метода в процессе обучения оценивается по-разному. В последние годы разработана идея простейшей логической подготовки дошкольников, введения их в область логико-математических представлений (свойства, операции с множествами) на основе использования специальной серии «обучающих» игр. Эти игры ценны тем, что они актуализируют скрытые интеллектуальные возможности детей, развивают их [4].
Практические методы (упражнения, опыты, продуктивная деятельность) наиболее соответствуют возрастным особенностям и уровню развития мышления дошкольников. Сущностью этих методов является выполнение детьми действий, которые состоят из рада операций.
Практические методы характеризуются прежде всего самостоятельным выполнением действий, применением дидактического материала. На базе практических действий у ребенка возникают первые представления о формируемых знаниях. Практические методы обеспечивают выработку умений и навыков, позволяют широко использовать приобретенные умения в других видах деятельности.
Большое место в работе с детьми всех возрастных групп занимают методы развивающего обучения. Это и систематизация предлагаемых им знаний, использование наглядных средств (эталонных образцов, простейших схематических изображений, предметов-заместителей) для выделения в реальных предметах и ситуациях различных свойств и отношений, применение общего способа действия в новых условиях.
Если педагоги сами подбирают наглядный материал, им при этом следует строго соблюдать требования, вытекающие из задач обучения и особенностей возраста детей. Эти требования следующие:
- достаточное количество предметов, используемых на занятии;
- разнообразие предметов по размерам (большие и маленькие);
- обыгрывание с детьми всех видов наглядности до занятия в разные отрезки времени, с тем, чтобы на занятии их привлекала только математическая сторона, а не игровая (при обыгрывании игрового материала нужно указать ребятам его назначение);
- динамичность (ребята действуют с предложенном им предметом в соответствии с заданиями воспитателя, поэтому предмет должен быть прочным, устойчивым, чтобы его можно было переставить, перенести с места на место, взять в руки);
- художественное оформление.
Наглядный материал должен привлекать детей эстетически. Красивые пособия вызывают у ребят желание заниматься с ними, способствуют организованному проведению занятий и хорошему усвоению материала
Обеспечить всестороннюю математическую подготовку детей все-таки удается при умелом сочетании игровых методов и методов прямого обучения. Хотя понятно, что игра увлекает детей, не перегружает их умственно и физически. Постепенный переход от интереса детей к игре к интересу к учению совершенно естествен.
У детей пяти лет только начинает формироваться способность управлять вниманием и при анализе и оценке работы детей на занятии воспитатель должен обратить на это внимание. Так как контроль за собственными действиями детям дается сложно, то сначала их учат следить за действиями соседа, оценивать результат его работы. А затем сравнивать со своим результатом. Данная работа проводится под чутким руководством со стороны взрослого, так как при завышенной самооценки результат может быть негативным. У старших дошкольников продолжаются формироваться навыки организованного поведения на занятии, детей приучают быть сдержанными, поднимать руку только тогда, когда они знают, как ответить, терпеливо ждать когда вызовут, готовить свое рабочее место, содержать пособия в порядке.
Большое внимание уделяется формированию произвольного внимания и памяти, развитию умственных действий (анализ, синтез, сравнение, обобщение), смекалки и сообразительности, развитию интереса к приобретению знаний.
Задача воспитателя детского сада, проводящего занятия по математике, включить всех детей в активное и систематическое усвоение программного материала. Для этого он, прежде всего, должен хорошо знать индивидуальные особенности детей, отношение их к таким занятиям, уровень их математического развития и степень понимания ими нового материала. Индивидуальный подход в проведении занятий по математике дает возможность не только помочь детям в усвоении программного материала, но и развить их интерес к этим занятиям. Обеспечить активное участие всех детей в общей работе, что ведет за собой развитие их умственных способностей, внимания, предупреждает интеллектуальную пассивность у отдельных ребят, воспитывает настойчивость, целеустремленность и другие волевые качества.
Воспитатель должен заботиться о развитии у детей способностей к проведению счетных операций, научить их применять полученные ранее знания, творчески подходить к решению предложенных заданий. Все эти вопросы он должен решать, учитывая индивидуальные особенности детей, проявляющиеся на занятиях по математике.
