Эта работа учащейся подготовлена к уроку "Измерительные работы" по геометрии в 9 классе. Рассмотрены три задачи, в которых используются тригонометрические формулы при проведении измерительных работ на местности.
Вложение | Размер |
---|---|
naydite_vysotu_dereva_esli_izvestno_15.pptx | 346.57 КБ |
Слайд 1
Измерение высоты предмета. Презентацию к уроку подготовила Салина Александра ученица 9 «Г» класса ГБОУ гимназии № 402Слайд 2
Найдите высоту дерева, если известно =1,5 м, НС=9м, СВ=1,7м. Решение. НВ=НС+СВ= 9+1,7=10,7м т.к. В – общий Составим пропорцию = АН= = Н С В А
Слайд 3
Найти высоту дерева можно, если замерить расстояние HF и угол AFH . tg AFH= AH= tg AFH Если AFH=53 а FH=7 м , то 7 1,349 Н F А
Слайд 4
Наблюдатель находиться на расстоянии 50 м от башни, высоту которой хочет определить. Основание башни он видит под углом 2° к горизонту, а вершину – под углом 45° к горизонту. Какова высота башни? 50м 45 ° 2 °
Слайд 5
По теореме синусов = AD=sin 2 °∙ 𝐵𝐷/ sin 88° =(0,039498∙50)/0,9994≈1,75 м AD+FD=51,75 м Ответ: 51,75м высота башни. 50м 45 ° 2 ° В С А D F
Слайд 6
На горе находится башня, высота которой равна 100м. Некоторый предмет А у подножия горы наблюдают сначала с вершины В башни под углом 60° к горизонту, а потом с ее основания С под углом 30 °. Найдите высоту Н горы . 100 м 60 ° 30 ° Н
Слайд 7
1) Рассмотрим ∆ АВС: ∟ Место для формулы. СВА = 30 ° т.к. ∟ СВЕ=90 ° , а ∟ ЕВА= 60 ° ( по условию),(90 ° -60 ° =30 ° ), ∟ ВСМ=90 ° , ∟ МСА=30 ° => ∟ АСВ=120 ° (90 ° +30 ° =120 ° ),∟ САВ=60 ° (180 ° -120 ° -30 ° =30 ° ) т.е. ∆ АВС - равнобедренный , СВ=СА=100м. 2) Рассмотрим ∆ АСК: ∟ ВСА и ∟ АСК – смежные, т.е. ∟ АСК=60 ° , ∟ СКА=90 ° , тогда ∟ САК=30 ° (180 ° -90 ° -60 ° =30 ° ) 3) СК= СА, т.е . СК=Н = 100=50м 100 м 60 ° 30 ° Н В А С К М Е Решение: Ответ: высота Н=СК горы равна 50м
Сказка "12 месяцев". История и современность
Сказки пластилинового ослика
Самый богатый воробей на свете
Яблоко
Притча о гвоздях