Физика в профессии механизации сельского хозяйства (техник- механик).
Физические процессы в двигателе автомобиля ЗИЛ-130.
Рячкин Виталий Леонидович
БОУ СПО «Саргатский индустриально – педагогический колледж»
Руководитель: Беликова Елена Владимировна
Если вы удачно выберете труд и вложите
в него душу, то счастье само вас отыщет".
К.Д. Ушинский
Без овладения курсом физики невозможно стать грамотным специалистом, поскольку это – теоретическая база для изучения других дисциплин, без знания которых невозможны успешная профессиональная деятельность и дальнейшее обучение. От достижений физики зависит уровень технического развития общества. Все современные высокие технологии непосредственно опираются на теоретические представления современной физики. Компьютеры, средства связи, нанотехнологии – эти и другие «производные» современных физических теорий уже изменили нашу жизнь. Влияние физических идей на научно-технический прогресс продолжает расти.
Техник - механик – это рабочий широкого профиля, который выполняет операции по техническому обслуживанию и ремонту автотранспортных средств, проводит контроль их технического состояния с помощью диагностического оборудования и приборов, управляет автотранспортными средствами. Сегодня профессия техник - механик, востребованная и актуальна на современном рынке труда. Количество выпускаемой сельскохозяйственной техники неуклонно растет, а прогресс не стоит на месте.
Каждый автомобиль можно разделить на следующие основные части: двигатель, шасси, кузов, электро- и специальное оборудование. Двигатель является источником механической энергии, приводящей автомобиль в движение, "сердцем" автомобиля, трактора. (слайд4)
Объектом исследования выбран двигатель внутреннего сгорания ЗИЛ -130.
Цель исследования – показать физические процессы в работе двигателя внутреннего сгорания ЗИЛ -130.
Для достижения поставленной в работе цели были рассмотрены
основные задачи:
1. Изучена и проанализирована научно-методическая литература с целью углубления знаний по данной проблеме.
2. Дана характеристика профессиональной деятельности техника –механика.
3. Изучена история автомобиля ЗИЛ-130
4. Рассмотрено устройство и работа двигателя ЗиЛ-130:
Объектами профессиональной деятельности техника –механика являются: - машины, механизмы, установки, приспособления и другое инженерно-технологическое оборудование сельскохозяйственного назначения;
- автомобили категорий «В» и «С»;
-стационарные и передвижные средства технического обслуживания и ремонта;
-технологические процессы подготовки, эксплуатации, технического обслуживания и диагностирования неисправностей машин, механизмов, установок, приспособлений и другого инженерно-технологического оборудования сельскохозяйственного назначения;
-процессы организации и управления структурным подразделением сельскохозяйственного производства;
-первичные трудовые коллективы.
Автомобиль ЗИЛ-130 (рис. 1) предназначается для буксирования или перевозки грузов в составе автопоезда, причем масса прицепа вместе с грузом не должна превышать 8 тонн. Серийное производство авто ЗИЛ-130 началось еще в 1962 году в Советском Союзе, на Заводе имени Лихачева. Всего до 1994 года было выпущено 3380000 автомобилей ЗИЛ-130. Впервые в советском автопроме грузовые автомобили ЗИЛ-130 были оснащены гидравлическим усилителем руля, предпусковым подогревом двигателя, 3-местной кабиной, синхронизированной коробкой передач.
В 1973 году автомобилю ЗИЛ-130 был присвоен государственный знак качества СССР.
Рис. 1. Автомобиль-тягач ЗИЛ-130.
Двигателем называется машина, в которой тот или иной вид энергии
преобразуется в механическую работу. Двигатели, в которых тепловая энергия преобразуется в механическую работу, являются тепловыми.
Тепловая энергия получается при сжигании какого-либо топлива.
Двигатель ЗиЛ-130: состоит из механизм и систем обеспечивающих его работу: кривошитно - шатунный механизм, газораспределительный механизм, система охлаждения, система смазки, система питания.
Кривошипно-шатунный механизм: воспринимает давление газов при такте сгорание - расширение и преобразовывает прямолинейное, возвратно-поступательное движение поршня во вращательное движение коленчатого вала.
Во время работы двигателя в картер проникают газы, что может
повлечь за собой повышение давления, прорыв прокладок и вытекание масла. Поршень воспринимает давление газов при рабочем такте и передает его через поршневой палец и шатун на коленчатый вал. При работе двигателя поршень, нагреваясь, расширится и, если между ним и зеркалом цилиндра (внутреннюю поверхность цилиндра или его гильзы называют зеркалом) не будет необходимого зазора, заклинится в цилиндре, и двигатель прекратит работу. Однако большой зазор между поршнем и зеркалом цилиндра также нежелателен, так как это приводит к прорыву части газов в картер двигателя, падению давления в цилиндре и уменьшению мощности двигателя. Шатун служит для соединения коленчатого вала с поршнем. Через шатун давление на поршень при рабочем ходе передается на коленчатый вал. При вспомогательных тактах (впуск, сжатие и выпуск) через шатун поршень приводится в действие от коленчатого, вала. Коленчатый вал воспринимает усилия, передаваемые от поршней
шатунами, и преобразует их в крутящий момент, который затем через маховик передается агрегатам трансмиссии. Для уменьшения центробежных сил, создаваемых кривошипами, на коленчатом валу выполнены противовесы, а шатунные шейки сделаны полыми. При вращении вала частицы грязи, находящиеся в масле, под действием центробежных сил отделяются от масла и оседают на стенке грязеуловителя, а к шатунным шейкам поступает очищенное масло.
Маховик уменьшает неравномерность работы двигателя, выводит поршни из мертвых точек, облегчает пуск двигателя и способствует плавному троганию автомобиля с места.
Газораспределительный механизм: в двигателях внутреннего сгорания своевременный впуск в цилиндры свежего заряда горючей смеси и выпуск отработавших газов обеспечивается газораспределительным механизмом. На двигателе ЗиЛ-130 установлен газораспределительный механизм с верхним расположением клапанов. Газораспределительный механизм с верхним расположением клапанов дает возможность улучшить форму камеры сгорания, наполнение цилиндров и условия сгорания рабочей смеси. Лучшая форма камеры сгорания позволяет повысить также степень сжатия, мощность и экономичность двигателя.При такте впуска, когда поршень двигается от верхней мёртвой точки (в. м. т.) к нижней мёртвой точке (н. м. т.), впускной клапан должен быть открыт, а при такте сжатия, расширения (рабочего хода) и выпуска закрыт.
Система охлаждения: необходимость системы охлаждения вызывается тем, что детали двигателя, соприкасающиеся с раскаленными газами, при работе сильно нагреваются. Если не охлаждать внутренних деталей двигателя, то вследствие перегрева может произойти выгорание слоя смазки между деталями и заедание их. Нельзя допускать и переохлаждения двигателя, так как при этом увеличиваются тепловые потери и
уменьшается количество полезно используемого тепла, возрастают потери на трение вследствие загустевания смазки, ухудшаются условия смесеобразования, снижается мощность и ухудшается экономичность. Нормальный тепловой режим работы двигателя должен быть в пределах 80—90 °С. К системе жидкостного охлаждения относятся: полость охлаждения блока и головок цилиндров, радиатор, водяной насос, вентилятор, жалюзи, термостат, водораспределительная труба, патрубки, шланги, сливные краники.
Система смазки: между отдельными деталями двигателя, поверхности которых перемещаются одна относительно другой, возникает сила называемая силой терния. На преодоление сил трения затрачивается часть мощности двигателя; помимо этого трение приводит к износу деталей и их нагреву. Уменьшение сил трения достигается улучшением качества обработки поверхности, применением антифрикционных сплавов, шариковых и роликовых подшипников.
Система питания приборы системы питания. Все двигатели, работающие на бензине, имеют принципиально одну и ту же систему питания и работают на горючей смеси, состоящей из паров топлива и воздуха. В систему питания входят приборы, предназначенные для хранения, очистки и подачи топлива, приборы очистки воздуха и прибор, служащий для приготовления горючей смеси из паров топлива и воздуха.
Система зажигания: сжатая рабочая смесь в цилиндре двигателя зажигается электрическим разрядом — искрой, образующейся между электродами свечи зажигания. Преобразование тока низкого напряжения в ток высокого напряжения и распределение его по цилиндрам двигателя осуществляется приборамизажигания. Система зажигания состоит из источников тока низкого напряжения, катушки зажигания, прерывателя-распределителя, конденсатора, свечей зажигания, включателя зажигания и проводов низкого и высокого напряжений. В системе зажигания имеется две цепи — низкого и высокого напряжения. Цепь низкого напряжения питается от аккумуляторной батареи или от генератора, высокого напряжения состоит из вторичной обмотки катушки зажигания, распределителя, проводов высокого напряжения, свечей зажигания. Образование тока высокого напряжения в катушке зажигания основано на принципе взаимоиндукции. При включенном выключателе зажигателя и сомкнутых контактах прерывателя ток от аккумуляторной батареи или генератора поступает на первичную обмотку катушки зажигания,вследствие чего вокруг нее образуется магнитное поле. При размыкании контактов прерывателя ток в первичной обмотке катушки зажигания и магнитный поток вокруг нее исчезают. Исчезающий магнитный поток пересекает витки вторичной и первичной обмоток катушки зажигания и в каждом из них возникает небольшая э. д. с.
Не спешите разделываться с физикой. Физика делает человека не только умнее, но и сильнее. Именно она помогла человеку избавиться от оков первобытного страха и найти общий язык с природой.
Список литературы:
1. Автомобиль: Учебник водителя третьего класса / Калисский В. С.,
Манзон А. И. 1979 г.
2. Устройство и эксплуатация автомобилей: Учеб. Пособие /Полосков В. П., Лещев П. М.,1987г.
Вложение | Размер |
---|---|
fizicheskie_processy_v_dvigatele_zil_-130.docx | 405.21 КБ |
Министерство образования Омской области
Бюджетное образовательное учреждение Омской области
среднего профессионального образования
«САРГАТСКИЙ ИНДУСТРИАЛЬНО-ПЕДАГОГИЧЕСКИЙ КОЛЛЕДЖ»
Научно-практическая конференция студентов
«Физика в моей профессии»
Физика в профессии механизации сельского хозяйства (техник - механик).