Специальная работа по формированию математических представлений ведется на протяжении дошкольного детства в тесной связи со всей учебно-воспитательной работой в детском саду. Математические знания детям дают в определенной системе и последовательности. Поэтому каждую задачу дробят на более мелкие части, которые изучают последовательно.
В старшей группе детей обучают создавать множества, разбивать их на части и воссоединять их, устанавливать отношения между целым множеством и каждой его частью, сравнивать разные части множества. Детей обучают счету в пределах десяти (на наглядной основе), сравнивать рядом стоящие числа в пределах десяти. А так же знакомят с количественным составом числа из единиц. В старшей группе дети учатся сравнивать предметы, размещать предметы различной величины в порядке возрастания и убывания. Выражать словами местонахождение предмета по отношению к себе, другим предметам.
В подготовительной к школе группе детей обучают количественному, порядковому счету в пределах двадцати, называть числа в прямом и обратном порядке до десяти. Составлять и решать задачи в одно действие на сложение и вычитание, пользоваться цифрами и арифметическими знаками. Различать величины: длину (широту, высоту), объем (вместимость), массу (вес предметов) и способы их измерения. Детей обучают измерять длину предметов, отрезки прямых линий, объёмы с помощью условных мерок. Делить предметы на несколько частей. Ориентироваться в окружающем пространстве и на плоскости. Определять временные отношения (день-неделя-месяц), определять время по часам с точностью до одного часа. [24]
Вывод
Таким образом, на протяжении последних лет методика пополнилась теоретическими исследованиями в разных конкретных направлениях, что значительно повысило об-щеразвивающий эффект обучения. Однако в теории и практике дошкольного воспитания есть еще ряд нерешенных проблем.
Изучение математики в начальной школе предусматривает достаточно широкую и глубокую ориентацию детей в количественных и пространственных отношениях окружающей действительности. Современное обучение в детском саду не всегда в полной мере решает эти задачи. Нередко математические знания дети усваивают формально, без должного их понимания. Одной из причин такого уровня знаний является недостаточная разработка отдельных методических вопросов. Так, современное обучение математике в детском саду во многом ориентируется на вербальные (словесные) методы, которые дают возможность формировать у детей конкретные знания, умения и навыки, и недостаточно ориентируется на методы, которые содействуют развитию у них познавательных интересов и способностей, логического мышления.
На основе практических действий у детей формируются такие мыслительные операции, как анализ, синтез, сравнение, обобщение. Воспитатель должен ориентироваться в оценке результатов своей работы прежде всего на эти показатели, на то, как дети умеют сравнивать, анализировать, обобщать, делать выводы.
Логическое развитие ребенка предполагает также формирование умения понимать и прослеживать причинно-следственные связи явлений и умения выстраивать простейшие умозаключения на основе причинно-следственной связи. Воспитатель должен заботиться о развитии у детей способностей к проведению счетных операций, научить их применять полученные ранее знания, творчески подходить к решению предложенных заданий. Все эти вопросы он должен решать, учитывая индивидуальные особенности детей, проявляющиеся на занятиях по математике.
2. ПРЕЕМСТВЕННОСТЬ В МАТЕМАТИЧЕСКОМ РАЗВИТИИ ДЕТЕЙ ДЕТСКОГО САДА И ШКОЛЫ
2.1. Возникновение и развитие проблемы готовности детей к школе
Школа постоянно повышает требования к интеллектуальному, в частности математическому, развитию детей. Это объясняется такими объективными причинами, как научно-технический прогресс, всеобщая компьютерная грамотность, увеличение потока информации, изменения, происходящие в нашем обществе, особенно в экономической жизни, совершенствование содержания и повышение значимости математического образования, переход на обучение в школе с шести лет и прочее.
Результаты научных исследований и передового педагогического опыта убеждают в том, что эти требования законномерны и выполнение их возможно, если учебно-воспитательная работа в детском саду и школе будет представлять единый развивающийся процесс.
Подготовка ребенка к школе - это сложная, многограная проблема, включающая физическое, психическое и интеллектуальное развитие, в котором значительное место занимает математическое развитие.
