Презентация о выдающихся математиках России
Вложение | Размер |
---|---|
презентация | 1.19 МБ |
Слайд 2
Дата рождения: 4 (15) апреля 1707 Место рождения: Базель, Швейцария Дата смерти: 7 (18) сентября 1783 Место смерти: Санкт-Петербург, Россия Гражданство: Швейцария Научная сфера: Математика, Механика, Физика, Астрономия Альма-матер: Базельский университет Научный руководитель: Иоганн Бернулли
Слайд 3
Леона́рд Э́йлер - выдающийся математик, внёсший значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук. Эйлер — самый продуктивный математик в истории, автор более чем 800 работ по математическому анализу, дифференциальной геометрии, теории чисел, приближённым вычислениям, небесной механике, математической физике, оптике, баллистике, кораблестроению, теории музыки и др. Многие его работы оказали значительное влияние на развитие науки. Почти полжизни Эйлер провёл в России, где энергично помогал создавать российскую науку. В 1726 году он был приглашён работать в Санкт-Петербург. В 1731—1741 и начиная с 1766 года был академиком Петербургской Академии Наук (в 1741—1766 годах работал в Берлине, оставаясь почётным членом Петербургской Академии). Хорошо знал русский язык, часть своих сочинений (особенно учебники) публиковал на русском. Первые русские академики по математике (С. К. Котельников), и по астрономии (С. Я. Румовский) были учениками Эйлера. Некоторые из его потомков до сих пор живут в России.
Слайд 4
Эйлер оставил важнейшие труды по самым различным отраслям математики, механики, физики, астрономии и по ряду прикладных наук. С точки зрения математики, XVIII век — это век Эйлера. Если до него достижения в области математики были разрознены и не всегда согласованы, то Эйлер впервые увязал анализ, алгебру, тригонометрию, теорию чисел и др. дисциплины в единую систему, и добавил немало собственных открытий. Значительная часть математики преподаётся с тех пор «по Эйлеру».
Слайд 5
Благодаря Эйлеру в математику вошли общая теория рядов, удивительная по красоте «формула Эйлера», операция сравнения по целому модулю, полная теория непрерывных дробей, аналитический фундамент механики, многочисленные приёмы интегрирования и решения дифференциальных уравнений, число e, обозначение i для мнимой единицы, гамма-функция с её окружением и многое другое. По существу именно он создал несколько новых математических дисциплин — теорию чисел, вариационное исчисление, теорию комплексных функций, дифференциальную геометрию поверхностей, специальные функции. Другие области его трудов: диофантов анализ, астрономия, оптика, акустика, статистика и т. д. Познания Эйлера были энциклопедичны; кроме математики, он глубоко изучал ботанику, медицину, химию, теорию музыки, множество европейских и древних языков.
Слайд 6
П. Л. Чебышёв писал: «Эйлером было положено начало всех изысканий, составляющих общую теорию чисел». Большинство математиков XVIII века занимались развитием анализа, но Эйлер пронёс увлечение древней арифметикой через всю свою жизнь. Благодаря его трудам интерес к теории чисел к концу века возродился. Эйлер продолжил исследования Ферма, ранее высказавшего (под влиянием Диофанта) ряд разрозненных гипотез о натуральных числах. Эйлер строго доказал эти гипотезы, значительно обобщил их и объединил их в содержательную теорию чисел. Он ввёл в математику исключительно важную «функцию Эйлера» и сформулировал с её помощью «теорему Эйлера». Эйлер создал теорию сравнений и квадратичных вычетов, указав для последних критерий Эйлера. Он опроверг гипотезу Ферма о том, что все числа вида — простые; оказалось, что F5 делится на 641. Доказал утверждение Ферма о представлении нечётного простого числа в виде суммы двух квадратов. Эйлер доказал Великую теорему Ферма для n = 3 и n = 4, создал полную теорию непрерывных дробей, исследовал различные классы диофантовых уравнений, теорию разбиений чисел на слагаемые. Он открыл, что в теории чисел возможно применение методов математического анализа, положив начало аналитической теории чисел. В основе её лежат тождество Эйлера и общий метод производящих функций. Эйлер ввёл понятие первообразного корня и выдвинул гипотезу, что для любого простого числа p существует первообразный корень по модулю p; доказать это он не сумел, позднее теорему доказали Лежандр и Гаусс. Большое значение в теории имела другая гипотеза Эйлера — квадратичный закон взаимности, также доказанный Гауссом.
