Самые гениальные открытия в науке способны кардинально изменить человеческую жизнь. Изобретенная вакцина может спасти миллионы людей, создание оружия, наоборот, эти жизни отнимает. Совсем недавно (в масштабе человеческой эволюции) мы научились «укрощать» электричество — и теперь не можем себе представить жизнь без всех этих удобных устройств, использующих электроэнергию. Но есть и такие открытия, которым мало кто придает значение, хотя они тоже сильно влияют на нашу жизнь.
Вложение | Размер |
---|---|
работа | 106 КБ |
презентация | 2.4 МБ |
Муниципальное бюджетное общеобразовательное учреждение
гимназия №2 г. Сальска
«Кафедра естественно-математических дисциплин»
Исследовательская работа
тема: «Фракталы в нашей жизни».
Автор работы:
Христолюбова Ангелина Михайловна,
ученица 8 «Б» класса.
Руководитель:
Кузьминчук Елена Сергеевна,
учитель математики и информатики.
г. Сальск
2015 г.
Оглавление
Введение
История появления понятия «фрактал»
Классификация фракталов
Применение фракталов
Фракталы в естественных науках.
Заключение.
Список литературы.
Приложения.
Введение
Блох больших кусают блошки
Блошек тех – малютки-крошки,
Нет конца тем паразитам,
Как говорят, ad infinitum.
Джонатан Свифт
Самые гениальные открытия в науке способны кардинально изменить человеческую жизнь. Изобретенная вакцина может спасти миллионы людей, создание оружия, наоборот, эти жизни отнимает. Совсем недавно (в масштабе человеческой эволюции) мы научились «укрощать» электричество — и теперь не можем себе представить жизнь без всех этих удобных устройств, использующих электроэнергию. Но есть и такие открытия, которым мало кто придает значение, хотя они тоже сильно влияют на нашу жизнь.
Одно из таких «незаметных» открытий — фракталы. Вам наверняка доводилось слышать это запоминающееся слово, но знаете ли вы, что оно означает и как много интересного скрыто в этом термине?
В каждом человеке заложена природная любознательность, стремление познавать окружающий его мир. И в этом стремлении человек старается придерживаться логики в суждениях. Анализируя процессы, происходящие вокруг него, он пытается найти логичность происходящего и вывести некоторую закономерность. Самые большие умы на планете заняты этой задачей. Грубо говоря, ученые ищут закономерность там, где ее быть не должно. Тем не менее, даже в хаосе можно найти связь между событиями. И эта связь — фрактал.
Сегодня вряд ли можно найти человека, занимающегося или интересующегося наукой, который не слышал бы о фракталах. Глядя на них трудно поверить, что это не творения природы и за ними скрываются математические формулы. Фракталы поразительно напоминают объекты живой и неживой природы вокруг нас. Словом они "как настоящие". Скорее всего, именно поэтому, однажды увидев, человек уже не может их забыть.
Любопытную мысль приводит в своей книге "Фрактальная геометрия природы" американский математик Бенуа Мандельброт: "Почему геометрию часто называют холодной и сухой? Одна из причин заключается в том, что она неспособна достаточно точно описать форму облака, горы, дерева или берега моря. Облака – это не сферы, линии берега – это не окружности, и кора не является гладкой, а молния не распространяется по прямой. Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности. Число различных масштабов длин в структурах всегда бесконечно. Существование этих структур бросает нам вызов в виде трудной задачи изучения тех форм, которые Евклид отбросил как бесформенные – задачи исследования морфологии аморфного. Математики, однако, пренебрегли этим вызовом и предпочли все больше и больше отдаляться от природы, изобретая теории, которые не соответствуют ничему из того, что можно увидеть или почувствовать".
Все, что существует в реальном мире, является фракталом – это и есть наша гипотеза, а цель данной работы показать, что математика не бездушный предмет, она может выражать духовный мир человека в отдельности и в обществе в целом.
Объектом исследования выступают фракталы в математике и в реальном мире. В процессе работы нами были выделены следующие задачи исследования:
Актуальность заявленной темы определяется, в первую очередь, предметом исследования, в качестве которого выступает фрактальная геометрия.
Структура исследовательской работы определялась логикой исследования и поставленными задачами. Она включает в себя введение, две главы, заключение, список использованной литературы, приложения.
История появления понятия «фрактал»
Первые идеи фрактальной геометрии возникли в 19 веке.
Георг Кантор (Cantor, 1845-1918) - немецкий математик, логик, теолог, создатель теории бесконечных множеств, с помощью простой рекурсивной (повторяющейся) процедуры превратил линию в набор несвязанных точек. Он брал линию и удалял центральную треть и после этого повторял то же самое с оставшимися отрезками. Получалась, так называемая, Пыль Кантора (приложения 1, 2).