К шестилетнему возрасту достигает высокого развития наглядно-образное (интуитивное) мышление: Его высшей формой является наглядно-схематическое мышление, т. е. решение задач на основе использования обобщенных образов, схематически отражающих связи и отношения между объектами. Оно служит основой логического мышления, которое в шестилетнем возрасте только начинает складываться.
По данным ряда исследований, в конце дошкольного возраста у детей появляются собственно учебные мотивы (интерес к новым знаниям) и широкие социальные мотивы, основанные на понимании общественной необходимости учения.
Для формирования полноценных мотивов учения большое значение имеет сюжетно-ролевая игра. Ее недостаточная представленность в деятельности детей ведет к фиксации неудовлетворенного игрового мотива и задержке в формировании собственно учебных и широких социальных мотивов. Использование же учебных задач, лишенных непосредственной привлекательности, препятствует формированию такого отношения. Поэтому задачи, лишенные непосредственной привлекательности, должны даваться не в учебной, а в игровой форме.
Одно из самых первых требований начальной школы заключается в том, чтобы у выпускников дошкольных учреждений сформировать интерес к учебной деятельности, желание учиться, создать прочную основу элементарных математических знаний и умений. В соответствии с этим требованием накануне школы дети должны знать числа в пределах десяти, уметь считать в прямом и обратном порядке по одному и группами, обозначать место того или иного числа в натуральном ряду, уменьшать или увеличивать число на несколько единиц (прибавлять и отнимать), понимать отношения между смежными числами, знать состав чисел из двух меньших, составлять и решать простые задачи и примеры на сложение, вычитание, пользоваться знаками «+», «—», «=». Они должны уметь делить предмет на две, четыре равные части, знать, как они называются, на конкретном материале устанавливать, что целое больше, чем часть этого целого.
Одно из главных требований начального обучения к математической подготовке заключается в дальнейшем развитии мышления дошкольников. Математика - это глубоко логическая наука. Введение ребенка даже в начальную элементарную математику абсолютно невозможно без достаточного уровня развития логического мышления.
Современная начальная школа требует от выпускников детского сада целостной комплексной подготовки их к обучению. Подготовка детей к школе по содержанию и целенаправленности делится на общую и специальную. Первая предусматривает ознакомление детей с элементарными нормами и этикой поведения, воспитание познавательных интересов, формирование самостоятельности, ответственности, настойчивости. Вторая имеет целью вооружить дошкольников знаниями и умениями, которые непосредственно вводятся в содержание отдельных дисциплин начальной школы, в частности математики. При этом специалисты указывают на необходимость формирования специальных качеств дошкольника, так как: инициативность, любознательность, самостоятельность, способность к самоконтролю и саморегуляции, овладение основными видами учебных действий, готовность сенсомоторного аппарата, формирование наиболее важных навыков и привычек. [2]
Современная школа требует от ребенка, который начинает обучение в первом классе, высокой работоспособности, сложных форм умственной деятельности, сформированных морально-волевых качеств уже в дошкольные годы. Выполнение всех этих требований способствует повышению уровня общей готовности ребенка к школьному обучению. Только на фоне общей готовности ребенка его математическая подготовка способна обеспечить усвоение математики в школе, дальнейшее развитие интереса к математической деятельности.
2.2. Преемственность в работе школы и детского сада
Создание единой системы воспитания и образования подрастающего поколения предусматривает неразрывную связь, логическую преемственность в работе всех звеньев этой системы, в данном случае в детском саду и школе.
Преемственность - это не что иное, как опора на пройденное, использование и дальнейшее развитие имеющихся у детей знаний, умений и навыков. Она означает расширение и углубление этих знаний, осознание уже известного, но на новом, более высоком уровне. Преемственность дает возможность в комплексе решать познавательные, воспитательные и развивающие задачи. Она выражается в том, что каждое низшее звено перспективно нацелено на требования последующего.
Обучение дошкольников как начальное звено образования ориентируется на возможности детей этого возраста, а также на требования современного начального обучения. Оба эти условия определяют содержание, организационные формы, методы и средства обучения.
В системе дошкольного образования преемственность рассматривается в качестве одного из принципов обучения и воспитания. Это дает возможность установить и практически реализовать единую целостную систему педагогических влияний. Становление такой системы основывается на понимании развития ребенка как единого непрерывного процесса с качественным своеобразием каждого звена, каждого следующего этапа, являющегося органическим продолжением предыдущего.