Слайд 7
Одна из главных заслуг Эйлера перед наукой — монография «Введение в анализ бесконечно малых» (1748). В 1755 году выходит дополненное «Дифференциальное исчисление», а в 1768—1770 годах — три тома «Интегрального исчисления». В совокупности это фундаментальный, хорошо иллюстрированный примерами курс, с продуманной терминологией и символикой, откуда многое перешло и в современные учебники. Основание натуральных логарифмов было известно ещё со времён Непера и Якоба Бернулли, однако Эйлер дал настолько глубокое исследование этой важнейшей константы, что с тех пор она носит его имя. Другая исследованная им константа: постоянная Эйлера — Маскерони. Первая книга по вариационному исчислению
Слайд 8
Он делит с Лагранжем честь открытия вариационного исчисления, выписав уравнения Эйлера — Лагранжа для общей вариационной задачи. В 1744 году Эйлер опубликовал первую книгу по вариационному исчислению («Метод нахождения кривых, обладающих свойствами максимума либо минимума»). Эйлер значительно продвинул теорию рядов и распространил её на комплексную область, получив при этом знаменитую формулу Эйлера. Большое впечатление на математический мир произвели ряды, впервые просуммированные Эйлером, в том числе не поддававшийся до него никому ряд обратных квадратов: Современное определение показательной, логарифмической и тригонометрических функций — тоже его заслуга, так же как их символика и обобщение на комплексный случай.Формулы, часто именуемые в учебниках «условия Коши — Римана», более правильно было бы назвать «условиями Даламбера — Эйлера». Он первый дал систематическую теорию интегрирования и используемых там технических приёмов, нашёл важные классы интегрируемых дифференциальных уравнений. Он открыл эйлеровы интегралы — ценные классы специальных функций, возникающие при интегрировании: бета-функция и гамма-функция Эйлера. Одновременно с Клеро вывел условия интегрируемости линейных дифференциальных форм от двух или трёх переменных (1739). Первый ввёл двойные интегралы. Получил серьёзные результаты в теории эллиптических функций, в том числе первые теоремы сложения. С более поздней точки зрения, действия Эйлера с бесконечными рядами не всегда могут считаться корректными (обоснование анализа было проведено лишь полвека спустя), но феноменальная математическая интуиция практически всегда подсказывала ему правильный результат. Впрочем, дело было не только в интуиции, Эйлер действовал здесь достаточно сознательно, во многих важных отношениях его понимание смысла расходящихся рядов и операций с ними превосходило стандартное понимание XIX века и послужило основой современной теории расходящихся рядов, развитой в конце XIX - начале XX века.
