Римская система счисления основана на употребление особых знаков для десятичных разрядов.
Вложение | Размер |
---|---|
rimskaya_sistema_schisleniya.pptx | 203.03 КБ |
Слайд 1
Римская система счисления Александр Воронин, 6 «А» класс, школа 1233, г. МоскваСлайд 2
Римские цифры Система римских цифр основана на употреблении особых знаков для десятичных разрядов I = 1, Х =10, С = 100, М = 1000 и их половин V = 5, L = 50, D = 500. Для закрепления в памяти буквенных обозначений цифр в порядке убывания существует мнемоническое правило: Мы Dарим Сочные Lимоны , Хватит Vсем Iх . Соответственно M, D, C, L, X, V, I
Слайд 3
Римские цифры ( продолжение) Натуральные числа записываются при помощи повторения этих цифр, например: I = 1 X = 10 II = 2 XX = 20 III = 3 XXX = 30 При этом, если большая цифра стоит перед меньшей, то они складываются (принцип сложения), если же меньшая - перед большей, то меньшая вычитается из большей (принцип вычитания). VI = 6 XIX = 19 IV = 4 XXI = 21 Для правильной записи больших чисел римскими цифрами необходимо сначала записать число тысяч, затем сотен, затем десятков и, наконец, единиц. Пример: число 1988. Одна тысяча M, девять сотен CM, восемьдесят LXXX, восемь VIII. Запишем их вместе: MCMLXXXVIII.
Слайд 4
Непозиционная система счисления Непозиционные – это такие системы счисления, алфавит которых содержит неограниченное количество символов, причем количественный эквивалент любого символа постоянен, и зависит только от его начертания. Позиция (место) символа в числе значения не имеет. Непозиционные системы строятся по принципу аддитивности (англ. Add - сумма) - количественный эквивалент числа определяется как сумма символов (цифр). Наша десятичная система счисления – позиционная. В зависимости от места положения один и тот же символ (цифра) может обозначать единицы, десятки, сотни и т.д. Непозиционные системы счисления возникли раньше позиционных.
Слайд 5
Недостатки непозиционных систем - для записи больших числе приходиться вводить новые цифры; - невозможно записывать дробные и отрицательные числа; - сложно выполнять арифметические операции.
Слайд 6
Сложение и вычитание Сложить два римских числа не очень сложно: XIX + XXVI = XXXV Последовательность выполнения сложения такова: а) IX+VI: I после V "уничтожает" I перед X, поэтому в результате получаем XV; б) X+XX=XXX, если добавить еще один X, получим XXXX, или XL. Сложность вычитания римских чисел приблизительно такая же. Но чтобы из 500 вычесть 263, 500 надо сначала разложить на более мелкие составляющие и «сократить» повторяющиеся в уменьшаемом и вычитаемом знаки: D - CCLXIII = CCCCLXXXXVIIIII - CCLXIII = CCXXXVII
Слайд 7
Умножение С умножением дело обстояло сложнее. Пусть требуется умножить 126 на 37 (знаки действий будем употреблять современные; у римлян их не было, названия действий писались словами). СХХVI * XXXVII? Приходится умножать множимое на каждую цифру множителя отдельно, а затем складывать все произведения. Такая техника выполнения умножения аналогична умножению многочленов.
Слайд 8
Умножение: способ I CXXVI * XXXVII = CXXVI * X = MCCLX CXXVI * X = MCCLX CXXVI * X = MCCLX CXXVI * V = DCXXX CXXVI * I = CXXVI CXXVI * I = CXXVI =MMMDCCCCCCCCCLLLXXXXXXXXXXVVII= = MMMMDCLXII = 4662 А если бы мы попробовали умножить при помощи римских цифр 84573 и 4768? Сколько листов бумаги пришлось бы исписать, какова вероятность наделать при этом ошибок и описок...
Слайд 9
Умножение (способ II ) Другой способ умножения - через двоичную арифметику. Удвоить число в римской записи сравнительно просто, как и поделить на два. Умножим 3 7=X XX VII на 1 2 6 = C XX V I Запишем два числа рядом с разделителем и будем одно из них делить, второе умножать на два, записывая полученное в столбик. X XX VII (37) C XX V I (126) LXXIV (74=37*2) LXIII (63=126:2) CXLVIII (148=74*2) X XXI (31=63:2 – округляем вниз до целого числа ) CCLXLVI (296=148*2) XV (1 5 =3 1 :2 – округляем вниз до целого числа ) DLXLII (592=296*2) VII ( 7 = 15 :2 – округляем вниз до целого числа ) MCLXXXIV (1184=592*2) III ( 3 = 15 :2 – округляем вниз до целого числа ) MMCCCLXVIII (2368=1184*2) I ( 1 = 15 :2 – округляем вниз до целого числа ) Теперь нужно сложить числа в первом столбике , но не все, а только те, которые стоят напротив нечётных чисел во втором столбике : MMCCCLXVIII + MCLXXXIV + DLXLII + CCLXLVI + CXLVIII + LXXIV = = MMMMDCLXII = 4662
Слайд 10
Деление Выполнение деления было очень сложным в римской системе счисления. Для этого использовался специальный инструмент – абак. Только «высоко образованные» люди умели работать на нём.
Слайд 11
ИНТЕРЕСНЫЕ ФАКТЫ В римской системе счисления не было нуля. Не было даже такого понятия, как «ничего». Большинство исследователей сходятся во мнении, что максимальным является число 4999 (MMMMCMXCIX) Римлянам не надо было знать таблицу умножения. Как видно из примера на стр.8, нужно было уметь умножать на 1 и 10 – очень простые действия – и на 5. Те, для кого последнее действие представляло трудность, могли заменить его на умножение на 10 и деление на 2. Вот бы нам так!
Слайд 12
Применение В наше время римские цифры используются для обозначений Века или тысячелетия: XIX век, II тысячелетие до н. э. Порядкового номер монарха: Карл V, Екатерина II. Номера тома в многотомной книге (иногда — номера частей книги, разделов или глав). В некоторых изданиях — номеров листов с предисловием к книге. Маркировки циферблатов часов, в том числе на кремлевских курантах. Важных событий или пунктов списка, например: V постулат Евклида , II мировая война , XX съезд КПСС , Игры XXII Олимпиады . В химии, медицине, юриспруденции.
Слайд 13
А теперь самое интересное… Задачки с римскими цифрами: необходимо переложить одну палочку и получить верное равенство VI – IV = IX VI – IV = VII VI + IV = XII А эта задачка для Ольги Викторовны – нашей учительницы по математике (подсказала мама) VII + V = VI
Слайд 14
Головоломка Профессор Нумерус преподает в университете латынь и историю. В свободное время он любит решать головоломки, а также придумывает их для внуков. Однажды он выиграл на конкурсе 10 000 евро. Он разделил деньги среди своих внуков следующим образом: Мартина (Martina) получила 1000 евро, Даниэль ( Daniel) – 500 евро, Кристина ( Christine) – 100 евро, Леон ( Leon) – 50 евро, Ксафер ( Xaver ) – 10 евро, Виктория ( Victoria) – 5 евро, а Инго ( Ingo) – только 1 евро. Внуки считают это несправедливым. Но профессор Нумерус смеется. Кто догадается почему он так разделил деньги, получит оставшуюся сумму.
Астрономический календарь. Май, 2019
Лев Николаевич Толстой. Индеец и англичанин (быль)
Самодельный телефон
Солнечная система. Взгляд со стороны
Новогодняя задача на смекалку. Что подарил Дед Мороз?