В работе рассмотрена история возникновения обыкновенных дробей. Данная презентация может быть использована на уроках математики.
Вложение | Размер |
---|---|
istoriya_vozniknoveniya_obyknovennykh_drobey.pptx | 1.12 МБ |
Слайд 1
История возникновения обыкновенных дробей Никулин Олег 5 Б классСлайд 2
Из истории возникновения обыкновенных дробей Необходимость в дробных числах возникла у человека на весьма ранней стадии развития. Уже дележ добычи, состоявший из нескольких убитых животных, между участниками охоты, когда число животных оказывалось не кратным числу охотников, могло привести первобытного человека к понятию о дробном числе. Наряду с необходимостью считать предметы у людей с древних времён появилась потребность измерять длину, площадь, объём, время и другие величины. Результат измерений не всегда удаётся выразить натуральным числом, приходится учитывать и части употребляемой меры. Исторически дроби возникли в процессе измерения.
Слайд 3
Потребность в более точных измерениях привела к тому, что начальные единицы меры начали дробить на 2, 3 и более частей. Более мелкой единице меры, которую получали как следствие раздробления, давали индивидуальное название, и величины измеряли уже этой более мелкой единицей. В связи с этой необходимой работой люди стали употреблять выражения: половина, треть, два с половиной шага. Откуда можно было сделать вывод, что дробные числа возникли как результат измерения величин. Народы прошли через многие варианты записи дробей, пока не пришли к современной записи .
Слайд 4
Вавилоняне пользовались всего двумя цифрами. Вертикальная черточка обозначала одну единицу, а угол из двух лежащих черточек – десять. Эти черточки у них получались в виде клиньев, потому что вавилоняне писали острой палочкой на сырых глиняных дощечках, которые потом сушили и обжигали . Дроби в Вавилоне
Слайд 5
шестидесятеричные дроби В древнем Вавилоне предпочитали постоянный знаменатель, равный 60-ти. Шестидесятеричными дробями, унаследованными от Вавилона, пользовались греческие и арабские математики и астрономы. Исследователи по-разному объясняют появление у вавилонян шестидесятеричной системы счисления. Скорее всего здесь учитывалось основание 60, которое кратно 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 и 60, что значительно облегчает всякие расчеты. В этом отношении шестидесятеричные дроби можно сравнить с нашими десятичными дробями. Вместо слов «шестидесятые доли», «три тысячи шестисотые доли» говорили короче: «первые малые доли», «вторые малые доли». От этого и произошли наши слова «минута» (по латыни «меньшая») и «секунда» (по латыни «вторая»). Так что вавилонский способ обозначения дробей сохранил своё значение до сих пор .
Слайд 6
Дроби в Древнем Египте В Древнем Египте архитектура достигла высокого развития. Для того, чтобы строить грандиозные пирамиды и храмы, чтобы вычислять длины, площади и объемы фигур, необходимо было знать арифметику . Из расшифрованных сведений на папирусах ученые узнали, что египтяне 4 000 лет назад имели десятичную (но не позиционную) систему счисления, умели решать многие задачи, связанные с потребностями строительства, торговли и военного дела.
Слайд 7
"Египетские" дроби В Древнем Египте некоторые дроби имели свои особые названия – а именно, часто возникающие на практике 1/2, 1/3, 2/3, 1/4, 3/4, 1/6 и 1/8. Кроме того, египтяне умели оперировать с так называемыми аликвотными дробями (от лат. aliquot – несколько) типа 1/ n – их поэтому иногда также называют «египетскими»; эти дроби имели свое написание: вытянутый горизонтальный овальчик и под ним обозначение знаменателя. Остальные дроби они записывали в виде суммы долей. Дробь 7/8 записывали в виде долей: ½+1/4+1/8.
Слайд 8
Как использовались дроби в Древнем Египте, позволила нам узнать расшифровка папирусного свитка, найденного в Луксоре в 1858 г. Генрихом Риндом . Сейчас этот свиток находится в Британском музее в Лондоне. Папирус Ринда был написан писцом по имени Ахмес примерно в 1650 г. до нашей эры. Это математическая рукопись, составленная учителем для своих учеников, готовившихся стать придворными писцами. математический папирус Ринда В папирусе есть задача: разделить семь хлебов между восемью людьми. Если резать каждый хлеб на 8 частей, придётся сделать 49 разрезов. А по– египетски эта задача решалась так. Дробь 7/8 записывали в виде долей: ½+1/4+1/8. Теперь ясно, что надо 4 хлеба разрезать пополам, 2 хлеба на 4 части и только один хлеб – на 8 частей (всего 17 разрезов).
Слайд 9
Дроби в Древнем Риме Интересная система дробей была в Древнем Риме. Она основывалась на делении на 12 долей единицы веса, которая называлась асс. Двенадцатую долю асса называли унцией. А путь, время и другие величины сравнивали с наглядной вещью - весом. Например, римлянин мог сказать, что он прошел семь унций пути или прочел пять унций книги. При этом, конечно, речь шла не о взвешивании пути или книги. Имелось в виду, что пройдено 7/12 пути или прочтено 5/12 книги. А для дробей, получающихся сокращением дробей со знаменателем 12 или раздроблением двенадцатых долей на более мелкие, были особые названия. 1 тройская унция золота — мера веса драгоценных металлов
Слайд 10
скрупулёзно - " скрупулус " Даже сейчас иногда говорят: "Он скрупулёзно изучил этот вопрос." Это значит, что вопрос изучен до конца, что не одной самой малой неясности не осталось. А происходит странное слово "скрупулёзно" от римского названия 1/288 асса - " скрупулус ". В ходу были и такие названия: " семис "- половина асса, " секстанс "- шестая его доля, " семиунция "- половина унции, т.е. 1/24 асса и т.д. Всего применялось 18 различных названий дробей. Чтобы работать с дробями, надо было помнить для этих дробей таблицу сложения и таблицу умножения. Поэтому римские купцы твёрдо знали, что при сложении триенса (1/3 асса) и секстанса получается семис , а при умножении беса (2/3 асса) на сескунцию (2/3 унции, т.е.1/8 асса) получается унция. Для облегчения работы составлялись специальные таблицы, некоторые из которых дошли до нас.
Зимний дуб
Кто должен измениться?
Мать-и-мачеха
Белый лист
Три способа изобразить акварелью отражения в воде