Слайд 9
В элементарной геометрии Эйлер обнаружил несколько фактов, не замеченных Евклидом: Три высоты треугольника пересекаются в одной точке (ортоцентре). В треугольнике ортоцентр, центр описанной окружности и центр тяжести лежат на одной прямой — «прямой Эйлера». Основания трёх высот произвольного треугольника, середины трёх его сторон и середины трёх отрезков, соединяющих его вершины с ортоцентром, лежат все на одной окружности (окружности Эйлера). Число вершин (В), граней (Г) и рёбер (Р) у любого выпуклого многогранника связаны простой формулой: В + Г = Р + 2. Второй том «Введения в анализ бесконечно малых» (1748) — это первый в мире учебник по аналитической геометрии и основам дифференциальной геометрии. Термин аффинные преобразования впервые введён в этой книге вместе с теорией таких преобразований. В 1760 году вышли фундаментальные «Исследования о кривизне поверхностей». Эйлер обнаружил, что в каждой точке гладкой поверхности имеются два нормальных сечения с минимальным и максимальным радиусами кривизны, и плоскости их взаимно перпендикулярны. Вывел формулу связи кривизны сечения поверхности с главными кривизнами. 1771 год: опубликовано сочинение «О телах, поверхность которых можно развернуть на плоскость». В этой работе введено понятие развёртывающейся поверхности, то есть поверхности, которая может быть наложена на плоскость без складок и разрывов. Эйлер, однако, даёт здесь вполне общую теорию метрики, от которой зависит вся внутренняя геометрия поверхности. Позже исследование метрики становится у него основным инструментом теории поверхностей.
Слайд 10
Магический квадрат Эйлера Эйлер много внимания уделял представлению натуральных чисел в виде суммы специального вида и сформулировал ряд теорем для подсчёта числа разбиений. Он исследовал алгоритмы построения магических квадратов методом непрерывного хода шахматного коня. При решении комбинаторных задач он глубоко изучил свойства сочетаний и перестановок, числа Эйлера I рода.
Слайд 11
Дата рождения: 19 ноября 1711 Место рождения: Деревня Мишанинская (близ Холмогоры), Архангелогородская губерния Дата смерти: 15 апреля 1765 Место смерти: Санкт-Петербург Гражданство: Российская империя Научная сфера: Естествознание, химия, физика, минералогия, история, филология,опто-механика и др. Место работы: Императорская Санкт-Петербургская Академия Наук Образование: Славяно-греко-латинская академия, Академ. ун-т в Петербурге, Марбургский университет, промышл. центр Фрайберг (стал затем Горной Академией) Известен как: академик Петербургской АН, член Академии художеств, почётный член Стокгольмской и Болонской академий наук.
Слайд 12
первый русский учёный-естествоиспытатель мирового значения, химик и физик, основоположник физической химии, поэт, заложивший основы современного русского литературного языка, художник, историк, поборник развития отечественного просвещения, науки и экономики, основоположник молекулярно-кинетической теории, науки о стекле. Разработал проект Московского государственного университета, впоследствии названного в его честь. Открыл наличие атмосферы у Венеры.
Слайд 13
Дата рождения: 20 ноября (1 декабря) 1792 Место рождения: Нижний Новгород Дата смерти: 12 февраля (24 февраля) 1856 Место смерти: Казань Гражданство: Российская империя Научная сфера: математика Место работы: Казанский университет Альма-матер: Казанский университет Известен как: один из создателей неевклидовой геометрии
Слайд 14
русский математик, создатель геометрии Лобачевского, деятель университетского образования и народного просвещения. Известный английский математик Уильям Клиффорд назвал Лобачевского «Коперником геометрии».
Слайд 15
Сохранились студенческие записи лекций Лобачевского (от 1817 года), где им делалась попытка доказать пятый постулат Евклида, но в рукописи учебника «Геометрия» (1823) он уже отказался от этой попытки. В «Обозрениях преподавания чистой математики» за 1822/23 и 1824/25 Лобачевский указал на «до сих пор непобедимую» трудность проблемы параллелизма и на необходимость принимать в геометрии в качестве исходных понятия, непосредственно приобретаемые из природы. 7 февраля 1826 года Лобачевский представил для напечатания в Записках физико-математического отделения сочинение: «Сжатое изложение начал геометрии со строгим доказательством теоремы о параллельных» (на французском языке). Но издание не осуществилось. Рукопись и отзывы не сохранились, однако само сочинение было включено Лобачевским в его труд «О началах геометрии» (1829—1830), напечатанный в журнале «Казанский вестник». Это сочинение стало первой в мировой литературе серьёзной публикацией по неевклидовой геометрии, или геометрии Лобачевского. Лобачевский считает аксиому параллельности Евклида произвольным ограничением. С его точки зрения, это требование слишком жёсткое, ограничивающее возможности теории, описывающей свойства пространства. В качестве альтернативы предлагает другую аксиому: на плоскости через точку, не лежащую на данной прямой, проходит более чем одна прямая, не пересекающая данную. Разработанная Лобачевским новая геометрия не включает в себя евклидову геометрию, однако евклидова геометрия может быть из неё получена предельным переходом (при стремлении кривизны пространства к нулю). В самой геометрии Лобачевского кривизна отрицательна. Однако научные идеи Лобачевского не были поняты современниками. Его труд «О началах геометрии», представленный в 1832 году советом университета в Академию наук, получил у М. В. Остроградского отрицательную оценку. Среди коллег его почти никто не поддерживает, растут непонимание и невежественные насмешки.