Физические процессы в двигателе
автомобиля ЗиЛ - 130.
Автор: Рячкин Виталий
Руководитель: Беликова Елена Владимировна
18 апреля 2013 г.
г. Омск
Введение
Если вы удачно выберете труд и вложите
в него душу, то счастье само вас отыщет".
К.Д. Ушинский
От достижений физики зависит уровень технического развития общества. Все современные высокие технологии непосредственно опираются на теоретические представления современной физики. Компьютеры, средства связи, нанотехнологии – эти и другие «производные» современных физических теорий уже изменили нашу жизнь. Влияние физических идей на научно-технический прогресс продолжает расти. Без овладения курсом физики невозможно стать грамотным специалистом, поскольку это – теоретическая база для изучения других дисциплин, без знания которых невозможны успешная профессиональная деятельность и дальнейшее обучение.
Техник - механик – это рабочий широкого профиля, который выполняет операции по техническому обслуживанию и ремонту автотранспортных средств, проводит контроль их технического состояния с помощью диагностического оборудования и приборов, управляет автотранспортными средствами. Сегодня профессия техник - механик, востребованная и актуальна на современном рынке труда. Количество выпускаемой сельскохозяйственной техники неуклонно растет, а прогресс не стоит на месте.
Каждый автомобиль можно разделить на следующие основные части: двигатель, шасси, кузов, электро- и специальное оборудование.
Двигатель является источником механической энергии, приводящей автомобиль в движение. Сейчас применяются в основном поршневые двигатели внутреннего сгорания. Используются практически во всех областях транспорта. Они являются "сердцем" автомобиля, трактора, тепловоза, судна. Современный двигатель внутреннего сгорания представляет собой своеобразный сплав последних достижений науки и техники.
На базе этих достижений беспрерывно совершенствуются все узлы и агрегаты двигателя. В результате этого последние образцы автомобильных двигателей выходят на мировой уровень.
Объектом исследования выбран двигатель внутреннего сгорания ЗИЛ -130.
Цель исследования – показать физические процессы в работе двигателя внутреннего сгорания ЗИЛ -130.
Для достижения поставленной в работе цели были рассмотрены
основные задачи:
техника – механика.
Характеристика профессиональной деятельности техника – механика в отрасли механизации сельского хозяйства
Область профессиональной деятельности техника - механика: организация и выполнение работ по обеспечению функционирования машин, механизмов, установок, приспособлений и другого инженерно-технологического оборудования сельскохозяйственного назначения.
Объектами профессиональной деятельности являются:
- машины, механизмы, установки, приспособления и другое инженерно-технологическое оборудование сельскохозяйственного назначения;
- автомобили категорий «В» и «С»;
-стационарные и передвижные средства технического обслуживания и ремонта;
-технологические процессы подготовки, эксплуатации, технического обслуживания и диагностирования неисправностей машин, механизмов, установок, приспособлений и другого инженерно-технологического оборудования сельскохозяйственного назначения;
-процессы организации и управления структурным подразделением сельскохозяйственного производства;
-первичные трудовые коллективы.
Техник-механик готовится к следующим видам деятельности:
Техник-механик должен обладать общими компетенциями,
включающими в себя способность:
- Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.
- Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.
- Использовать информационно-коммуникационные технологии в профессиональной деятельности.
- Работать в коллективе и в команде, эффективно общаться с коллегами, руководством, потребителями.
- Брать на себя ответственность за работу членов команды (подчиненных), за результат выполнения заданий.
- Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.
- Ориентироваться в условиях частой смены технологий в профессиональной деятельности.
Техник-механик должен обладать профессиональными компетенциями, соответствующими основным видам профессиональной деятельности:
Подготовка сельскохозяйственных машин и механизмов
к работе, комплектование сборочных единиц.
- Выполнять регулировку узлов, систем и механизмов двигателя и приборов электрооборудования.
Подготавливать почвообрабатывающие машины.
- Подготавливать посевные, посадочные машины и машины для ухода за посевами.
Подготавливать уборочные машины.
- Подготавливать машины и оборудование для обслуживания животноводческих ферм, комплексов и птице фабрик.
- Подготавливать рабочее и вспомогательное оборудование тракторов и автомобилей.
Эксплуатация сельскохозяйственной техники.
- Определять рациональный состав агрегатов и их эксплуатационные показатели.
-Комплектовать машинно-тракторный агрегат.
- Проводить работы на машинно-тракторном агрегате.
- Выполнять механизированные сельскохозяйственные работы.
Техническое обслуживание и диагностирование
неисправностей сельскохозяйственных машин и механизмов; ремонт
отдельных деталей и узлов.
- Выполнять техническое обслуживание
сельскохозяйственных машин и механизмов.
-Проводить диагностирование неисправностей сельскохозяйственных машин и механизмов.
-Осуществлять технологический процесс ремонта отдельных деталей и узлов машин и механизмов.
-Обеспечивать режимы консервации и хранения сельскохозяйственной техники.
Управление работами машинно-тракторного парка
сельскохозяйственной организации.
-Участвовать в планировании основных показателей машинно-тракторного парка сельскохозяйственной организации.
-Планировать выполнение работ исполнителями.
-Организовывать работу трудового коллектива.
-Контролировать ход и оценивать результаты выполнения работ исполнителями.
-Вести утвержденную учетно-отчетную документацию.
Автомобиль ЗИЛ-130
Автомобиль ЗИЛ-130 (рис. 1) предназначается для буксирования или перевозки грузов в составе автопоезда, причем масса прицепа вместе с грузом не должна превышать 8 тонн. Способен перевозить грузы, масса которых не превышает 6 тонн. Серийное производство авто ЗИЛ-130 началось еще в 1962 году в Советском Союзе, на Заводе имени Лихачева. Всего до 1994 года было выпущено 3380000 автомобилей ЗИЛ-130. Впервые в советском автопроме грузовые автомобили ЗИЛ-130 были оснащены гидравлическим усилителем руля, предпусковым подогревом двигателя, 3-местной кабиной, синхронизированной коробкой передач.
В 1973 году автомобилю ЗИЛ-130 был присвоен государственный знак качества СССР.
Рис. 1. Автомобиль-тягач ЗИЛ-130
Устройство и работа двигателя ЗиЛ-130
Двигателем называется машина, в которой тот или иной вид энергии
преобразуется в механическую работу. Двигатели, в которых тепловая энергия преобразуется в механическую работу, являются тепловыми.
Тепловая энергия получается при сжигании какого-либо топлива.
Двигатель, в котором топливо сгорает непосредственно внутри цилиндра и энергия образующихся при этом газов воспринимается движущимся в цилиндр поршнем, называется поршневым двигателем внутреннего сгорания. Такие двигатели в основном и применяются на современных автомобилях.
Двигатель ЗиЛ-130: состоит из механизмов и систем обеспечивающих его работу:
-кривошитно - шатунный механизм,
-газораспределительный механизм,
-система охлаждения,
-система смазки,
-система питания,
Кривошипно-шатунный механизм: воспринимает давление газов при такте сгорание - расширение и преобразовывает прямолинейное, возвратно-поступательное движение поршня во вращательное движение коленчатого вала.
Кривошипно-шатунный механизм состоит из: блока цилиндров с
картером, головки цилиндров, поршней с кольцами, поршневых пальцев,
шатунов, коленчатого вала, маховика и поддона картера.
Блок цилиндров является основной деталью двигателя, к которой
крепятся все механизмы и детали. Цилиндры в блоках изучаемых двигателей расположены У-образно в два ряда под углом 90°.
Блоки цилиндров отливают из чугуна (ЗИЛ-130) или алюминиевого
сплава. В той же отливке выполнены картер и стенки полости охлаждения, окружающие цилиндры двигателя.
В блоке двигателя устанавливают вставные гильзы, омываемые
охлаждающей жидкостью. Внутренняя поверхность гильзы служит направляющей для поршней. Гильзу растачивают под требуемый размер и шлифуют. Гильзы, омываемые охлаждающей жидкостью, называются мокрыми. Они в нижней части имеют уплотняющие кольца из специальной резины или медные. Вверху уплотнение гильз достигается за счет прокладки головки цилиндров. Увеличение срока службы гильз цилиндров достигается в результате запрессовки в наиболее изнашиваемую (верхнюю) их часть коротких тонкостенных гильз из кислотоупорного чугуна. Применение такой вставки снижает износ верхней части гильзы в 2—4 раза.
Блок цилиндров У-образного двигателя ЗИЛ-130 сверху закрыт двумя
головками из алюминиевого сплава. В головке цилиндров двигателя ЗИЛ-130 размещены камеры сгорания, в которых имеются резьбовые отверстия для свечей зажигания. Для охлаждения камер сгорания в головке вокруг них выполнена специальная полость.
На головке цилиндров закреплены детали газораспределительного
механизма. В головке цилиндров выполнены впускные и выпускные каналы и установлены вставные седла и направляющие втулки клапанов. Для создания герметичности между блоком и головкой цилиндров установлена прокладка, а крепление головки к блоку цилиндров осуществлено шпильками с гайками. Прокладка должна быть прочной, жаростойкой и эластичной. В двигателе ЗИЛ-130 она сталеасбестовая. Для уплотнения стальной прокладки в расточкуна нижней плоскости головки цилиндра запрессовано стальное кольцо с острым выступом.
Снизу картер двигателя закрыт поддоном, выштампованным из листовой стали. Поддон защищает картер от попадания пыли и грязи и используется в качестве резервуара для масла. Поддон крепится к плоскости разъема болтами, а для обеспечения герметичности соединения применяют прокладки из картона или из клееной пробковой крошки.
Во время работы двигателя в картер проникают газы, что может
повлечь за собой повышение давления, прорыв прокладок и вытекание масла. Поэтому картер через специальную трубку (сапун) сообщается с атмосферой.
