Аксиома
Происходит от греческого «аксиос», что означает «ценный, достойный».Положение, принимаемое без логического доказательства в силу непосредственной убедительности, истинное исходное положение теории. (Советский энциклопедический словарь)
Вложение | Размер |
---|---|
aksioma_parallelnyh_pryamyh.ppt | 1.64 МБ |
Слайд 1
Аксиома параллельных прямых Выполнил ученик 7 класса «Г» МБОУ «ОК «Лицей № 3» Гаврилов Дмитрий 2015-2016 уч.г (учитель Конарева Т.Н.)Слайд 2
«Геометрия полна приключений, потому что за каждой задачей скрывается приключение мысли. Решить задачу – это значит пережить приключение». (В. Произволов)
Слайд 3
Известные определения и факты. Закончи предложение. 1. Прямая х называется секущей по отношению к прямым а и b , если… 2. При пересечении двух прямых секущей образуется … неразвернутых углов. 3. Если прямые АВ и С D пересечены прямой В D , то прямая В D называется… 4. Если точки В и D лежат в разных полуплоскостях относительно секущей АС, то углы ВАС и DCA называются… 5. Если точки В и D лежат в одной полуплоскости относительно секущей АС, то углы ВАС и DCA называются… 6. Если внутренние накрест лежащие углы одной пары равны, то внутренние накрест лежащие углы другой пары… D C А С В D A B
Слайд 4
Проверка задания. 1 . …если она пересекает их в двух точках 2. 8 3. … секущей 4. … накрест лежащими 5. … односторонними 6. … равны
Слайд 5
Найдите соответствие a) a b m 1) a | | b , так как внутренние накрест лежащие углы равны б) 2) a | | b , так как соответственные углы равны в) a b 3) a | | b , так как сумма внутренних односторонних углов равна 180° 50 º 130 º 45 º 45 º m a b m a 150 º 150º
Слайд 6
Об аксиомах геометрии
Слайд 7
Аксиома Происходит от греческого «аксиос», что означает «ценный, достойный». Положение, принимаемое без логического доказательства в силу непосредственной убедительности, истинное исходное положение теории. Советский энциклопедический словарь
Слайд 8
Через любые две точки проходит прямая, и притом только одна Сколько прямых можно провести через любые две точки, лежащие на плоскости?
Слайд 9
На любом луче от его начала можно отложить отрезок, равный данному, и притом только один Сколько отрезков данной длины можно отложить от начала луча?
Слайд 10
От любого луча в заданную сторону можно отложить угол, равный данному неразвернутому углу, и притом только один Сколько углов равных данному можно отложить от данного луча в заданную полуплоскость?
Слайд 11
аксиомы теоремы логические рассуждения знаменитое сочинение «Начала» Евклидова геометрия Логическое построение геометрии
Слайд 12
Аксиома параллельных прямых
Слайд 13
М а Докажем , что через точку М можно провести прямую, параллельную прямой а с в а ┴ с в ┴ с а ІІ в
Слайд 14
Можно ли через точку М провести еще одну прямую, параллельную прямой а? а М в в 1 А можно ли это доказать?
Слайд 15
Многие математики, начиная с древних времен, пытались доказать данное утверждение, а в «Началах» Евклида это утверждение называется пятым постулатом . Попытки доказать пятый постулат Евклида не увенчались успехом, и лишь в XIX веке было окончательно выяснено, что утверждение о единственности прямой, проходящей через данную точку параллельно данной прямой, не может быть доказано на основе остальных аксиом Евклида, а само является аксиомой. Огромную роль в решении этого вопроса сыграл русский математик Николай Иванович Лобачевский.
Слайд 16
Пятый постулат Евклида 1792-1856 Николай Иванович
Слайд 17
«Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной». «Через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной». Какое из данных утверждений является аксиомой? Чем отличаются вышеуказанные утверждения ?
Слайд 18
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной . Утверждения, которые выводятся из аксиом или теорем, называют следствиями Следствие 1. Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую. a II b , c b ⇒ c a Аксиома параллельности и следствия из неё. а А Следствие 2. Если две прямые параллельны третьей прямой, то они параллельны. a II с , b II с a II b а b с c b
Слайд 19
Закрепление знаний. Тест Отметить знаком «+» правильные утверждения и знаком «-» - ошибочные. Вариант 1 1. Аксиомой называется математическое утверждение о свойствах геометрических фигур, требующее доказательства. 2. Через любые две точки проходит прямая. 3. На любом луче от начала можно отложить отрезки, равные данному, причем сколько угодно много. 4.Через точку не лежащую на данной прямой, проходит только одна прямая, параллельная данной. 5. Если две прямые параллельны третьей, то они параллельны между собой. Вариант 2 1. Аксиомой называется математическое утверждение о свойствах геометрических фигур, принимаемое без доказательства. 2. Через любые две точки проходит прямая, и притом только одна. 3. Через точку, не лежащую на данной прямой, проходят только две прямые, параллельные данной. 4. Если прямая пересекает одну из двух параллельных прямых, то она перпендикулярна другой прямой. 5. Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.
Слайд 20
Ответы теста Вариант 1 1. «-» 2. «-» 3. «-» 4. «+» 5. «+» Вариант 2 «+» «+» «-» «-» «+»
Слайд 21
«Геометрия полна приключений, потому что за каждой задачей скрывается приключение мысли. Решить задачу – это значит пережить приключение». (В. Произволов)
Девятая загадочная планета Солнечной системы
Горка
Шум и человек
Медведь и солнце
Голубая лягушка