Слайд 16
Венцом травли стал издевательский анонимный пасквиль, появившийся в журнале Ф.Булгарина «Сын отечества» в 1834 году: Как можно подумать, чтобы г. Лобачевский, ординарный профессор математики, написал с какой-нибудь серьёзной целью книгу, которая немного бы принесла чести и последнему школьному учителю! Если не ученость, то по крайней мере здравый смысл должен иметь каждый учитель, а в новой геометрии нередко недостает и сего последнего. Титульный лист книги Лобачевского
Слайд 17
Но Лобачевский не сдаётся. В 1835—1838 он публикует в «Учёных записках» статьи о «воображаемой геометрии», а затем выходит наиболее полная из его работ «Новые начала геометрии с полной теорией параллельных». Не найдя понимания на родине, он пытается найти единомышленников за рубежом. В 1840 году Лобачевский печатает на немецком языке «Геометрические исследования по теории параллельных», где содержится чёткое изложение его основных идей. Один экземпляр получает Гаусс, «король математиков» той поры. Как много позже выяснилось, Гаусс и сам тайком развивал неевклидову геометрию, однако так и не решился опубликовать что-либо на эту тему. Ознакомившись с результатами Лобачевского, он выразил свою симпатию к идеям русского учёного косвенно: рекомендовал избрать Лобачевского иностранным членом-корреспондентом Гёттингенского королевского общества. Восторженные отзывы о Лобачевском Гаусс доверил только своим дневникам и самым близким друзьям. Это избрание состоялось в 1842 году. Однако положения Лобачевского оно не укрепило. Ему осталось работать в родном университете ещё четыре года. Лобачевский не был единственным исследователем в этой новой области математики. Венгерский математик Янош Бойяи независимо от Лобачевского в 1832 году опубликовал своё описание неевклидовой геометрии. Но и его работы остались неоценёнными современниками.
Слайд 18
Лобачевский умер непризнанным. Спустя несколько десятилетий ситуация в науке коренным образом изменилась. Большую роль в признании трудов Лобачевского сыграли исследования Э. Бельтрами (1868), Ф. Клейна (1871), А. Пуанкаре (1883) и др. Появление модели Клейна доказало, что геометрия Лобачевского так же непротиворечива, как и евклидова. Осознание того, что у евклидовой геометрии имеется полноценная альтернатива, произвёл огромное впечатление на научный мир и придал импульс другим новаторским идеям в математике и физике.
Слайд 19
Лобачевский получил ряд ценных результатов и в других разделах математики: так, в алгебре он разработал новый метод приближённого решения уравнений, в математическом анализе получил ряд тонких теорем о тригонометрических рядах, уточнил понятие непрерывной функции и др. В разные годы он опубликовал несколько блестящих статей по математическому анализу, алгебре и теории вероятностей, а также по механике, физике и астрономии.
Сочинение
Цветок или сорняк?
В Китае испытали "автобус будущего"
Заколдованная буква
Лесная сказка о том, как согреться холодной осенью