Поршень воспринимает давление газов при рабочем такте и передает
его через поршневой палец и шатун на коленчатый вал. Поршень представляет собой перевернутый цилиндрический стакан, отлитый из алюминиевого сплава. В верхней части поршня расположена головка с канавками, в которые вставлены поршневые кольца. Ниже головки выполнена юбка, направляющая движение поршня. В юбке поршня имеются приливы-бобышки с отверстиями для поршневого пальца.
При работе двигателя поршень, нагреваясь, расширится и, если между
ним и зеркалом (внутреннюю поверхность цилиндра или его гильзы называют зеркалом) цилиндра не будет необходимого зазора, заклинится в цилиндре, и двигатель прекратит работу. Однако большой зазор между поршнем и зеркалом цилиндра также нежелателен, так как это приводит к прорыву части газов в картер двигателя, падению давления в цилиндре и уменьшению мощности двигателя. Чтобы поршень не заклинивался при прогретом двигателе, головку поршня выполняют меньшего диаметра, чем юбку, а саму юбку в поперечном сечении изготавливают не цилиндрической формы, а в виде эллипса с большей осью его в плоскости, перпендикулярной поршневому пальцу. На юбке поршня может быть разрез. Благодаря овальной форме и разрезу юбки предотвращается
заклинивание поршня при работе прогретого двигателя.
Общее устройство поршней всех двигателей принципиально одинаковое, но каждый из них отличается диаметром и рядом особенностей, присущих только данному двигателю. Например, в головке поршня двигателя ЗИЛ-130 залито чугунное кольцо, в котором сделана канавка под верхнее компрессионное кольцо. Такая конструкция способствует уменьшению износа канавки под поршневое кольцо.
Поршни двигателя ЗИЛ-130 после механической обработки покрывают оловом, что способствует лучшей приработке и уменьшению износа их в первоначальный период работы двигателя.
Поршневые кольца, применяемые в двигателе, подразделяются на
компрессионные и маслосъемные. Компрессионные кольца уплотняют зазор между поршнем и цилиндром и служат для уменьшения прорыва газов из цилиндров в картер, а маслосъемные снимают излишки масла с зеркала цилиндров и не допускают проникновения масла в камеру сгорания. Кольца, изготовленные из чугуна или стали, имеют разрез (замок).
При установке поршня в цилиндр поршневое кольцо предварительно
сжимают, в результате чего обеспечивается его плотное прилегание к зеркалу цилиндра при разжатии. На кольцах имеются фаски, за счет которых кольцо несколько перекашивается и быстрее притирается к зеркалу цилиндра, и уменьшается насосное действие колец. Количество колец, устанавливаемых на поршнях двигателей, неодинаковое. На поршнях двигателей ЗИЛ-130 три компрессионных кольца, два верхних хромированы по поверхности, соприкасающейся с гильзой. Маслосъемное кольцо собрано из четырех отдельных элементов — двух тонких стальных разрезных колец и двух гофрированных стальных расширителей (осевого и радиального).
Поршневой палец шарнирно соединяет поршень с верхней головкой
шатуна. Палец изготовлен в виде пустотелого цилиндрического стержня,
наружная поверхность, которого закалена нагревом током высокой частоты.
На двигателе ЗиЛ-130 применяются «плавающие» пальцы, т. е. такие,
которые могут свободно поворачиваться как в верхней головке шатуна, так и в бобышках поршня, что способствует равномерному износу пальца. Во избежание задирав цилиндров при выходе пальца из бобышек осевое перемещение его ограничивается двумя разрезными стальными кольцами, установленными в выточках в бобышках поршня.
Шатун служит для соединения коленчатого вала с поршнем. Через шатун давление на поршень при рабочем ходе передается на коленчатый вал. При вспомогательных тактах (впуск, сжатие и выпуск) через шатун поршень приводится в действие от коленчатого, вала. Шатун (рис. 3) состоит из стального стержня двутаврового сечения, верхней неразъемной и нижней разъемной головок. В верхней установлен поршневой палец, а нижняя закреплена на шатунной шейке коленчатого вала. Для уменьшения трения в верхнюю головку шатуна запрессована бронзовая или биметаллическая с бронзовым слоем втулка, а в нижнюю, состоящую из двух частей, установлены тонкостенные вкладыши, представляющие собой стальную ленту, внутренняя поверхность которой покрыта тонким слоем антифрикционного сплава. Обе части нижней головки шатуна скреплены двумя болтами, гайки которых во избежание самоотвертывания фиксируются. В двигателе ЗИЛ-130 под гайки подкладываются специальные шайбы, момент затяжки гаек 80-90,Н/м., а самоотвертыванию препятствуют специальные штампованные стопорные гайки. Затяжку стопорной гайки необходимо производить путем ее поворота на 1,5 ... 2 грани от положения соприкосновения о основной гайкой.
На стержне шатуна выштампован номер детали, а на крышке метка.
Номер на шатуне и метка на его крышке всегда должны быть обращены в одну сторону. К верхней и нижней головкам шатуна подводится масло: к нижней головке — через канал в коленчатом валу, а к верхней — через прорезь. Из нижней головки шатуна масло через отверстие выбрызгивается на стенки цилиндров. В двигателях на одной шатунной шейке коленчатого вала закреплено по два шатуна. Для правильной их сборки с поршнями нужно помнить, что шатуны правого ряда цилиндров собраны с поршнями так, что номер на шатуне обращен назад по ходу автомобиля (см. рис. 3), а левого ряда — вперед, т. е. совпадает с надписью на поршне.
Коленчатый вал воспринимает усилия, передаваемые от поршней
шатунами, и преобразует их в крутящий момент, который затем через маховик передается агрегатам трансмиссии. В двигателе ЗиЛ-130 коленчатый вал стальной.
Коленчатый вал (рис. 4) состоит из шатунных и коренных шлифованных шеек, щек и противовесов. На переднем конце вала двигателей ЗМЗ-53-12 и ЗИЛ-130 имеется углубление для шпонки распределительной шестерни и шкива привода вентилятора, а также нарезное отверстие для крепления храповика; задняя часть вала выполнена в виде фланца, к которому болтами прикреплен маховик. В углублении задней торцовой части коленчатого вала расположен подшипник ведущего вала коробки передач.
Количество и расположение шатунных шеек коленчатого вала зависит от числа цилиндров. В V-образном двигателе количество шатунных шеек в два раза меньше числа цилиндров, так как на одну шатунную шейку вала установлено по два шатуна — один левого и другой правого рядов цилиндров.
Шатунные шейки коленчатого вала многоцилиндровых двигателей
выполнены в разных плоскостях, что необходимо для равномерного чередования рабочих тактов в разных цилиндрах.
В восьмицилиндровых V-образных двигателях коленчатые валы имеют по четыре шатунные шейки, расположенные под углом в 90°.
В двигателе число коренных шеек коленчатого вала на одну
больше, чем шатунных, т. е. каждая шатунная шейка с двух сторон имеет
коренную. Такой коленчатый вал называют полноопорным. Коренные и шатунные шейки коленчатого вала соединены между собой щеками.
Для уменьшения центробежных сил, создаваемых кривошипами, на
коленчатом валу выполнены противовесы, а шатунные шейки сделаны полыми. Для повышения твердости и увеличения срока службы поверхность коренных и шатунных шеек стальных валов закаливают нагревом токами высокой частоты.
Коренные и шатунные шейки вала соединены каналами (сверлениями) в щеках вала. Эти каналы предназначены для подвода масла от коренных подшипников к шатунным. В каждой шатунной шейке вала имеется полость, которая выполняет роль грязеуловителя. Сюда поступает масло от коренных шеек. При вращении вала частицы грязи, находящиеся в масле, под действием центробежных сил отделяются от масла и оседают на стенке грязеуловителя, а к шатунным шейкам поступает очищенное масло. Очистка грязеуловителей осуществляется через завернутые в их торцах резьбовые пробки только при разборке двигателя.
Перемещение вала в продольном направлении ограничивается упорными сталебаббитовыми шайбами, которые расположены по обе стороны первого коренного подшипника или четырьмя сталеалюминиевыми полукольцами, установленными в выточке задней коренной опоры. В местах выхода коленчатого вала из картера двигателя имеются сальники и уплотнители, предотвращающие утечку масла.
На переднем конце вала установлен резиновый самоподжимный сальник, а на заднем конце выполнена маслосгонная резьба или маслоотражательный буртик.
В заднем коренном подшипнике сделаны маслоулови-тельные каналы, в которые сбрасывается масло с маслосгонной резьбы или маслоотражательного буртика и установлен сальник, состоящий из двух кусков асбестового шнура.
Шатунные и коренные подшипники. В работающем двигателе нагрузки на шатунные и коренные шейки коленчатого вала очень велики. Для уменьшения трения коренные шейки, как и шатунные, расположены в подшипниках скольжения, которые выполнены в виде вкладышей, аналогичных шатунным.
Вкладыши каждого коренного или шатунного подшипника состоят из двух половинок, устанавливаемых в нижней разъемной головке шатуна и в гнезде блока и крышке коренного подшипника. От провертывания вкладыши удерживаются выступом, входящим в паз шатунного или коренного подшипника.
Крышки коренных подшипников закреплены при помощи болтов и гаек, которые для предотвращения от самоотвертывания зашплинтованы проволокой либо застопорены замковыми пластинами.
Маховик уменьшает неравномерность работы двигателя, выводит поршни из мертвых точек, облегчает пуск двигателя и способствует плавному троганию автомобиля с места. Маховик изготовлен в виде массивного чугунного диска и прикреплен к фланцу коленчатого вала болтами с гайками. При изготовлении маховик балансируется вместе с коленчатым валом. Для предотвращения нарушения балансировки при разборке двигателя маховик установлен на несимметрично расположенные штифты или болты.
Картер двигателя, отлитый заодно с блоком цилиндров, является
базисной (основной) деталью. К картеру крепятся детали кривошипно-
шатунного и газораспределительного механизмов. Для повышения жесткости внутри картера выполнены ребра, в которых расточены гнезда коренных подшипников коленчатого вала и опорных шеек распределительного вала.