Джузеппе Пеано (Giuseppe Peano; 1858-1932) — итальянский математик изобразил особую линию. Он брал прямую и заменял ее на 9 отрезков длинной в 3 раза меньшей, чем длина исходной линии. Далее он делал то же самое с каждым отрезком. И так до бесконечности. Уникальность такой линии в том, что она заполняет всю плоскость. Позднее аналогичное построение было осуществлено в трехмерном пространстве (приложения 3, 4).
Само слово «фрактал» появилось благодаря гениальному ученому Бенуа Мандельброту (приложение 5).
Он сам придумал этот термин в семидесятых годах прошлого века, позаимствовав слово fractus из латыни, где оно буквально означает «ломанный» или «дробленный». Что же это такое? Сегодня под словом «фрактал» чаще всего принято подразумевать графическое изображение структуры, которая в более крупном масштабе подобна сама себе.
Определение фрактала, данное Мандельбротом, звучит так: «Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому».
Математическая база для появления теории фракталов была заложена за много лет до рождения Бенуа Мандельброта, однако развиться она смогла лишь с появлением вычислительных устройств. В начале своей научной деятельности Бенуа работал в исследовательском центре компании IBM. В то время сотрудники центра трудились над передачей данных на расстояние. В ходе исследований ученые столкнулись с проблемой больших потерь, возникающих из-за шумовых помех. Перед Бенуа стояла сложная и очень важная задача — понять, как предсказать возникновение шумовых помех в электронных схемах, когда статистический метод оказывается неэффективным.
Просматривая результаты измерений шума, Мандельброт обратил внимание на одну странную закономерность — графики шумов в разном масштабе выглядели одинаково. Идентичная картина наблюдалась независимо от того, был ли это график шумов за один день, неделю или час. Стоило изменить масштаб графика, и картина каждый раз повторялась.
При жизни Бенуа Мандельброт неоднократно говорил, что он не занимается формулами, а просто играет с картинками. Этот человек мыслил очень образно, а любую алгебраическую задачу переводил в область геометрии, где, по его словам, правильный ответ всегда очевиден.
Неудивительно, что именно человек с таким богатым пространственным воображением стал отцом фрактальной геометрии. Ведь осознание сути фракталов приходит именно тогда, когда начинаешь изучать рисунки и вдумываться в смысл странных узоров – завихрений.
Фрактальный рисунок не имеет идентичных элементов, но обладает подобностью в любом масштабе. Построить такое изображение с высокой степенью детализации вручную ранее было просто невозможно, на это требовалось огромное количество вычислений.
Один из первых рисунков фрактала был графической интерпретацией множества Мандельброта, которое родилось благодаря исследованиям Гастона Мориса Жюлиа (Gaston Maurice Julia) (приложение 6).
Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных.
Классификация фракталов
Фракталы делятся на группы. Самые большие группы это:
- геометрические фракталы;
- алгебраические фракталы;
Геометрические фракталы
Фракталы этого класса самые наглядные. Именно с них и начиналась история фракталов. Этот тип фракталов получается путем простых геометрических построений. В двухмерном случае их получают с помощью некоторой ломаной (или поверхности в трехмерном случае), называемой генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную - генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал. Примерами геометрических фракталов могут служить:
1) Кривая Коха — фрактальная кривая, описанная в 1904 году шведским математиком Хельге фон Кохом. Три копии кривой Коха, построенные (остриями наружу) на сторонах правильного треугольника, образуют замкнутую кривую бесконечной длины, называемую снежинкой Коха (приложение 7).
2) Кривая Леви — фрактал. Предложен французским математиком П. Леви. Получается, если взять половину квадрата вида /\, а затем каждую сторону заменить таким же фрагментом, и, повторяя эту операцию, в пределе получим кривую Леви (приложение 8).
3) Кривая Минковского — классический геометрический фрактал, предложенный Минковским. Инициатором является отрезок, а генератором является ломаная из восьми звеньев (два равных звена продолжают друг друга) (приложение 9).
4) Кривая Пеано — общее название для параметрических кривых, образ которых содержит квадрат (или, в более общем смысле, открытые области пространства) (приложение 4).
5) Кривая дракона — пример системы итерируемых функций, общее название для некоторых фрактальных кривых, которые могут быть аппроксимированы (упрощены) рекурсивными (повторяющимися) методами (приложение 10).
6) Дерево Пифагора — разновидность фрактала, основанная на фигуре, известной как «Пифагоровы штаны». Пифагор, доказывая свою знаменитую теорему, построил фигуру, где на сторонах прямоугольного треугольника расположены квадраты. Впервые дерево Пифагора построил А. Е. Босман (1891—1961) во время Второй мировой войны, используя обычную чертёжную линейку (приложение 11).