Новые методики не только в детском саду, но и в школе разрабатываются соответственно с возрастными особенностями старших дошкольников, первоклассников, их потребностью в игре, двигательной активности. Исходя из этого, в методических рекомендациях к работе со старшими дошкольниками и учениками первых классов широко используются дидактические, подвижные игры, наглядное моделирование разных количественных отношений, реальные практические действия, например, с конкретными множествами, величинами: измерение, создание сериационных рядов и транзитивных отношений.
Преемственность в работе школы и детского сада по математике - это важная и сложная педагогическая проблема. Она предусматривает использование всех апробированных ранее в педагогической практике форм преемственности: изучения программ смежных звеньев, методики работы в них, взаимного обмена опытом, дальнейшего поиска оптимальных путей усовершенствования педагогической работы, воспитания у детей интереса к знаниям, к учебной деятельности и др. С этой целью организуются учебные заведения нового типа: школа-детский сад, гимназия, прогимназия и тому подобное.
Согласно принципу преемственности при обучении школьников, в частности математике, используется меньше чем половина учебного материала первого класса. Этот материал дается детям для ознакомления, то есть формируются «опережающие» знания и умения. Хотя учебные задания дошкольников и учеников первого класса при изучении одного и того же факта имеют свою специфику. В методике математического развития дошкольников наблюдается частичное упрощение школьной программы с учетом возрастных особенностей детей. Но именно такой подход дает возможность достичь наилучших результатов при переходе детей от дошкольного к школьному обучению. [3]
Программы детского сада и первого класса, программные требования образовательно-воспитательной работы преемственно связаны между собой. Дошкольные работники должны хорошо знать требования школы, при этом не только объем, содержание знаний, но и их качественные особенности государственный стандарт: какого характера знания и умения необходимы первокласснику. Вместе с этим очень важно, чтобы учителя школ достаточно четко представляли себе уровень подготовки детей к школе. В таком случае учитель будет знать, на что ему опираться, от чего отталкиваться, начиная работу по программе первого класса.
Успехи в школьном обучении во многом зависят от качества знаний и умений, сформированных в дошкольные годы, от уровня развития познавательных интересов и познавательной активности ребенка. Школа постоянно повышает требования к интеллектуальному, в частности математическому, развитию детей. С целью совершенствования подготовки всех детей шестилетнего возраста к школе организуются подготовительные классы при школах, подготовительные группы в детских садах.
Обеспечение более высокого уровня математического развития детей, поступающих в первый класс, их предварительная подготовка, безусловно, существенно влияют на качество усвоения учебного материала в школе. Поэтому такое серьезное внимание уделяется правильной организации учебно-воспитательной работы в детских садах, особенно в старшем дошкольном возрасте.
Психолого-педагогические исследования последних лет (Рубинштейн С.Л. [20]) дали возможность усовершенствовать содержание обучения дошкольников, в частности математике. Перестройка вариативных программ обучения и воспитания в детском саду осуществляется, прежде всего, в соответствии с требованиями начальной школы, которые предъявляются к математической подготовке детей, и особенностей их математического развития.
Программа работы в подготовительной группе является частью единой системы обучения математике и развития интеллекта детей, которая предполагает занятия с двух лет. В старшей группе содержательным ядром программы является формирование представления о числе как о точке числовой прямой. Большое значение придается развитию образного мышления и абстрактного воображения детей, воспитанию интереса и "вкуса" к математике как совершенно особой области человеческого знания. С этой целью предлагаются творческие задания, включенные в продуктивные виды деятельности как средство усвоения и присвоения математического содержания.
Можно сказать, что работа по этому разделу преследует две цели: первая связана с подготовкой детей к поступлению в школу и обучению в ней, вторая с развитием интеллекта и воображения. Проведем сравнительный анализ содержания программ. Анализ программ представлен в таблицах, приведённых в приложении 1.
Как показывает анализ современных программ по математике для первого класса и дошкольного учреждения, в их содержании достигнута значительная преемственность. Характерно, что программы строятся на теоретико-множественной основе. Центральным понятием, с которым знакомятся дети и в детском саду, и в школе, является множество, а основным методом обучения - метод одновременного изучения взаимообратных действий.
