"Инновационная деятельность на базе КФУ"

Дронова Галина Владимировна

 

В течении последних 5 лет я являюсь учителем, выпускающий 11 класс,поэтому меня интересуют вопросы, связанные с подготовкой выпускников к ЕГЭ. Посещаю районные, муниципальные, республиканские семинары, связанные с вопросами подготовки к ЕГЭ, делюсь опытом с коллегами, провожу мастер-классы. 

Последнее время меня заинтересовала тема организации само и взаимоконтроля. Написана проектная работа по этой теме. Актуальность выбора темы данной работы обусловлена противоречием между тем, что большинство учащихся считают проверку знаний исключительной обязанностьюучителя и не привыкают проверять себя, не умеют этого делать, хотяв ходе освоения школьниками учебной деятельности должен быть сформирован внутренний план действий и самоконтроль. Педагог же должен быть компетентен в вопросе самоконтроля и выработать у каждого учащегося потребность в постоянной проверке своей работы.

Скачать:

ВложениеРазмер
Microsoft Office document icon proektnaya_rabota.doc1.17 МБ
Microsoft Office document icon metodika_podgotovki_k_ege_po_zadaniyu_v7.doc100.5 КБ

Предварительный просмотр:


Предварительный просмотр:

 Методика подготовки к ЕГЭ по заданию В7

                             (из опыта работы)

Дронова Г.В.

МБОУ «Гимназия №36», Авиастроительный район, город Казань.

Единый государственный экзамен по математике, привнесенный в российское образовательное пространство, имеет свои сильные и слабые стороны. Чтобы минусы обратить в плюсы, учителю, который готовит школьников к экзамену, в первую очередь, необходимо знание о формате и структуре ЕГЭ, особенностях процедуры его проведения. Эта информация важна в первую очередь для учителя, который учит школьников и готовит их к экзамену.

Что я считаю самым важным при подготовке к ЕГЭ?

Первое - это вычислительные навыки. Очень много заданий не выполняются из первой части из-за вычислений и невнимательности. Пользоваться калькулятором не рекомендую, объясняя его вред. Показываю ребятам некоторые способы быстрого умножения чисел (например на 11,15), возведения в квадрат, применение формул сокращенного умножения для вычислений и др.

Так, после изучения теоремы Виета в 8 классе, приучаю ребят использовать ее при решении приведенных квадратных уравнений, а также отрабатываю навыки решения квадратных уравнений по сумме коэффициентов. Считаю, что в старших классах знание этой теоремы выручает на каждом шагу при решении показательных, логарифмических уравнений и неравенств введением новой переменной. Если хорошо овладеть этими навыками, то можно решать очень быстро.

Второе условие успешной подготовки к ЕГЭ - это обязательное знание правил, формул. Для этого после изучения теоретических вопросов темы, даю на 7-10 минут математический диктант, в котором часть вопросов касается теории и вторая часть - простейшие примеры на ее применение (с самопроверкой). В 11 классе я провожу три больших зачета, которые сдают каждый ученик лично мне. Это зачеты тематические: Тригонометрия, планиметрия, стереометрия. Зачеты принимаю очень строго, считаю, что эти зачеты помогают ребятам свести к минимуму ошибки в первой части заданий по геометрии и успешно решить задание 15,16 из второй части.

Третьим условием успешной подготовки к ЕГЭ является необходимость внести в программу некоторые коррективы. Проблема подготовки к ЕГЭ состоит еще и в том, что практически до конца 3 четверти мы изучаем новые темы, и, так как мы можем до 20% изменять календарно-тематическое планирование, то  я его изменила: все темы по алгебре  в 11 классе прохожу в первом  полугодие, а во втором полугодии 2 часа веду как подготовку  к ЕГЭ, а 3 часа - на изучение геометрии. С середины апреля полностью перехожу на подготовку к ЕГЭ.

Четвертым условием подготовки к ЕГЭ является проведение элективных курсов. Поэтому для проведения занятий разработала программу подготовки к ЕГЭ. Этот элективный курс проходит для желающих, которым нужна вторая часть

Экзамен не должен стать для выпускников испытанием на прочность нервной системы. Чем раньше начнется подготовка к экзамену, тем легче пройдет сдача экзамена.

 Итоговое повторение в 11-м классе провожу «по содержательным блокам». Подготовка носит системный характер.  

 По каждой теме  даю краткий справочник (основные определения, формулы, теоремы и пр.), примеры с решениями, тренировочные упражнения (на базовом и повышенном уровнях) и тесты.

  Тема предваряется необходимой справочной информацией, представленной в максимально сжатой форме. Затем подробно разбирается большое количество примеров (практически на каждый прием, когда-либо встречавшийся в заданиях ЕГЭ в группах В). В этой части присутствуют пример, к которому приведено решение, или несколько аналогичных примеров с небольшими нюансами в решениях.

Затем идут тренировочные упражнения, которые даются в традиционной форме. Повторение темы должно заканчиваться выполнением тематического теста.

Оценивание выполнения теста осуществляю по системе «зачтено - не зачтено». «Зачтено» можно выставлять при правильном выполнении не менее 60% заданий теста. В противном случае выставляется «незачтено». Расчет времени на выполнение теста следует производить из расчета не более трех минут на выполнение одного задания. Смысл такой организации материала — постепенное нарастание сложности, плавный переход от традиционной формы заданий к тестовой, удобство пользования материалом как учениками, так и учителями.

