Планирование
Рабочая программа 7 класс алгебра
Пояснительная записка
Рабочая программа составлена в соответствии с рекомендациями Министерства образования РФ, РТ, базисного учебного плана для среднего (полного) общего образования и примерными учебными планами для общеобразовательных учреждений.
Данная рабочая программа ориентирована на учащихся 7 класса и реализуется на основе следующих документов:
1. Программа для общеобразовательных школ, гимназий, лицеев. Математика 5-11 класс. Составитель Т.А.Бурмистрова. Москва «Просвещение». 2010 г.
2. Стандарт среднего (полного) общего образования. (приказ МОиН РФ от 05.03.2004г. № 1089),
3. Учебный план МАОУ « Сотниковская СОШ» Иволгинского района 2015/2016 учебный год.
4. Федеральный перечень учебников, рекомендованных (допущенных) Министерством образования и науки Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях, на 2012/2013 учебный год: Приказ Министерства образования и науки Российской Федерации № 2080 от 09.12.2008 «Об утверждении федеральных перечней учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях»
Согласно Федеральному базисному учебному плану для общеобразовательных учреждений Российской Федерации для обязательного изучения математики в 7 классе (общеобразовательных) отводится 175 часов из расчета 5 часов в неделю. При этом предполагается изучение курсов алгебры и геометрии параллельно.
Ввиду того, что в последние годы в заданиях ЕГЭ увеличивается количество геометрических задач, геометрия изучается и в I четверти в количестве 2 часа в неделю.
Таким образом, фактически отводится 175часов из расчёта 5 часов в неделю (3 часа в неделю на изучение алгебры , 2 часа в неделю на изучение геометрии).
Структура программы соответствует структуре учебников:
1. Алгебра: учебник для 7 класса / Ю.Н. Макарычев, Н.Г.Миндюк, К.И.Нешков, С.Б.Суворова; под редакцией С.А. Теляковского. – М.: Просвещение, 2011.
2. Макарычев Ю.Н. Алгебра: элементы статистики и теории вероятностей: учебное пособие для 7-9 классов. / Ю.Н. Макарычев, Н.Г.Миндюк. – М.: Просвещение, 2005-2008
- Геометрия, 7 – 9: учебник для общеобразовательных учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2009.
В ходе освоения содержания курса учащиеся получают возможность:
· развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
· овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
· изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
· развить изобразительные умения, освоить основные факты и методы планиметрии;
· получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
· развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
· сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
Изучение математики на ступени основного общего образования направлено на достижение следующих целей:
· овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
· интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
· формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
· воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.
Основные развивающие и воспитательные цели
Развитие:
Ø Ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
Ø Математической речи;
Ø Сенсорной сферы; двигательной моторики;
Ø Внимания; памяти;
Ø Навыков само и взаимопроверки.
Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов.
Воспитание:
Ø Культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;
Ø Волевых качеств;
Ø Коммуникабельности;
Ø Ответственности.
Место предмета в федеральном базисном учебном плане
Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени основного общего образования отводится не менее 875 ч из расчета 5 ч в неделю с V по IX класс. Алгебра изучается в 7 классе 3 часа в неделю, всего 105 ч; геометрия 2 часа в неделю, всего 70 часов.
Общеучебные умения, навыки и способы деятельности.
В ходе преподавания математики в основной школе, работы над формированием у учащихся перечисленных в программе знаний и умений, следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
Результаты обучения
Результаты обучения представлены в Требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достигать все учащиеся, оканчивающие основную школу, и достижение которых является обязательным условием положительной аттестации ученика за курс основной школы. Эти требования структурированы по трем компонентам: «знать/понимать», «уметь», «использовать приобретенные знания и умения в практической деятельности и повседневной жизни». При этом последние два компонента представлены отдельно по каждому из разделов содержания.