В программе по математике условно можно выделить пять разделов:
- знания о количестве и счете,
- размере,
- форме,
- пространстве,
- времени.
Усвоение программы, как подчеркивалось раньше, обеспечивает выпускникам дошкольных учреждений уверенное овладение математикой в школе. Так, для усвоения знаний первой темы программы в первом классе «Десяток» дети имеют достаточный уровень знаний. Они умеют хорошо считать предметы, звуки, движения, хорошо усвоили названия, последовательность и обозначение первых десяти чисел натурального ряда. Формирование понятия числа и арифметических действий над ними осуществлялось в детском саду и продолжается в первом классе на основании практических операций с разными конечными множествами. Этому способствует опыт, приобретенный детьми ранее.
В первом классе идет дальнейшее углубление знаний об отношениях между смежными числами натурального ряда, закрепляются навыки установления взаимооднозначного соответствия между элементами двух множеств накладыванием, прикладыванием и сравнением чисел.
В детском саду уделяется внимание развитию специальной терминологии: названиям чисел, действий (прибавления и отнимания), знаков (плюс, минус, равно). В школе углубляется процесс обогащения речи детей специальными терминами. Дети усваивают названия данных и искомых, компонентов действий сложения и вычитания, учатся читать и записывать самые простые выражения и так далее.
Важное значение для изучения школьного курса математики имеет своевременное ознакомление дошкольников с арифметическими задачами и примерами. Выпускники детских садов уже усвоили математическую сущность задачи, понимают значение и содержание вопросов задачи, правильно отвечают на них, выбирают и аргументируют выбор арифметического действия. В детском саду начинается, а в первом классе продолжается усвоение детьми таблицы сложения и вычитания в пределах десяти на основе знаний состава числа из двух меньших. Кроме того, в первом классе дети знакомятся с отдельными случаями сложения и вычитания, когда одно из числовых данных равно нулю. [19]
А.М. Леушина [7] считает, что изучая тему «Десяток», первоклассники углубляют свои знания о геометрических фигурах, и прежде всего о многоугольниках (треугольниках, четырехугольниках и т.д.) и их элементах (стороны, углы, вершины). Начальные знания об этом получены в детском саду. Они уже умеют выделять форму окружающих предметов, используя при этом геометрическую фигуру как эталон. Опираясь на материальные объекты вокруг, модели и изображения фигур, дети сравнивают, сопоставляют фигуры между собой, а это способствует развитию индуктивного и дедуктивного мышления, формирует умения делать простейшие выводы. Особенно важно в этом возрасте обеспечение целенаправленного и достаточно полного для этого уровня познания анализа фигуры, на основе которого выделяются существенные признаки и происходит абстрагирование от несущественных
Первоклассники учатся выделять прямые и непрямые углы, чертить отрезки разной длины, изображать геометрические фигуры в тетрадях в клетку. Готовились они к этому еще в детском саду.
Положительно влияют на формирование знаний о числе представления детей о непрерывных величинах, что предусмотрено программой детского сада, а также навыки в измерении условной мерой и такими общепринятыми мерами, как метр, литр, килограмм. В первом классе дети продолжают измерять протяженность, массу, вместимость, объем. Постепенно, начиная с детского сада и продолжая эту работу в школе, детей подводят к пониманию функциональной зависимости между измеряемой величиной, мерой и результатом измерения (количеством мер). Все эти знания расширяют понятие о числе, развивают мышление ребенка, его интересы и способности. [10]
Однако современную школу не удовлетворяет формальное усвоение этих знаний и умений. Дальнейшее обучение в школе обычно зависимо от качества усвоенных знаний, их осознанности, гибкости и прочности. Поэтому современная дошкольная дидактика направлена на отработку путей оптимизации обучения с целью повышения этих качеств. Выпускники дошкольных учреждений должны осознанно, с пониманием сути явлений уметь использовать приобретенные знания и навыки не только в обычной, стереотипной, но и в измененной ситуации, в новых, необычных обстоятельствах (игра, труд).
Одно из главных требований начального обучения к математической подготовке заключается в дальнейшем развитии мышления дошкольников. Математика - это глубоко логическая наука. Введение ребенка даже в начальную элементарную математику абсолютно невозможно без достаточного уровня развития логического мышления.
