Под задачей с практическим содержанием понимается математическая задача, которая раскрывает приложения математики в окружающей нас действительности, в смежных дисциплинах, знакомит с её использованием в организации, технологии и экономике современного производства, в сфере обслуживания, в быту, при выполнении трудовых операций.
Вложение | Размер |
---|---|
mou_shatkovskaya_oshkrug.pptx | 2.01 МБ |
pechatnoe_krug_i_okr_konfer2019.docx | 2.69 МБ |
Слайд 1
МОУ « Шатковская ОШ» Научно – практическая конференция по математике на тему: «Решение задач с практическим содержанием» «Круг и окружность в нашей жизни» Выполнила: ученица 8 класса Антропова Юлия Руководитель: учитель математики Кадяева Елена МихайловнаСлайд 2
Введение Под задачей с практическим содержанием понимается математическая задача, которая раскрывает приложения математики в окружающей нас действительности, в смежных дисциплинах, знакомит с её использованием в организации, технологии и экономике современного производства, в сфере обслуживания, в быту, при выполнении трудовых операций. Рассматривая задачи с практическим содержанием на уроках математики, ученикам прививается интерес к предмету. Необходимо, чтобы каждое новое понятие или положение находило применение в задачах практического характера, в реальной жизни. Именно это убеждает учащиеся, что математические знания им нужны в жизни для решения многих практических задач и математика наука полезная, необходимая во всех видах деятельности. Важное значение в процессе обучения математике имеет понимание школьниками значимости учебного материала, перспективы его использования. Я решила провести обобщение доступных задач с практическим содержанием на применение понятий окружности и круга.
Слайд 3
Окружность Окружность – удивительно гармоническая фигура, древние греки считали её самой совершенной. Совершенство окружности – в расположении всех её точек на одинаковом расстоянии от центра. Окружность – единственная кривая, которая может «скользить сама по себе», вращаясь вокруг центра.
Слайд 4
Круг Круг – это часть плоскости, ограниченная окружностью.
Слайд 5
Практические задачи повседневной жизни, которые используют знания о круге и окружности. Знания о круге и окружности позволяют человеку решать многие практические задачи в повседневной жизни: разбить клумбу или фонтан, сшить головной убор, связать салфетку, сделать круглую крышу, окно или крышку, ёлочную игрушку, сделать выкройку платья или юбки, нарисовать узор и т.п.
Слайд 6
Задача №1 Почему канализационные люки делают круглыми, а не квадратными? Ответ: сравните сторону квадрата с его диагональю. Квадратная крышка может провалиться в люк, чего никогда не случится с круглой крышкой.
Слайд 7
Задача №2 Диаметр основания Царь - колокола, находящегося в Московском Кремле, равен 6,6м Найдите площадь основания колокола.
Слайд 8
Задача №3 Длина окружности цирковой арены равна 41м. Найдите диаметр и площадь арены.
Слайд 9
Задача №4 Вокруг круглой клумбы, радиус которой равен 3м,проложена дорожка шириной 1м. Сколько нужно песка, чтобы посыпать дорожку, если на 1м кв. дорожки требуется 0,8 дм. куб. песка?
Слайд 10
Решение
Слайд 11
Колесо Одно из главных применений круга – это колесо. Это одно из самых великих изобретений человечества. Додуматься до колеса было не так просто, как это может показаться. Ведь даже ацтеки, жившие в Мексике, почти до 16 века не знали колеса. Сколько разных машин и механизмов! Есть у них у всех схожие части – детали, и одна из них – колесо.
Слайд 12
Задача Автомобиль прошёл 989м. Найдите диаметр колеса автомобиля, если известно, что оно сделало 500 оборотов.
Слайд 13
Решение - Что означает один оборот колеса с математической точки зрения? -Чему равно расстояние, пройденное автомобилем, если колесо автомобиля сделало один оборот? 500*2πR=989, то d =2 R = Ответ: 63см
Слайд 14
« Математика владеет не только истинной, но и красотой…» Бертран Рассел
Слайд 15
Архитектура Окружность как совершенная геометрическая форма всегда привлекала к себе внимание художников, архитекторов
Слайд 16
Ворота Таврического дворца В неповторимом архитектурном облике Санкт-Петербурга восторг и удивление вызывает «чугунное кружево» - садовые ограды, перила мостов и набережных, балконные решётки, фонари. Особую воздушность придают воротам окружности, сплетенные в орнамент.
Слайд 17
К.Росси. Арка Главного штаба. С. - Петербург Торжественность и устремлённость ввысь – такой эффект в архитектуре зданий достигается использованием арок, представляющих дуги окружностей
Слайд 18
Витраж собора св. Витта. Прага Окружности и дуги являются основными элементами готических храмов средневековья.
Слайд 19
Архангельский собор. Москва Архитектура православных церквей включает в себя как обязательные элементы купола, арки, округлые своды, что зрительно увеличивает пространство, создаёт эффект полёта, лёгкости.
Слайд 20
Заключение Задачи с практическим содержанием целесообразно использовать в процессе обучения для раскрытия многообразия применений математики в жизни, своеобразия отражения ею реального мира и формирования практических умений и навыков.
Слайд 21
Спасибо за внимание!
За чашкой чая
Весенние чудеса
Туманность "Пузырь" в созвездии Кассиопея
Загадка старого пирата или водолазный колокол
Смекалка против Змея-Горыныча