Снизу картер закрыт поддоном, выштампованным из тонкого стального
Листа. Поддон является резервуаром для масла и в то же время защищает
детали двигателя от пыли и грязи. В нижней части поддона предусмотрено
отверстие для выпуска масла, закрываемое резьбовой пробкой. Поддон
прикреплен к картеру болтами. Чтобы не было утечки масла, между поддоном и картером установлены прокладки и резиновые уплотнители.
Газораспределительный механизм: в двигателях внутреннего сгорания своевременный впуск в цилиндры свежего заряда горючей смеси и выпуск отработавших газов обеспечивается газораспределительным механизмом.
На двигателе ЗиЛ-130 установлен газораспределительный механизм с
верхним расположением клапанов.
Газораспределительный механизм состоит из распределительных
шестерен, распределительного вала, толкателей, штанг, коромысел с деталями крепления, клапанов, пружин с деталями крепления и направляющих втулок клапанов (рис. 5).
Распределительный вал расположен между правым и левым рядами
цилиндров. При вращении распределительного вала кулачок набегает на толкатель и поднимает его вместе со штангой. Верхний конец штанги надавливает на регулировочный винт во внутреннем плече коромысла, которое, провертываясь на своей оси, наружным плечом нажимает на стержень клапана и открывает отверстие впускного или выпускного канала в головке цилиндров. В рассматриваемых двигателях распределительный вал действует на толкатели правого и левого рядов цилиндров.
Газораспределительный механизм с верхним расположением клапанов дает возможность улучшить форму камеры сгорания, наполнение цилиндров и условия сгорания рабочей смеси. Лучшая форма камеры сгорания позволяет повысить также степень сжатия, мощность и экономичность двигателя.
Распределительный вал (см. рис. 5) служит для открытия клапанов в
определенной последовательности в соответствии с порядком работы
двигателя. Распределительные вал отливают из специального чугуна или отковывают из стали. Устанавливают его в отверстия стенок и ребрах картера. Для этой цели на валу имеются цилиндрические шлифованные опорные шейки. Для уменьшения трения между шейками вала и опорами в отверстия запрессовывают втулки, внутренняя поверхность которых покрыта антифрикционным слоем.
На валу, помимо опорных шеек, имеются кулачки — по два на каждый
цилиндр, шестерня для привода масляного насоса и прерывателя-
распределителя и эксцентрик для привода топливного насоса.
От переднего торца распределительных валов двигателя ЗИЛ-130
приводится в действие датчик пневмоцентробежного ограничителя частоты вращения коленчатого вала двигателя. Трущиеся поверхности распределительного вала для уменьшения износа подвергнуты закалке с помощью нагрева током высокой частоты.
Привод распределительного вала от коленчатого вала осуществляется
при помощи шестеренчатой передачи. Для этой цели на переднем торце
коленчатого вала насажена стальная шестерня, а на переднем конце
распределительного вала — чугунная шестерня. Распределительная шестерня от провертывания на валу удерживается шпонкой и закрепляется шайбой и болтом, завернутым в торец вала. Обе распределительные шестерни имеют косые зубья, вызывающие при вращении вала его осевое смещение.
Для предупреждения осевого смещения вала при работе двигателя между шестерней и передней опорной шейкой вала установлен фланец, который закреплен двумя болтами к передней стенке блока цилиндров
(рис. 6). Внутри фланца на носке вала установлено распорное кольцо, толщина которого несколько больше толщины фланца, в результате чего достигается небольшое осевое смещение распределительного вала. В четырехтактных двигателях рабочий процесс происходит за четыре хода поршня или два оборота коленчатого вала, т. е. за это время должны последовательно открыться впускные и выпускные клапаны каждого цилиндра, а это возможно если число оборотов распределительного вала будет в 2 раза меньше числа оборотов коленчатого вала, поэтому диаметр шестерни, установленной на распределительном валу, делают в 2 раза большим, чем диаметр шестерни коленчатого вала.
Клапаны в цилиндрах двигателя должны открываться и закрываться в
зависимости от направления движения и положения поршней в цилиндре. При такте впуска, когда поршень двигается от верхней мёртвой точки (в. м. т.) к нижней мёртвой точке (н. м. т.), впускной клапан должен быть открыт, а при такте сжатия, расширения (рабочего хода) и выпуска закрыт. Чтобы обеспечить такую зависимость, на шестернях газораспредели- тельного механизма делают метки: на зубе шестерни коленчатого вала и между двумя зубьями шестерни распределительного вала (рис. 7). При сборке двигателя эти метки должны совпадать.
Толкатели предназначены для передачи усилия от кулачков
распределительного вала к штангам.
Штанги передают усилие от толкателей к коромыслам и выполнены в виде стальных стержней с закаленными наконечниками (ЗИЛ-130)
Коромысла передают усилие от штанги к клапану. Изготовляют их из
стали в виде двуплечего рычага, посаженного на ось. В отверстие коромысла для уменьшения трения запрессовывают бронзовую втулку. Полая ось закреплена в стойках на головке цилиндров. От продольного перемещения коромысло удерживается сферической пружиной. На двигателях ЗИЛ-130 коромысла не равноплечие. В короткое плечо завернут регулировочный винт с контргайкой, упирающийся в сферическую поверхность наконечника штанги.
Клапаны служат для периодического открытия и закрытия отверстий
впускных и выпускных каналов в зависимости от положения поршней в цилиндре и от порядка работы двигателя.
В двигателе ЗиЛ-130 впускные и выпускные каналы выполнены в
головках цилиндров и заканчиваются вставными гнездами из жаропрочного чугуна.
Клапан (рис. 8) состоит из головки и стержня. Головка имеет узкую,
скошенную под углом 45 или 30° кромку (рабочая поверхность), называемую фаской. Фаска клапана должна плотно прилегать к фаске седла, для чего эти поверхности взаимно притирают. Головки впускных и выпускных клапанов имеют неодинаковый диаметр. Для лучшего наполнения цилиндров свежей горючей смесью диаметр головки впускного клапана делают большим, чем диаметр выпускного.
Система охлаждения: необходимость системы охлаждения вызывается тем, что детали двигателя, соприкасающиеся с раскаленными газами, при работе сильно нагреваются. Если не охлаждать внутренних деталей двигателя, то вследствие перегрева может произойти выгорание слоя смазки между деталями и заедание их. Нельзя допускать и переохлаждения двигателя, так как при этом увеличиваются тепловые потери и уменьшается количество полезно используемого тепла, возрастают потери на трение вследствие загустевания смазки, ухудшаются условия смесеобразования, снижается мощность и ухудшается экономичность. Нормальный тепловой режим работы двигателя должен быть в пределах 80—90 °С. На двигателе ЗиЛ-130 применяют систему жидкостного охлаждения с принудительной циркуляцией жидкости. В качестве теплоносителя применяют воду или специальные незамерзающие смеси — антифризы или тосолы.
К системе жидкостного охлаждения (рис. 9) относятся: полость
охлаждения блока и головок цилиндров, радиатор, водяной насос, вентилятор, жалюзи, термостат, водораспределительная труба, патрубки, шланги, сливные краники.
Охлаждающая жидкость, находящаяся в полости охлаждения, нагреваясь за счет тепла, образующегося в цилиндре двигателя, поступает в радиатор, охлаждается в нем и возвращается в полость охлаждения. Принудительная циркуляция жидкости в системе обеспечивается водяным насосом, а усиленное охлаждение ее — за счет интенсивного обдува радиатора воздухом.
Отдельные детали системы охлаждения соединены трубками и
прорезиненными шлангами. Степень охлаждения регулируется при помощи термостата, жалюзи. Жидкость в систему охлаждения заливают через горловину радиатора или расширительного бачка. Вместимость системы охлаждения двигателя автомобиля ЗиЛ-130 —26л. Охлаждающую жидкость выпускают через краники или отверстия, закрываемые резьбовыми коническими пробками, расположенными в нижнем патрубке блока цилиндров и пусковом подогревателе.
Радиатор отдает воздуху тепло от охлаждающей жидкости. Он состоит из сердцевины, верхнего и нижнего бачков и деталей крепления (рис. 10). Сердцевина радиатора выполнена из отдельных вертикальных трубок, между которыми находятся поперечные горизонтальные пластины, придающие радиатору жесткость и увеличивающие поверхность охлаждения. Трубки сердцевины радиатора впаяны в верхний и нижний бачки.
Верхний бачок радиатора автомобиля ЗиЛ-130 имеет горловину с
пробкой и пароотводную трубку. На автомобиле ЗиЛ-130 и в нем установлен датчик указателя перегрева двигателя. Верхний бачок соединен прорезиненным шлангом с полостью охлаждения двигателя. Нижний имеет кран для выпуска охлаждающей жидкости и патрубок для соединения с водяным насосом.
Для повышения температуры кипения охлаждающей жидкости и тем
самым поддержания наиболее выгодного температурного режима на изучаемых двигателях применена закрытая система охлаждения, у которой радиатор непосредственно не соединен с атмосферой. В таких системах пробка радиатора плотно закрывает горловину. В пробке имеются два клапана — паровой и воздушный.
Паровой клапан пробки радиатора допускает повышение
давления в системе охлаждения на 0,028 ... 0,10 МПа выше атмосферного, в
результате чего уменьшаются потери охлаждающей жидкости от испарения, а температура кипения охлаждающей жидкости повышается и составляет 108°С - 119°С. При повышении давления в системе свыше расчетного клапан автоматически открывается.
После охлаждения нагретого двигателя возникает опасность
сдавливания трубок радиатора в результате создавшегося разрежения. Для
предотвращения этого явления служит воздушный клапан пробки радиатора, который, открываясь при разрежении 0,001 - 0,013 МПа, пропускает внутрь его воздух.
Жалюзи служат для регулирования интенсивности обдува радиатора
встречным потоком воздуха. Они состоят из отдельных пластин, укрепленных шарнирно впереди радиатора. Управляют жалюзи рукояткой, выведенной в кабину. При затягивании рукоятки пластины, поворачиваясь на шарнирах, уменьшают встречный поток воздуха, поступающий к радиатору.
