ДОКЛАД НА ТЕМУ: « Возникновение арифметики и геометрии» Выполнил ученик 9 класса: Гузоватый Виктор.
Вложение | Размер |
---|---|
tekstovyy_dokument_222222guzovatyy.odt | 54.53 КБ |
МБОУ_СОШ №8 П.КРУТОБЕРЕЖНЫЙ
2012-2013
Возникновение арифметики и геометрии
Развитие математики началось с создания практических искусств счёта и измерения линий, поверхностей и объёмов.
Математика в системе человеческих знаний есть раздел, занимающийся такими формировалось постепенно и осложнялось неумением первобытного человека отделять числовую абстракцию от её конкретного представления. Вследствие этого счёт долгое время оставался только вещественным — использовались пальцы, камешки, пометки и т. п. Археолог Б. А. Фролов обосновывает существование счёта уже в верхнем палеолите.
С распространением счёта на больши́е количества появилась идея считать не только единицами, но и, так сказать, пакетами единиц, содержащими, например, 10 объектов. Эта идея немедленно отразилась в языке, а затем и в письменности. Принцип именования или изображения числа (нумерация) может быть:
Счётное устройство инков
Для запоминания результатов счёта использовали зарубки, узелки и т. п. С изобретением письменности стали использовать буквы или особые значки для сокращённого изображения больших чисел. При таком кодировании обычно воспроизводился тот же принцип нумерации, что и в языке.
Названия чисел от двух (zwei, two, duo, deux, dvi, два…) до десяти, а также десятков и числа 100 в индоевропейских языках сходны. Это говорит о том, что понятие абстрактного числа появилось очень давно, ещё до разделения этих языков. При образовании числительных у большинства народов число 10 занимает особое положение, так что понятно, что счёт по пальцам был широко распространён. Отсюда происходит повсеместно распространённая десятичная система счисления. Хотя есть и исключения: 80 по-французски quatre-vingt (то есть 4 двадцатки), а 90 — quatre-vingt-dix (4*20+10); это употребление восходит к счёту по пальцам рук и ног. Аналогично устроены числительные датского, осетинского, абхазского языков. Ещё яснее счёт двадцатками в грузинском языке. Шумеры и ацтеки, судя по языку, первоначально считали пятёрками.
Есть и более экзотичные варианты. Вавилоняне в научных расчётах использовали шестидесятеричную систему. А туземцы островов Торресова пролива — двоичную:
Урапун (1); Окоза (2); Окоза-Урапун (3); Окоза-Окоза (4); Окоза-Окоза-Урапун (5); Окоза-Окоза-Окоза(6)
Когда понятие абстрактного числа окончательно утвердилось, следующей ступенью стали операции с числами. Натуральное число — это идеализация конечного множества однородных, устойчивых и неделимых предметов (людей, овец, дней и т. п.). Для счёта нужно иметь математические модели таких важных событий, как объединение нескольких множеств в одно или, наоборот, отделение части множества. Так появились операции сложения и вычитания. Умножение для натуральных чисел появилось в качестве, так сказать, пакетного сложения. Свойства и взаимосвязь операций открывались постепенно.
Другое важное практическое действие — разделение на части — со временем абстрагировалось в четвёртую арифметическую операцию — деление. Делить на 10 частей сложно, поэтому десятичные дроби, удобные в сложных вычислениях, появились сравнительно поздно. Первые дроби обычно имели знаменателем 2, 3, 4, 8 или 12. Например, у римлян стандартной дробью была унция (1/12). Средневековые денежные и мерные системы несут на себе явный отпечаток древних недесятичных систем: 1 английский пенс = 1/12 шиллинга, 1 дюйм = 1/12 фута, 1 фут = 1/3 ярда и т. д.
Примерно в то же время, что и числа, человек абстрагировал плоские и пространственные формы. Они обычно получали названия схожих с ними реальных предметов: например, у греков «ромбос» означает волчок, «трапедсион» — столик (трапеция), «сфера» — мяч[7].
Теория измерений появилась значительно позже, и нередко содержала ошибки: характерным примером является ложное учение о равенстве площадей фигур при равенстве их периметров, и обратно. Это неудивительно: измерительным инструментом служила мерная верёвка с узлами или пометками, так что измерить периметр можно было без труда, а для определения площади в общем случае ни инструментов, ни математических методов не было. Измерения служили важнейшим применением дробных чисел и источником развития их теории.
Осада сиракуз
Инженерный гений Архимеда с особой силой проявился во время осады Сиракуз римлянами в 212 году до н. э. в ходе Второй Пунической войны.[2] А ведь в это время ему было уже 75 лет! Построенные Архимедом мощные метательные машины забрасывали римские войска тяжёлыми камнями. Думая, что они будут в безопасности у самых стен города, римляне кинулись туда, но в это время лёгкие метательные машины близкого действия забросали их градом ядер. Мощные краны захватывали железными крюками корабли, приподнимали их кверху, а затем бросали вниз, так что корабли переворачивались и тонули. В последние годы[3] были проведены несколько экспериментов с целью проверить правдивость описания этого «сверхоружия древности». Построенная конструкция показала свою полную работоспособность.
Римляне вынуждены были отказаться от мысли взять город штурмом и перешли к осаде. Знаменитый историк древности Полибий писал: «Такова чудесная сила одного человека, одного дарования, умело направленного на какое-либо дело… римляне могли бы быстро овладеть городом, если бы кто-либо изъял из среды сиракузян одного старца». Но даже во время осады Архимед не давал покоя римлянам. По легенде, во время осады римский флот был сожжён защитниками города, которые при помощи зеркал и отполированных до блеска щитов сфокусировали на них солнечные лучи по приказу Архимеда.
Легенда была дважды опровергнута в телепередаче «Разрушители легенд» (в 46-м и 16-м выпусках). Существует мнение, что корабли поджигались метко брошенными зажигательными снарядами, а сфокусированные лучи служили лишь прицельной меткой для баллист. Однако в эксперименте греческого учёного Иоанниса Саккаса (1973) удалось поджечь фанерную модель римского корабля с расстояния 50 м, используя 70 медных зеркал. Только вследствие измены Сиракузы были взяты римлянами осенью 212 году до н. э. При этом Архимед был убит.
Загадка Бабы-Яги
Снег своими руками
Аэродинамика и воздушный шарик
Есть в осени первоначальной...
О чем поет Шотландская волынка?