Применяю еще и такую технологию. Чаще всего при повторении геометрии. Например: повторили тему « Расстояние в пространстве», рассмотрели все определения расстояний от точки до прямой, от точки до плоскости, между двумя прямыми, прямой и плоскостью, двумя плоскостями, в тетради записали по каждому случаю все варианты и алгоритмы нахождения возможных расстояний. Далее я разбираю пару задач на нахождение каких-либо расстояний, а на дом прошу решить задачи с сайта «Решу ЕГЭ» Дмитрия Гущина по теме «Расстояния»,  или разобрать их по готовым решениям, а на следующем уроке я провожу проверочную работу по записанным алгоритмам и задачам с сайта, меняя в условии или исходные буквы, или незначительно меняю данные.

Одним из наиболее эффективных методов подготовки к ЕГЭ является метод решения тестовых заданий. Практическое применение тестовых технологий при подготовке к ЕГЭ показало, что учащиеся, знакомые с приемами работы над тестами, по своему уровню подготовки превосходят школьников, готовившихся по обычным учебникам и задачникам, которые, разумеется, исключать нельзя. Для подготовки к ЕГЭ и ГИА нужна тренировка, тренировка и еще раз тренировка. После тематического повторения перехожу на отработку КИМов. Я всегда говорю детям, что решение задач части В вы должны довести  до автоматизма. У меня составлены 25  различных вариантов тестов по заданиям части В. Из 5 часов в неделю один урок я провожу тестирование, Каждому ребенку достается свой вариант теста на каждом уроке такого типа. Вариант списывания отпадает. Каждый сидит отдельно за своей партой. С собой берут только ручку. К следующему уроку я эти тесты проверяю по принципу  «+, или -»- решено - нерешено, и на втором уроке проходит работа над ошибками. Если ученик сам решить не может то или иное задание, то провожу индивидуальную консультацию или прошу помочь более сильных учеников. Так как экзамен имеет временное ограничение, то к концу года ребята должны за 45 минут решать все задания 1 части по максимуму. Тщательно веду мониторинг обученности по заданиям каждого ученика.

 Очень важно правильно сориентировать 11-классников – на каком уровне они будут изучать материал  (на какую отметку они претендуют). Какие и сколько заданий им надо уметь решать на этот уровень.

Для контроля знаний на уроке помимо традиционных контрольно-измерительных материалов мною используются специально составленные мультимедийные презентации, тесты.

          Приведу, как пример, методику подготовки к решению задания 7.

На повторение этой темы я отвожу 2-3 урока,зависит от подготовленности класса.  Во- первых повторяем весь теоретический материал: определения критических, стационарных точек, геометрический и физический смысл производной, уравнение касательной, признаки возрастания и убывания функции, необходимое условие экстремума, условия параллельности двух прямых, перпендикулярности.  Повторяем алгоритмы нахождения промежутков возрастания(убывания) функции, нахождения наибольшего и наименьшего значений функций на заданном отрезке, нахождение точек экстремумов и самих экстремумов. Причем повторение всегда провожу на конкретных примерах различных графиков. После повторения теории мы разбираем задания из открытого банка данных, используя презентацию, которую сделали мне ученики в 11 классе ( показать призентацию). Далее мы совместно с ребятами вырабатываем памятку( алгоритм) для выполнения задания7.

  1. Прочитай внимательно задание. Обрати внимание: график какой функции дан? f (x) или ее производной?
  2. Вспомни теорию,необходимую для ответа на поставленный вопрос. Мысленно проговори это свойство.
  3. Выделите точки или ту часть графика, которые обладают данным свойством.
  4.  Запиши ответ.

Дальше на конкретных графиках , используя памятку, отрабатываем различные задания, причем графики подобраны таким образом, что можно отработать очень тонкие вопросы, где есть точки перегиба, экстремальные точки, в которых нельзя провести горизонтальную касательную.

 Последний урок- урок проверки знаний. Первая часть- проверка теории с помощью математического диктанта, а вторая часть- это лабораторная работа, к которой подготовлен график функции для каждого ученика свой,по которому нужно ответить на одни и те же вопросы.

                             Лабораторно-практическая работа по теме:

«Применение графика производной для исследования свойств функции»

На рисунке изображен график производной функции у = f (x).

  1. Укажите отрезок, на котором определена функция у = f (x).
  2. Укажите критические точки функции у = f (x).
  3. Укажите точку минимума функции у = f (x).
  4. Укажите точку максимума функции у = f (x).
  5. Исследуйте функцию у = f (x) на монотонность. В ответе укажите промежутки, на которых функция возрастает и количество промежутков, на которых функция   убывает.

6.  Укажите наибольшее и наименьшее значение функции на отрезке [-2;1].

7. Укажите количество точек, в которых касательная, проведенная к                    графику  функции  у = f (x),  параллельна прямой  у = 2х-3  или совпадает с ней.

8. Чему равен угловой коэффициент касательной, проведенной к графику функции у = f (x), в точке х=2.

  Далее я меняю условия и выполняем другую лаборатурную работу по этим же графикам.  

На рисунке изображен график  функции у = f (x).

1. Найти область определения функции.

2. Укажите количество целых точек, в которых производная положительная (отрицательная).

3. Укажите количество экстремумов функции.

4. Найдите количество точек, в которых производная f (x) равна нулю.

5. Найдите точки, в которых производная не существует.

5. Найдите количество точек, в которых касательная параллельна к графику функции  у= -5.

   В течении последних шести лет я ежегодно выпускаю 11 классы как учитель предметник, и мне кажется, что моя система подготовки выпускников  к успешной сдаче ЕГЭ даем неплохие результаты. Вот сравнительная таблица результатов ЕГЭ по нашей школе и по РТ.

Средний бал     по РТ

Средний бал по гимназии

ЕГЕ 2010

41,9

57,6

ЕГЭ 2011

45,1

54

ЕГЭ 2012

50,3

55,7

ЕГЭ 2013

56,6

67,2

ЕГЭ 2014

48,4

66,8

ЕГЭ 2015

57,5

ЕГЕ 2016

62