Водяной насос. Принудительная циркуляция жидкости в системе
охлаждения создается водяным насосом центробежного типа. Насос установлен в передней части блока цилиндров и состоит из корпуса, вала с крыльчаткой и самоуплотняющегося сальника. Под действием центробежной силы, возникающей при вращении крыльчатки, охлаждающая жидкость из нижнего бачка радиатора поступает к центру корпуса насоса и отбрасывается к его наружным стенкам. Из отверстия в стенке корпуса насоса охлаждающая жидкость попадает в полость охлаждения блока цилиндров. Вытеканию охлаждающей жидкости между корпусом насоса и блоком препятствует прокладка, а в месте выхода вала самоуплотняющийся сальник, состоящий из резиновой манжеты, металлической обоймы, пружины и шайбы.
Вентилятор. Для усиления потока воздуха, проходящего через
сердцевину радиатора, служит вентилятор. Его обычно монтируют на одном валу с водяным насосом. Он состоит из крыльчатки с четырьмя или шестью лопастями, привернутыми к ступице. Вал вентилятора одновременно является валом водяного насоса и установлен в его корпусе на шариковых подшипниках.
Привод водяного насоса и вентилятора осуществляется от шкива
коленчатого вала клиновидным ремнем.
В двигателе ЗиЛ-130 ремень охватывает также шкив насоса
гидроусилителя рулевого управления.
Термостат. В период пуска двигателя для уменьшения износа
желательно возможно быстрее прогреть его до температуры 80 - 90 °С и при дальнейшей эксплуатации поддерживать эту температуру.
Для этой цели служит термостат, его устанавливают в патрубке
полости впускного трубопровода.
Термостат (рис. 13) состоит из корпуса, гофрированного латунного
цилиндра, штока и двойного клапана. Внутрь гофрированного латунного
цилиндра налита жидкость, температура кипения которой 70 -75°С. Когда
двигатель не прогрет, клапан термостата закрыт (см. рис. 13, а), и
циркуляция происходит по малому кольцу: водяной насос — полость охлаждения — термостат— перепускной шланг — насос.
В системе охлаждения двигателя ЗИЛ-130 в период прогрева циркуляция осуществляется через полость охлаждения компрессора пневматического привода тормозов, минуя радиатор.
При нагреве охлаждающей жидкости до 70- 75 °С в гофрированном
цилиндре термостата жидкость начинает испаряться, давление повышается, цилиндр, разжимаясь, перемещает шток и, поднимая клапан (см. рис. 13, б), открывает путь для жидкости через радиатор. Когда температура жидкости в системе охлаждения достигнет 90 °С, клапан термостата полностью открывается, одновременно скошенной кромкой закрывая выход жидкости в малое кольцо и циркуляция происходит по большому кольцу: насос—полость охлаждения—термостат—верхний бачок радиатора—сердцевина — нижний бачок радиатора—насос.
В системе охлаждения двигателя ЗИЛ-130 при полностью открытом
клапане термостата циркуляция одновременно происходит через радиатор и полость охлаждения компрессора.
Такой термостат состоит из корпуса, внутри которого помещен медный
баллон, заполняемый массой, состоящей из медного порошка, смешанного с церезином (нефтяной воск). Баллон сверху закрыт крышкой. Между баллоном и крышкой расположена резиновая диафрагма, сверху которой установлен шток, упирающийся в серьгу, закрепленную при помощи оси на клапане. Контроль за температурой охлаждающей жидкости осуществляется по указателю температуры и при помощи лампы сигнализатора перегрева двигателя на щитке приборов.
Управление сигнальной лампой и указателем осуществляют датчики,
ввернутые в верхний бачок радиатора и в полость охлаждения головки
цилиндра.
Качество воды, применяемой для системы охлаждения двигателя, имеет
не меньшее значение для долговечности и надежности его работы, чем
качество топлива и смазочных материалов. Применение воды необходимого качества является одним из основных условий правильного ухода за двигателем, его выполнение предупреждает образование накипи и коррозию полости охлаждения, которые могут привести к серьезным неисправностям. В систему охлаждения двигателя необходимо заливать чистую «мягкую» воду, лучше всего дождевую или снеговую. Совершенно недопустимо применение артезианской, ключевой или морской воды. Пресную речную и озерную воду для снижения «жесткости» необходимо кипятить и перед заливкой в систему охлаждения фильтровать через пять-шесть слоев марли. Использование артезианской и ключевой воды допускается только после предварительной ее обработки ионитовыми фильтрами. Воду из системы охлаждения после слива следует собирать и использовать вновь. Частая замена воды в системе охлаждения усиливает коррозию и образование накипи.
При температуре воздуха ниже О °С в систему охлаждения вместо воды
рекомендуется заливать жидкости с низкими температурами замерзания — антифризы, а также жидкость ТосолА-40.
Антифриз выпускают двух марок 40 и 65. Он представляет собой смесь
этиленгликоля и воды. Антифриз марки 40 (светло-желтого цвета)
предназначен для автомобилей, эксплуатируемых в районах с умеренно низкой 44 температурой в зимнее время, он замерзает при температу -40 °С.
Антифриз марки 65 (оранжевого цвета) применяют для автомобилей, работающих в условиях низкой температуры, он замерзает при температуре -65 °С. Водный раствор жидкости Тосол-А в зависимости от концентрации замерзает при температуре -40 °С. Антифриз ядовит, при попадании в организм человека он может вызвать тяжелые отравления.
Пусковые подогреватели. Пуск двигателя при низкой температуре
окружающего воздуха затруднен. Для прогрева двигателя применяют пусковой подогреватель. На автомобиле ЗИЛ-130 подогреватель состоит из котла с направляющим патрубком, электровентилятора, топливного бачка, электромагнитного запорного клапана, пульта управления, наливной воронки, патрубков, соединительных трубок и шлангов. Котел подогревателя постоянно соединен с системой охлаждения двигателя. Топливный бачок заполняют топливом, применяемым для двигателя. Топливо самотеком поступает в камеру сгорания котла через электромагнитный запорный клапан. Воздух в камеру сгорания подается электровентилятором.
Первоначальное зажигание горючей смеси осуществляется свечой накаливания, а дальнейшее горение — от ранее зажженного пламени. Отработавшие газы направляются патрубком на поддон для подогрева масла. Включатели свечи зажигания, вентилятора и электромагнитного клапана и контрольная спираль находятся на пульте управления.
Система смазки: между отдельными деталями двигателя, поверхности которых перемещаются одна относительно другой, возникает сила называемая силой терния. На преодоление сил трения затрачивается часть мощности двигателя; помимо этого трение приводит к износу деталей и их нагреву. Уменьшение сил трения достигается улучшением качества обработки поверхности, применением антифрикционных сплавов, шариковых и роликовых подшипников. Одним из наиболее эффективных способов уменьшения сил трения является смазка. Смазка, находящаяся между трущимися поверхностями, разделяет их, заменяя непосредственное трение деталей трением слоев смазки между собой. Помимо этого, масло охлаждает смазываемые детали и уносит твердые частицы, попавшие между ними.
В зависимости от размещения и условий работы деталей масло может
подаваться под давлением, разбрызгиванием и самотеком. В автомобильных двигателях применяются все три способа подвода масла, при этом к наиболее нагруженным деталям масло поступает под давлением, а к остальным — разбрызгиванием и самотеком.
Для хранения, подвода, очистки и охлаждения масла применяют ряд
приборов, маслопроводов и каналов, образующих систему смазки (система смазки двигателя ЗиЛ-130 на рис. 15).
Схема системы смазки двигателя ЗИЛ-130 показана на рис. 15, а.
Масло из поддона картера через маслоприемник засасывается в масляный насос. Нижняя секция масляного насоса подает масло к радиатору, а оттуда в поддон катера двигателя. Верхняя часть под давлением через канал в задней перегородке блока цилиндров подает масло для очистки в корпус масляного фильтра. Из фильтра масло поступает в распределительную камеру, расположенную в задней перегородке блока цилиндров, и далее в два продольных магистральных канала, выполненных в левом и правом рядах цилиндров. Из магистральных каналов масло под давлением подается к направляющим втулкам толкателей, к опорным шейкам распределительного вала — к шатунным подшипникам. Из переднего конца правого магистрального канала масло подается для смазки компрессора. В средней шейке распределительного вала выполнены отверстия, при совпадении которых с отверстиями в блоке цилиндров (1 раз при каждом обороте распределительного вала) пульсирующая струя масла подается в каналы головки цилиндров. Из этих каналов через пазы на опорных поверхностях стоек, оси коромысел и зазоры между стенками отверстий и болтом, проходящим через стойки, масло поступает внутрь полых осей коромысел (рис. 15, б) и через отверстия в стенках осей к втулкам.
Из зазора между осью коромысел и отверстием в коромысле масло через канал, выполненный в коротком плече, поступает для смазки сферических опор штанг (рис. 15, в), а часть его попадает на стержни клапанов и механизмы их поворотов. В передней шейке распределительного вала имеется канал для подачи масла под давлением к упорному фланцу. Остальные детали двигателя смазываются разбрызгиванием и самотеком.
На стенки цилиндров масло выбрызгивается из отверстий в теле шатунов в момент их совпадения с масляным каналом коленчатого вала (рис. 15, г). Масло, снимаемое со стенок цилиндров маслосъемным кольцом, через отверстия в канавке поршня отводится внутрь поршня и смазывает опоры поршневого пальца в бобышках поршня и верхней головке шатуна.
Распределительные шестерни смазываются маслом, поступающим самотеком по каналам для стока масла из головки цилиндров.
Масляный насос служит для создания необходимого давления в системе смазки. Насос состоит из корпуса, внутри которого расположены одна или две пары шестерен. Одна из каждой пары шестерен насажена неподвижно на приводном валике, а другая свободно на оси. Приводной валик приводится в действие от косозубой шестерни на распределительном валу. При вращении шестерен насоса их зубья захватывают масло у входного отверстия, проносят у стенок корпуса и выдавливают в выходное отверстие.