Психологические исследования свидетельствуют о возможностях детей в активном развитии аналитико-синтетической деятельности, всех форм мышления. Этого можно добиться на основе научно обоснованной коррекции как содержания, так и методики обучения.
Среди таких качеств Рубинштейн С.Л. [20] выделяет активность, инициативность, любознательность, самостоятельность, способность к самоконтролю и саморегуляции, овладение основными видами учебных действий, готовность сенсомоторного аппарата, формирование наиболее важных навыков и привычек.
Как видно из сравнительного анализа программ детского сада и первого класса, программные требования образовательно-воспитательной работы преемственно связаны между собой. Дошкольные работники должны хорошо знать требования школы, при этом не только объем, содержание знаний, но и их качественные особенности - государственный стандарт: какого характера знания и умения необходимы первокласснику. Вместе с этим очень важно, чтобы учителя школ достаточно четко представляли себе уровень подготовки детей к школе. В таком случае учитель будет знать, на что ему опираться, от чего отталкиваться, начиная работу по программе первого класса.
Преемственность, как подчеркивает А. М. Леушина [8], заключается совсем не в том, есть ли в «Программе детского сада» понятие «трапеция» или «обратная задача», а в том, умеет ли ребенок анализировать данную фигуру и задачу, выделять в них существенные черты и обобщать их.
В последние годы педагогика все чаще обращается к проблемам методики обучения математики. Прорабатываются пути усовершенствования преемственности именно в вопросах методики. В исследованиях Щербаковой Е.И. [25] учитываются психологические механизмы формирования учебной деятельности ребенка, а также такие, которые относятся к природе и образованию у него элементарных представлений о размере, количестве, числе.
Новые методики разрабатываются соответственно с возрастными особенностями дошкольников, их потребностью в игре, двигательной активности. Исходя из этого, в методических рекомендациях к работе со старшими дошкольниками и учениками первых классов широко используются дидактические игры, двигательные игры, наглядное моделирование разных количественных отношений, реальные практические действия, например с конкретными множествами, величинами: измерение, создание сериационных рядов и транзитивных отношений. Разработка и экспериментальная проверка методик опираются на данные о психологической диагностике динамики общего интеллектуального развития старших дошкольников, а также на результаты изучения состояния их здоровья, работоспособности и утомляемости.
Обучение детей началам математики строится так, чтобы, прежде всего, на основании действий с конкретными множествами и формирования у детей знаний об общих характеристиках формы, размере и количестве, потом учить их считать, измерять, прибавлять и вычитать.
Весьма ценно в этих методиках то, что дети не просто получают определенную сумму знаний по математике, а и значительно повышают уровень общего умственного развития: приобретают умения и навыки воспринимать и понимать инструкцию воспитателя, использовать ее в процессе работы, выполнять работу качественно и контролировать результаты соответственно образцу. Значительные сдвиги происходят и в характере обобщений, в них все больше начинают отражаться существенные связи и отношения, например при решении арифметических задач.
Обучение не только ускоряет переход детей от низших к высшим структурам интеллектуальной деятельности, но, как считают психологи, является необходимым условием их превращения. Новые структуры не просто приходят извне, они вырабатываются в процессе обучения на основе тех, которые сложились раньше по образцам, имеющимся в общественном опыте, усваиваемом детьми. Внешняя стимуляция в этом процессе всегда действует через внутреннюю активность ребенка.
Усвоение программы обеспечивает выпускникам дошкольных учреждений уверенное овладение математикой в школе. В первом классе идет дальнейшее углубление знаний по математике. Преемственность в работе детского сада и школы по математике дает положительный результат в усвоении знаний детьми.
Вывод
Подводя итог сказанному выше, необходимо указать на то, что преемственность - это связь, предполагающая с одной стороны направленность воспитательно-образовательной работы детского сада на те требования, которые будут предъявлены детям в школе, с другой стороны опору учителям на достигнутый дошкольный уровень развития, на знания, опыт детей и использование этого в учебно-воспитательном процессе школы. Преемственность, как подчеркивает А.М. Леушина, заключается совсем не в том, есть ли в «Программе детского сада» понятие «трапеция» или «обратная задача», а в том, умеет ли ребенок анализировать данную фигуру и задачу, выделять в них существенные черты и обобщать их.