7) Треугольник Серпинского — фрактал, один из двумерных аналогов множества Кантора, предложенный польским математиком Вацлавом Серпинским в 1915 году. Также известен как «решётка» или «салфетка» Серпинского (приложение 12).
Алгебраические фракталы
Это самая крупная группа фракталов. Они оправдывают своё название, так как строятся на основе алгебраических формул, иногда довольно простых. К ним можно отнести фрактал Мандельброта (приложение 13), фрактал Ньютона (приложение 14), множество Жюлиа (приложение 15) и многие другие.
Стохастические фракталы
Третьей крупной разновидностью фракталов являются стохастические фракталы, которые образуются путем многократных повторений случайных изменений каких-либо параметров. В результате итерационного процесса получаются объекты очень похожие на природные фракталы — несимметричные деревья, изрезанные лагунами береговые линии островов и многое другое. Двумерные стохастические фракталы используются преимущественно при моделировании рельефа местности и поверхности моря (приложение 16).
Применение фракталов
Фрактальная живопись – одно из направлений современного арта, популярное среди цифровых художников. Фрактальные картины необычно и завораживающе действуют на зрителя, рождая яркие пылающие образы. Сказочные абстракции создаются посредством скучных математическим формул, но воображение воспринимает их живыми.
Фракталы в литературе.
Среди литературных произведений находят такие, которые обладают фрактальной природой, т.е. вложенной структурой самоподобия:
«Вот дом.
Который построил Джек.
А вот пшеница.
Которая в тёмном чулане храница
В доме,
Который построил Джек
А вот весёлая птица-синица,
Которая ловко ворует пшеницу,
Которая в тёмном чулане храница
В доме,
Фракталы в медицине.
На данное время фракталы находят, и вероятно будут находить применение в медицине. Сам по себе человеческий организм состоит из множества фракталоподобных структур: кровеносная система, мышцы, бронхи и т.д. (приложение 17).
Фракталы в естественных науках.
Очень часто фракталы применяются в геологии и геофизике. Не секрет что побережья островов и континентов имеют некоторую фрактальную размерность, зная которую можно очень точно вычислить длины побережий (приложение 18).
Фракталы в природе.
Природа зачастую создаёт удивительные и прекрасные фракталы с идеальной геометрией и такой гармонией, что просто замираешь от восхищения (приложение 19).
Заключение.
Помимо той полезной роли, которую играет фрактальная геометрия при описании сложности природных объектов, она предлагает ещё хорошую возможность популяризации математических знаний. Понятия фрактальной геометрии наглядны и интуитивны. Её формы привлекательны с эстетической точки зрения и имеют разнообразные приложения. Поэтому фрактальная геометрия, возможно, поможет опровергнуть взгляд на математику как на сухую и недоступную дисциплину и станет дополнительным стимулом для учащихся в освоении этой интересной и увлекательной науки.
Даже сами учёные испытывают почти детский восторг, наблюдая за быстрым развитием этого нового языка — языка фракталов.
Во всем, что нас окружает, мы часто видим хаос, но на самом деле это не случайность, а идеальная форма, разглядеть которую нам помогают фракталы. Природа — лучший архитектор, идеальный строитель и инженер. Она устроена очень логично, и если где-то мы не видим закономерности, это означает, что ее нужно искать в другом масштабе. Люди все лучше и лучше это понимают, стараясь во многом подражать естественным формам. Инженеры проектируют акустические системы в виде раковины, создают антенны с геометрией снежинок и так далее. Уверены, что фракталы хранят в себе еще немало секретов, и многие из них человеку еще лишь предстоит открыть.
В результате проведенного исследования удалось выяснить, что встречались с фракталами 42,5% опрошенных, знают, что такое фрактал 15% опрошенных, хотели бы узнать, что такое фрактал 62,5% опрошенных обучающихся и учителей МБОУ гимназии №2 г. Сальска.
После того как были открыты фракталы, для многих стало очевидно, что старые, добрые формы евклидовой геометрии сильно проигрывают большинству природных объектов из-за отсутствия в них некоторой нерегулярности, беспорядка и непредсказуемости. Возможно, что новые идеи фрактальной геометрии помогут изучить многие загадочные явления окружающей природы.
Нам удалось показать, все, что существует в реальном мире, является фракталом. Мы убедились, что тому, кто занимается фракталами, открывается прекрасный, удивительный мир, в котором царят математика, природа и искусство. Мы надеемся, что после знакомства с нашей работой, вы, как и мы, убедитесь в том, что математика прекрасна и удивительна.
Список литературы.
Юрий Алексеевич Гагарин
Сорняки
В.А. Сухомлинский. Самое красивое и самое уродливое
Дельфин: сказка о мечтателе. Серджио Бамбарен
Под парусами