В двигателе ЗиЛ-130 верхняя секция насоса подает масло в систему смазки и фильтр центробежной очистки, нижняя — к масляному радиатору.
Как в двигателе ЗиЛ-130 масляный насос расположен снаружи двигателя. Масло поступает к масляному насосу через маслоприемник с сетчатым фильтром. Масляные фильтры. Качество масла в двигателе не остается постоянным, так как масло засоряется мелкой металлической пылью, появляющейся в результате износа деталей, частицами нагара, образовывающегося в результате сгорания его на стенках цилиндров. При высокой температуре деталей масло коксуется, образуются смолы и лакообразные продукты. Все эти примеси являются вредными и для их удаления применяют масляные фильтры. На двигателях ЗиЛ-130 установлен фильтр центробежной очистки с реактивным приводом. Фильтр состоит из корпуса с осью, где на подшипнике размещен - ротор с колпаком. Снизу ротора размещены два жиклера с отверстиями, направленными в разные стороны, и фильтрующая сетка. Колпак закреплен на оси ротора при помощи гайки и закрыт сверху неподвижным кожухом с барашковой гайкой. Ротор вращается под действием струй масла, выбрасываемого под давлением через два жиклера.
Масляный радиатор. В жаркое время года и при эксплуатации автомобиля в тяжелых дорожных условиях температура масла настолько повышается, что оно становится очень жидким и давление в системе смазки падает.
Для охлаждения масла и предотвращения его разжижения в систему смазки двигателей включен масляный радиатор, который состоит из двух бачков и горизонтальных трубок, расположенных между ними. Для увеличения поверхности охлаждения и повышения жесткости радиатора трубки скреплены металлическими ребрами. На автомобиле ЗИЛ-130 масляный радиатор выполнен в виде трубчатого змеевика с оребрением для увеличения поверхности теплоотдачи.
Масляный радиатор оказывает сравнительно небольшое сопротивление прохождению масла, в результате чего давление в системе может снизиться и подача масла к трущимся поверхностям уменьшится. Для предотвращения этого явления масляный радиатор двигателя включается краном, перед которым установлен предохранительный клапан, перекрывающий доступ масла в радиатор при понижении давления в системе ниже 0,1 МПа.
Маслопроводы выполнены в виде латунных или прорезиненных трубок, соединяющих отдельные участки системы смазки и каналов, высверленных в блоке цилиндров, коленчатом валу, шатунах, осях коромысла, в коромыслах, корпусах фильтров и др.
Маслоналивные патрубки расположены сверху или сбоку двигателя и соединены с поддоном картера непосредственно через маслоналивную трубку. Маслоналивные патрубки имеют воздушные фильтры. Контроль за уровнем масла в двигателе осуществляют масломерной линейкой, имеющей отметки «О» и «Полно». Необходимо следить, чтобы уровень масла был у отметки «Полно».
Вентиляция картера двигателя, В картере работающего двигателя через зазоры между зеркалом цилиндра и кольцами проникают пары топлива и отработавшие газы. Пары топлива конденсируются и разжижают смазку, а отработавшие газы, содержащие в себе пары воды и сернистые соединения, также отрицательно влияют на качество масла и уменьшают срок его службы. Удаляют прорвавшиеся в картер пары топлива и газы при помощи системы вентиляции картера.
В двигателе ЗИЛ-130 применена принудительная вентиляция картера (рис. 18). Чистый воздух попадает в картер двигателя через воздушный фильтр, объединенный с маслоналивным патрубком. Из патрубка воздух попадает в картер распределительных шестерен и в картер двигателя. Отсасываемый воздух проходит через уловитель, где отделяются частицы масла, затем через клапан и трубку попадает в центральную часть впускного трубопровода.
При работе двигателя с прикрытым дросселем под действием большого разрежения во впускном трубопроводе клапан поднимается, верхняя ступенчатая часть клапана входит в отверстие штуцера и уменьшает проходное сечение канала. Это сделано для того, чтобы уменьшить подсос постороннего воздуха и дать возможность двигателю устойчиво работать на холостом ходу. При работе с полностью открытым дросселем разрежение во впускном трубопроводе падает и клапан под действием собственного веса опускается вниз, открывая полностью проходное сечение канала.
Система питания: приборы системы питания. Все двигатели, работающие на бензине, имеют принципиально одну и ту же систему питания и работают на горючей смеси, состоящей из паров топлива и воздуха. В систему питания входят приборы, предназначенные для хранения, очистки и подачи топлива, приборы очистки воздуха и прибор, служащий для приготовления горючей смеси из паров топлива и воздуха.
Топливо помещается в топливном баке, вместимость которого достаточна для работы автомобиля в течение одной смены. Топливный бак грузового автомобиля расположен сбоку автомобиля на раме. Из топливного бака топливо поступает к топливным фильтрам-отстойникам, в которых от топлива отделяются механические примеси и вода. Фильтр-отстойник расположен на раме у топливного бака. Подачу топлива из бака через фильтр тонкой очистки к карбюратору осуществляет топливный насос, расположенный на картере двигателя» между рядами цилиндров сверху двигателя.
Приготовление необходимой горючей смеси из топлива и воздуха происходит в карбюраторе, установленном сверху двигателя на впускном трубопроводе. Воздух, поступающий для приготовления горючей смеси в карбюратор, проходит очистку от пыли в воздушном фильтре, расположенном непосредственно на карбюраторе или сбоку двигателя. В этом случае воздушный фильтр соединен с карбюратором патрубком.
Все приборы подачи топлива соединены между собой металлическими трубками — топливопроводами, которые крепятся к раме или кузову автомобиля, а в местах перехода от рамы или кузова к двигателю шлангами из специальных сортов бензостойкой резины.
Карбюратор соединен с впускными каналами головки цилиндров двигателя при помощи впускного трубопровода, а выпускные каналы соединены с выпускным трубопроводом, последний при помощи трубы соединен с глушителем шума выпуска отработавших газов.
Чтобы предотвратить возможность работы двигателя с чрезмерно большой частотой вращения коленчатого вала, в систему питания грузовых автомобилей включен ограничитель частоты вращения коленчатого вала. Карбюратор К-88АМ двигателя ЗИЛ-130 имеет две смесительные камеры, каждая из которых обслуживает четыре цилиндра. При работе двигателя на средних нагрузках топливо из поплавковой камеры поступает через главные жиклеры, а затем через жиклеры полной мощности в эмульсионные каналы. В этих каналах к топливу подмешивается воздух, поступающий из воздушных жиклеров и жиклеров системы холостого хода. Образовавшаяся эмульсия попадает в смесительные камеры через кольцевые щели малых диффузоров. Поддержание постоянного состава обедненной смеси происходит за счет торможения топлива воздухом. Топливный насос. На автомобилях карбюратор расположен выше топливного бака и подача топлива осуществляется принудительно. Для принудительной подачи топлива из бака к карбюратору на двигателе установлен топливный насос диафрагменного типа. Насос состоит из трех основных частей! корпуса, головки и крышки. В корпусе на оси размещен двуплечий рычаг с возвратной пружиной и рычаг ручной подкачки. Между корпусом и головкой насоса закреплена диафрагма, собранная на штоке, имеющем две тарелки. Двуплечий рычаг воздействует на шток через текстолитовую упорную шайбу. Под диафрагмой установлена нагнетательная пружина.
В головке насоса расположены два впускных и один выпускной клапаны. Клапаны имеют направляющий стержень, резиновую шайбу и пружину. Сверху впускных клапанов расположен сетчатый фильтр.
Топливный насос диафрагменного типа приводится в действие
непосредственно от эксцентрика распределительного вала .
При набегании эксцентрика или штанги на наружный конец двуплечего рычага внутренний конец его, перемещаясь, прогибает диафрагму вниз и над ней создается разрежение. Под действием создавшегося разрежения топливо из бака поступает по трубопроводу к впускному отверстию насоса и проходит через сетчатый фильтр к впускным клапанам, при этом нагнетательная пружина насоса сжимается. Когда выступ эксцентрика сходит с наружного конца двуплечего рычага, диафрагма под действием нагнетательной пружины перемещается вверх и в камере над ней создается давление. Топливо вытесняется через нагнетательный клапан в выпускной канал и затем по трубке в поплавковую камеру карбюратора.
Для уменьшения пульсации топлива над нагнетательным клапаном имеется воздушная камера. При работе насоса в этой камере создается давление, благодаря которому топливо подается к карбюратору равномерно. Производительность топливного насоса рассчитана на работу с максимальным расходом топлива, однако в действительности количество подаваемого топлива должно быть меньше производительности насоса.
При заполненной поплавковой камере игольчатый клапан закрывает отверстие в седле и в топливопроводе, идущем от насоса к карбюратору, создается давление, которое распространяется в полость над диафрагмой. В этом случае диафрагма насоса остается в нижнем положении, так как нагнетательная пружина не может преодолеть создавшееся давление, и двуплечий рычаг под действием эксцентрика и возвратной пружины качается вхолостую.
Для заполнения поплавковой камеры карбюратора топливом при неработающем двигателе служит рычаг ручной подкачки, расположенный сбоку корпуса насоса. Рычаг имеет валик со срезанной частью и возвратную пружину. В отжатом положении срез валика находится над коромыслом и не воздействует на него. При перемещении рычага ручной подкачки валик краями вырезанной части надавливает на внутренний конец двуплечего рычага и перемещает диафрагму вниз.
Рычагом ручной подкачки можно пользоваться тогда, когда эксцентрик освободил наружный конец двуплечего рычага. Топливные фильтры и отстойники. Топливо, поступающее к жиклерам карбюратора, не должно иметь механических примесей и воды, так как примеси засоряют отверстия жиклеров, а замерзшая в зимнее время вода явится причиной прекращения подачи топлива. Для очистки топлива в системе питания двигателя предусмотрена установка фильтров и отстойников. Сетчатые фильтры устанавливают в заливных горловинах топливных баков, в корпусе диафрагменного насоса и во входных штуцерах поплавковой камеры карбюратора.