В ходе исследования работы был изучен теоретический аспект преемственности в обучении детей математике. Так было установлено, что детский сад выполняет задачу всесторонней подготовки детей к школе в процессе систематического, целенаправленного педагогического воздействия. В задачи воспитателя детского сада входит помимо планомерной подготовки к школе, изучение неблагоприятных вариантов психического развития ребенка, черт личности и поведения. Наиболее оптимальным вариантом формирования у ребенка школьной зрелости является тесное взаимодействие детского сада и школы, их сотрудничество по всем аспектам вопроса подготовки детей к школьному обучению.
ЗАКЛЮЧЕНИЕ
Исходя из анализа психолого – педагогической и методической литературы, можно сделать следующие выводы.
В дошкольном возрасте закладываются основы знаний, необходимых ребенку в школе. Математика представляет собой сложную науку, которая может вызвать определенные трудности во время школьного обучения. К тому же далеко не все дети имеют склонности и обладают математическим складом ума, поэтому при подготовке к школе важно познакомить ребенка с основами счета.
Как правило, учебные задачи на занятиях решаются в сочетании с воспитательными. Так, воспитатель учит детей быть организованными, самостоятельными, внимательно слушать, выполнять работу качественно и в срок. Это дисциплинирует детей, способствует формированию у них целенаправленности, организованности, ответственности. Таким образом, обучение детей математике с раннего возраста обеспечивает их всестороннее развитие.
В современных обучающих программах начальной школы важное значение придается логической составляющей. Развитие логического мышления ребенка подразумевает формирование логических приемов мыслительной деятельности, а также умения понимать и прослеживать причинно-следственные связи явлений и умения выстраивать простейшие умозаключения на основе причинно-следственной связи.
Благодаря играм удаётся сконцентрировать внимание и привлечь интерес даже у самых несобранных детей дошкольного возраста. В начале их увлекают только игровые действия, а затем и то, чему учит та или иная игра. Постепенно у детей пробуждается интерес и к самому предмету обучения.
Специальная работа по формированию математических представлений ведется на протяжении дошкольного детства в тесной связи со всей учебно-воспитательной работой в детском саду. Математические знания детям дают в определенной системе и последовательности. Поэтому каждую задачу дробят на более мелкие части, которые изучают последовательно.
Создание единой системы воспитания и образования подрастающего поколения предусматривает неразрывную связь, логическую преемственность в работе всех звеньев этой системы, в данном случае в детском саду и школе.
Обучение дошкольников как начальное звено образования ориентируется на возможности детей этого возраста, а также на требования современного начального обучения. Оба эти условия определяют содержание, организационные формы, методы и средства обучения.
Дошкольные работники должны хорошо знать требования школы, при этом не только объем, содержание знаний, но и их качественные особенности государственный стандарт: какого характера знания и умения необходимы первокласснику. Вместе с этим очень важно, чтобы учителя школ достаточно четко представляли себе уровень подготовки детей к школе. В таком случае учитель будет знать, на что ему опираться, от чего отталкиваться, начиная работу по программе первого класса.
Практическая значимость курсовой работы заключается в том, что систематизированный материал по теме исследования может быть использован на педагогической практике студентами учебных заведений педагогического профиля, а также при подготовке к занятиям.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
ПРИЛОЖЕНИЕ 1. ВЫПИСКИ ИЗ ПРОГРАММ
Таблица 1. Программа «От рождения до школы». Авторы: Помораева И. А., Позина В. А.
Возраст | Планируемые результаты |
6 год жизни |
|
7 год жизни |
|
Окончание таблицы 1.
|
Таблица 2. Программа по математике 1 класс. Учебно-методический комплекс «Школа России». Авторы: М.И.Моро, с.И.Волкова, С.В.Степанова
Ученики должны знать: |
|
Ученики должны уметь: |
|
Окончание таблицы 2.
Учащиеся должны уметь: |
|
Рисуем одуванчики гуашью (картина за 3 минуты)
Ребята и утята
Развешиваем детские рисунки дома
Три орешка для Золушки
Учимся рисовать горный пейзаж акварелью