На грузовых автомобилях в систему питания дополнительно включены по два фильтра-отстойника. Один из фильтров-отстойников грубой очистки устанавливают у топливного бака. Этот фильтр, состоит из крышки и съемного корпуса. Внутри корпуса на стойках расположен фильтрующий элемент из набора тонких фильтрующих пластин, имеющих выштампованные выступы высотой 0,05 мм, поэтому между пластинами остается щель шириной 0,05 мм. Топливо из бака поступает через входное отверстие в отстойник фильтра. Так как отстойник имеет больший объем, чем топливопровод, скорость поступающего топлива резко снижается, что приводит к осаждению механических примесей и воды. Топливо, проходя через щели фильтрующего элемента, дополнительно очищается от механических примесей, которые оседают на фильтрующем элементе.
Фильтр тонкой очистки топлива устанавливают перед карбюратором. Он состоит из корпуса, стакана-отстойника, фильтрующего элемента с пружиной и зажимом стакана. Фильтрующий элемент может быть выполнен керамическим или из мелкой сетки, свернутой в виде рулона.
Топливо, подаваемое диафрагменным насосом, поступает в стакан- отстойник. Часть механических примесей выпадает в виде осадка в стакане- отстойнике, а остальные примеси задерживаются на поверхности фильтрующего элемента. Фильтр грубой очистки топлива установлен у топливного бака и предназначен для предварительной очистки топлива, поступающего в топливо подкачивающий насос. Состоит он из корпуса, отстойника, крышки с подводящими штуцерами, сетчатого фильтрующего элемента, сливной пробки и пробки выпуска воздуха из системы.
Фильтр тонкой очистки топлива предназначен для очистки топлива от мелких частиц. Он состоит из двух колпаков, крышки и двух фильтрующих элементов. В нижней части каждого колпака ввернута сливная пробка. Сменный фильтрующий элемент изготовлен из бумаги. В крышке фильтра имеется сливной клапан, через который сливается часть топлива вместе с воздухом, попавшим в систему низкого давления.
Воздушный фильтр. Автомобиль зачастую эксплуатируется в условиях сильного запыления воздуха. Пыль, попадая в цилиндры двигателя вместе с воздухом, вызывает ускоренный износ как цилиндров, так и поршневых колец. Очистка воздуха, поступающего для приготовления горючей смеси, осуществляется в воздушном фильтре.
На автомобиле ЗИЛ-130 применяют воздушные фильтры инерционно- масляного типа. Фильтр состоит из корпуса масляной ванны, крышки с патрубком, фильтрующего элемента, изготовленного из металлической сетки или капронового волокна, стяжного винта с барашковой гайкой.
Воздух под действием разрежения, создаваемого работающим двигателем, через патрубок попадает во входную кольцевую щель и, двигаясь по ней вниз, ударяется о масло, к которому прилипают крупные частицы пыли. При дальнейшем движении воздух подхватывает частицы масла и смачивает им фильтрующий элемент. Масло, стекающее с фильтрующего элемента, смывает частицы пыли, осевшие на отражателе. Воздух, проходя через фильтрующий элемент, полностью очищается от механических примесей и по центральному патрубку поступает в смесительную камеру карбюратора.
Фильтр устанавливают при помощи переходного патрубка непосредственно на карбюраторе и соединяют с карбюратором при помощи воздушного патрубка.
Топливный бак. Для хранения запаса топлива, необходимого для работы
автомобиля, установлен топливный бак. Он состоит из двух половинок, штампованных из листовой стали и соединенных сваркой. Внутри бака, для увеличения жесткости и уменьшения ударов топлива при его перемещении, установлены перегородки. Бак имеет заливную горловину с пробкой, в которой размещены два клапана, действие которых подобно
действию паровоздушных 'клапанов пробки горловины радиатора. Паровой клапан предотвращает потерю топлива при его испарении, а воздушный — препятствует возникновению разрежения в баке при расходовании топлива.
Топливный бак дизельного автомобиля аналогичен по своему устройству топливному баку автомобиля, работающего на бензине, но в пробке его нет клапанов. Для предупреждения разрежения в, баке при выработке топлива, из него в верхней части установлена трубка, сообщающая внутреннюю полость бака с атмосферой.
Сверху бака установлен датчик указателя уровня топлива и штуцер с краном и заборной трубкой. Заборная трубка внизу заканчивается сетчатым фильтром. В нижней части бака имеется сливное отверстие, закрываемое резьбовой пробкой.
Вместимость топливного бака автомобиля следующая: ЗиЛ-130—170 л.
Впускные трубопроводы. Подача горючей смеси от карбюратора к
цилиндрам двигателя осуществляется через впускной трубопровод.
Впускной трубопровод двигателя ЗИЛ-130 отлит из алюминиевого сплава и закреплен к головкам правого и левого рядов цилиндров. Впускной трубопровод имеет сложную систему каналов, по которым горючая смесь подводится к цилиндрам. Между впускными каналами впускного трубопровода имеется пространство, сообщенное с полостью охлаждения головок цилиндров. Для уплотнения мест соединения между впускным трубопроводом и головками цилиндров устанавливают прокладки. Выпускные трубопроводы. Они служат для отвода отработавших газов из цилиндров двигателя, выполнены отдельно и прикреплены с наружной сторон головок цилиндров.
Для уменьшения сопротивления проходу горючей смеси и отработавших газов каналы впускных и выпускных трубопроводов изготовляют более короткими и с плавными переходами. Уплотняют выпускные трубопроводы при помощи металлоасбестовых прокладок, а крепят их на шпильках с гайками.
Подогрев горючей смеси. Процесс приготовления горючей смеси не заканчивается в смесительной камере карбюратора, а продолжается во впускном трубопроводе и цилиндрах двигателя. Для лучшего испарения топлива во время работы двигателя впускной трубопровод подогревается. Подогрев впускного трубопровода особенно необходим при эксплуатации автомобиля в холодное время и в момент пуска его двигателя. Однако чрезмерный подогрев горючей смеси нежелателен, так как при этом объем смеси увеличивается, а весовое наполнение цилиндров уменьшается.
В двигателе ЗИЛ-130 подогрев горючей смеси происходит за счет тепла, отдаваемого циркулирующей жидкостью в полости охлаждения впускного трубопровода. При пуске этих двигателей в условиях низких температур возможен подогрев впускного трубопровода за счет пролива горячей воды через систему охлаждения.
Система зажигания.
Сжатая рабочая смесь в цилиндре двигателя зажигается электрическим
разрядом — искрой, образующейся между электродами свечи зажигания. Для образования электрического разряда в условиях сжатой рабочей смеси необходимо напряжение не менее 12—16 кВ.
Преобразование тока низкого напряжения в ток высокого напряжения и распределение его по цилиндрам двигателя осуществляется приборами зажигания. Система зажигания состоит из источников тока низкого напряжения, катушки зажигания, прерывателя-распределителя, конденсатора, свечей зажигания, включателя зажигания и проводов низкого и высокого напряжений (рис. 23). В системе зажигания имеется две цепи — низкого и высокого напряжения.
Цепь низкого напряжения питается от аккумуляторной батареи или от генератора. В эту цепь, кроме источников тока, последовательно включены включатель зажигания, первичная обмотка катушки зажигания с добавочным резистором и прерыватель.
Цепь высокого напряжения состоит из вторичной обмотки катушки зажигания, распределителя, проводов высокого напряжения, свечей зажигания.
Образование тока высокого напряжения в катушке зажигания основано на принципе взаимоиндукции. При включенном выключателе зажигателя и сомкнутых контактах прерывателя ток от аккумуляторной батареи или генератора поступает на первичную обмотку катушки зажигания, вследствие чего вокруг нее образуется магнитное поле. При размыкании контактов прерывателя ток в первичной обмотке катушки зажигания и магнитный поток вокруг нее исчезают. Исчезающий магнитный поток пересекает витки вторичной и первичной обмоток катушки зажигания и в каждом из них возникает небольшая э. д. с. Благодаря большому числу витков вторичной обмотки, последовательно соединенных между собой, общее напряжение на ее концах достигает 20 - 24 кВ. От катушки зажигания, через провод высокого напряжения, распределитель и провода ток высокого напряжения поступает к свечам зажигания, в результате чего между электродами свечей возникает искровой разряд, зажигающий рабочую смесь.
Э. д. с. самоиндукции, возникающая в первичной обмотке катушки зажигания, достигает 200 -300 В, что вызывает замедление исчезновения магнитного потока, появление самой искры между контактами прерывателя. Для предотвращения этого явления параллельно контактам прерывателя установлен конденсатор. Катушка зажигания служит для преобразования тока низкого напряжения в ток высокого напряжения (с 12 В 3—24 кВ). Она состоит из следующих основных частей (рис. 24): сердечника, первичной обмотки из 250 - 400 витков толстого изолированного медного провода диаметром 0,8 мм, картонной трубки, вторичной обмотки 25 тыс. витков тонкого провода диаметром 0,1 мм, железного корпуса с магнитопроводами, карболитовой крышки, клемм и добавочного резистора. Вторичная обмотка расположена под первичной и отделена от нее слоем изоляции. Концы первичной обмотки выведены на клеммы карболитовой крышки. Один конец вторичной обмотки соединен е первичной обмоткой, а второй выведен а центральную клемму карболитовой крышки.
Сердечник изготовляют из отдельных изолированных друг от друга полосок трансформаторной стали, чтобы уменьшить образование вихревых токов. Нижний конец сердечника установлен в фарфоровый изолятор. Внутри катушка зажигания заполнена трансформаторным маслом.
Добавочный резистор состоит из спирали, керамических гнезд и двух шин. Сопротивление колеблется от 0,7 до 40 Ом. Один конец резистора
соединен шиной с клеммой ВК, а другой — с ВКБ.
При малой частоте вращения коленчатого вала двигателя контакты прерывателя продолжительное время находятся в замкнутом состоянии, сила тока в первичной цепи возрастает, резистор нагревается, увеличивается сопротивление в цепи, в катушку зажигания поступает ток небольшой силы, этим она предохраняется от перегрева.
Когда частота вращения коленчатого вала двигателя увеличивается, время сомкнутого состояния контактов уменьшается, сила тока в первичной цепи уменьшается, нагрев и сопротивление добавочного резистора уменьшаются, что препятствует понижению напряжения во вторичной цепи.
При включении стартера резистор закорачивается, и пуск двигателя
облегчается.
Прерыватель-распределитель. Образование тока высокого напряжения и распределение его по цилиндрам двигателя для своевременного воспламенения рабочей смеси должно соответствовать порядку работы цилиндров.
Чтобы индуктировать ток высокого напряжения во вторичной обмотке катушки зажигания, необходимо периодически размыкать первичную цепь батарейного зажигания, что и выполняет прерыватель. Для распределения тока высокого напряжения по цилиндрам соответственно порядку работы двигателя служит распределитель. Оба эти прибора объединены в один — прерыватель- распределитель.
Прерыватель установлен на двигателе и приводится в действие от распределительного вала. Основными частями прерывателя является корпус, приводной вал, подвижный диск (на котором размещены изолированный рычажок с контактом и неподвижная стойка с контактом), неподвижный диск, центробежный и вакуумный регуляторы опережения, октан- корректор и кулачок с выступами по числу цилиндров. Кулачок соединен с приводным валиком через центробежный регулятор. Контакты прерывателя наплавлены тугоплавким металлом вольфрамом. Рычажок прерывателя закреплен на диске шарнирно и своим контактом прижимается к неподвижному контакту пружиной. Вращающийся приводной валик кулачками нажимает на текстолитовый выступ рычажка прерывателя и за один оборот разомкнет, а пружина сомкнет контакты столько раз, сколько имеется выступов на кулачке.
Размыкание первичной цепи катушки зажигания вызывает исчезновение магнитного потока, пересекающего не только витки вторичной обмотки, а и первичной, вследствие чего в них индуктируется ток самоиндукции напряжением 200 ... 300 В. Этот ток, замедляя исчезновение тока в пер- приводит к уменьшению э. д. с. во вторичной цепи. Ток самоиндукции также приводит к интенсивному искрению между контактами прерывателя и их разрушению. предотвратить воздействие э.д.с. самоиндукции, применяют конденсатор. Конденсатор включен параллельно контактам прерывателя и в момент появления э. д. с. самоиндукции заряжается, не допуская искрения на контактах. Кроме того, заряженный конденсатор, разряжаясь в обратном направлении, приводит к быстрому исчезновению тока в первичной цепи, а следовательно, и магнитного потока, благодаря чему напряжение во вторичной цепи повышается.
Конденсатор (рис. 26) состоит из лакированной бумаги, на которую нанесен тонкий слой цинка и олова. Эта бумага является обкладкой конденсатора и свернута в рулон. К торцам рулона припаивается по одному гибкому проводнику. Рулон обернут кабельной бумагой и пропитывается маслом. Крепится конденсатор на корпусе снаружи или на подвижном диске прерывателя. Емкость конденсатора 0,17 ... 0,25 мкФ. Конденсаторы из металлизированной бумаги обладают способностью самовосстанавливаться при пробое диэлектрика за счет заполнения отверстия маслом.
Большое влияние на работу батарейного зажигания оказывает зазор между контактами прерывателя. Нормальная работа батарейного зажигания будет при зазоре между контактами прерывателя в пределах 0,35 - 0,45мм. Если зазор будет большим, то время замкнутого состояния контактов уменьшиться и сила тока в первичной обмотке катушки зажигания не успеет возрасти до требуемого значения и, как следствие этого, э. д. с. вторичной цепи не будет достаточной. Кроме того, при большой частоте вращения коленчатого вала будут возникать перебои в работе двигателя.
При малом зазоре происходит сильное искрение между контактами, их
обгорание и, как следствие, перебои на всех режимах работы двигателя.
Зазор между контактами прерывателя регулируют перемещением пластины со стойкой неподвижного контакта и при помощи эксцентрика, отвернув предварительно стопорный винт. После регулировки стопорный винт нужно завернуть. Замеряют зазор при полностью разомкнутых контактах пластинчатым щупом.
Распределитель установлен сверху на корпусе прерывателя и состоит из ротора и крышки. Ротор изготовлен в виде грибка из карболита, сверху в него вмонтирована контактная пластина. Крепится ротор на выступе кулачка. Крышка распределителя изготовлена также из карболита. На наружной ее части по окружности выполнены гнезда по числу цилиндров, в которые вставляются провода, присоединяемые к свечам зажигания. В крышке размещено центральное гнездо для крепления провода высокого напряжения от катушки зажигания. Внутри, против каждого гнезда, расположены боковые контакты, а в центре — угольный контакт с пружиной для соединения центрального гнезда с пластиной ротора.
Крепится крышка на корпусе прерывателя двумя пружинными защелками. Ротор, вращающийся вместе с кулачком, соединяет поочередно центральный контакт с боковыми контактами, замыкая цепь высокого напряжения через свечи тех цилиндров, где в данный момент должно происходить воспламенение рабочей смеси.
Свечи зажигания. Электрический разряд — искра — образуется в цилиндре между электродами свечи зажигания. Свеча (рис. 29) состоит из центрального электрода с изолятором (сердечник свечи) и стального корпуса, в котором он крепится. Корпус имеет нарезную ввернутую часть, которой свеча ввернута в нарезное отверстие головки цилиндров двигателя, в нижней части корпуса имеется один боковой электрод. В верхней части корпус свечи зажигания имеет грани под ключ. Центральный электрод с изолятором завальцован в корпусе свечи. Для уплотнения между кромками корпуса и буртиком изолятора проложены уплотняющие прокладки. На центральном электроде сверху установлен наконечник для крепления провода высокого напряжения
Для обеспечения нормальных условий работы свечи зажигания
необходимо, чтобы температура нижней части изолятора была в пределах 500- 600 0С, при которой сгорает нагар и очищается свеча.
Тепловая характеристика свечи зажигания зависит от длины нижней части изолятора и условий его охлаждения. Чрезмерный нагрев свечи приводит к калильному зажиганию и разрушению изолятора, а переохлаждение — к забрызгиванию электродов свечи маслом и нагару.
Выбирают свечи зажигания для двигателя по их обозначениям, где
указаны диаметр нарезной части, длина нижней части изолятора и материал изолятора. Диаметр нарезной части обозначается буквами М и А, где М соответствует диаметру 18 мм и А—14 мм. Цифрой обозначено калильное число. Длина резьбовой части обозначается буквами Н — 11 мм, Д— 19 мм. Если буквы нет, то длина вверткой части равна 12 мм. Буква «В» обозначает, что выступает нижняя часть изолятора, а «Т» — что герметизация изолятора выполнена терыоцементсм.
На двигателях автомобилей ЗиЛ-130 устанавливают свечи АИ, где буква А обозначает, что диаметр резьбы 14 мм, цифра 11 указывает калильное число, длина вверткой части корпуса — 12 мм. Большое влияние на работу свечи зажигания оказывает зазор между центральным и боковым электродами. Заводы рекомендуют зазоры 0,85 - 1,00 мм. Уменьшение зазора против нормы вызывает обильное нагарообразование на электродах свечи зажигания и перебои в ее работе. При большем зазоре из-за повышения сопротивления ухудшаются условия искрообразования, отчего также будут возникать перебои в работе двигателя. Регулируют зазор подгибанием бокового электрода, а его размер проверяют круглым щупом. Центральный электрод подгибать нельзя, так как разрушается керамическая изоляция и свеча зажигания отказывает в работе.
Выключатель зажигания. Включение и выключение приборов батарейного зажигания и других потребителей электрического тока осуществляется при помощи выключателя зажигания. Он состоит из двух частей; замка с ключом и электрического выключателя. Замок состоит из корпуса, цилиндра, пружины и поводка. В задней части корпуса замка расположен выключатель, состоящий из контактной пластины с тремя выступами и панели с тремя контактными винтами.
Заключение
Двигатели внутреннего сгорания используются практически во всех областях транспорта. Они являются "сердцем" автомобиля, трактора, тепловоза, судна. Современный двигатель внутреннего сгорания представляет собой своеобразный сплав последних достижений науки и техники. На базе этих достижений беспрерывно совершенствуются все узлы и агрегаты двигателя. В результате этого последние образцы автомобильных двигателей выходят на мировой уровень.
Рабочий цикл ― строгая последовательность рабочих процессов (тактов), периодически повторяющихся во всех цилиндрах двигателя внутреннего сгорания. Каждый такт происходит в течение одного хода поршня.
Рабочий цикл двигателя внутреннего сгорания включает в себя следующие такты:
Рабочий цикл начинается с первого такта — впуска горючей смеси в цилиндр двигателя. Как уже было отмечено, в цилиндре сгорает не топливо в чистом виде, а топливно-воздушная смесь.
Для бензинового двигателя оптимальной является горючая смесь, состоящая из 1 части бензина и 15 частей воздуха (то есть 1:15).
Не спешите разделываться с физикой. Физика делает человека не только умнее, но и сильнее. Именно она помогла человеку избавиться от оков первобытного страха и найти общий язык с природой…
Список литературы:
Манзон А. И. 1979 г.
2.Автомобиль категории С: Учебник водителя / Калисский В.С., Нагула Г. Е. 1987г.
3.Отечественные автомобили. М., «Машиностроение», 1977г. /Анохин В. И .
4.Устройство и эксплуатация автомобилей: Учеб.пособие/Полосков В. П., Лещев П. М., 1987г.
5.Интернет ресурс: http://www.rabota-102.ru/poleznie_materiali.php?ps=173 6.Интернет ресурс: http://vilis.com.ua/privat/ustrojstvo_avtomoboilja_dvigatel_7.html
Как нарисовать небо акварелью
Выбери путь
Сказка "Колосок"
Попробуем на вкус солёность моря?
Нас с братом в деревню отправили к деду...