ТРЕБОВАНИЯ К УРОВНЮ
ПОДГОТОВКИ УЧЕНИКОВ 7 КЛАССА
В результате изучения математики ученик должен
знать/понимать
· существо понятия математического доказательства; примеры доказательств;
· существо понятия алгоритма; примеры алгоритмов;
· как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
· как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
· как потребности практики привели математическую науку к необходимости расширения понятия числа;
· вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
· каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
· смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
АЛГЕБРА
уметь
· составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
· выполнять основные действия со степенями с натуральными показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
· решать линейные уравнения, системы двух линейных уравнений;
· решать линейные неравенства с одной переменной и их системы;
· решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
· изображать числа точками на координатной прямой;
· определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
· находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
· определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
· описывать свойства изученных функций, строить их графики;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
· выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
· моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
· описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
· интерпретации графиков реальных зависимостей между величинами;
СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА
1. Выражения. (16 ч)
Числовые выражения и выражения с переменными. Простейшие преобразования выражений. Уравнение с одним неизвестным и его корень, линейное уравнение. Решение задач методом уравнений.
Цель – систематизировать и обобщить сведения о преобразовании выражений и решении уравнений с одним неизвестным, полученные учащимися в курсе математики 5,6 классов.
Знать какие числа являются целыми, дробными, рациональными, положительными, отрицательными и др.; свойства действий над числами; знать и понимать термины «числовое выражение», «выражение с переменными», «значение выражения», тождество, «тождественные преобразования».
Уметь осуществлять в буквенных выражениях числовые подстановки и выполнять соответствующие вычисления; сравнивать значения буквенных выражений при заданных значениях входящих в них переменных; применять свойства действий над числами при нахождении значений числовых выражений.
2. Функции (14 ч)
Функция, область определения функции, Способы задания функции. График функции. Функция y=kx+b и её график. Функция y=kx и её график.
Цель – познакомить учащихся с основными функциональными понятиями и с графиками функций y=kx+b, y=kx.
Знать определения функции, области определения функции, области значений, что такое аргумент, какая переменная называется зависимой, какая независимой; понимать, что функция – это математическая модель, позволяющая описывать и изучать разнообразные зависимости между реальными величинами, что конкретные типы функций (прямая и обратная пропорциональности, линейная) описывают большое разнообразие реальных зависимостей.
Уметь правильно употреблять функциональную терминологию (значение функции, аргумент, график функции, область определение, область значений), понимать ее в тексте, в речи учителя, в формулировке задач; находить значения функций, заданных формулой, таблицей, графиком; решать обратную задачу; строить графики линейной функции, прямой и обратной пропорциональности; интерпретировать в несложных случаях графики реальных зависимостей между величинами, отвечая на поставленные вопросы
3. Степень с натуральным показателем (15 ч)
Степень с натуральным показателем и её свойства. Одночлен.
Цель – выработать умение выполнять действия над степенями с натуральными показателями.
Знать определение степени, одночлена, многочлена; свойства степени с натуральным показателем.
Уметь выполнять действия со степенями с натуральным показателем; преобразовывать выражения, содержащие степени с натуральным показателем; приводить одночлен к стандартному виду.
4. Многочлены .Формулы сокращённого умножения (30 ч)
Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочлена на множители.Формулы . Применение формул сокращённого умножения к разложению на множители.
Цель – выработать умение выполнять сложение, вычитание, умножение многочленов и разложение многочленов на множители, выработать умение применять в несложных случаях формулы сокращённого умножения для преобразования целых выражений в многочлены и для разложения многочленов на множители.
Знать определение многочлена, понимать формулировку заданий: «упростить выражение», «разложить на множители».
Знать формулы сокращенного умножения: квадратов суммы и разности двух выражений; различные способы разложения многочленов на множители.
Уметь приводить многочлен к стандартному виду, выполнять действия с одночленом и многочленом; выполнять разложение многочлена вынесением общего множителя за скобки; умножать многочлен на многочлен, раскладывать многочлен на множители способом группировки, доказывать тождества, читать формулы сокращенного умножения, выполнять преобразование выражений применением формул сокращенного умножения: квадрата суммы и разности двух выражение, умножения разности двух выражений на их сумму; выполнять разложение разности квадратов двух выражений на множители; применять различные способы разложения многочленов на множители; преобразовывать целые выражения; применять преобразование целых выражений при решении задач.
5. Системы линейных уравнений (15 ч)
Система уравнений с двумя переменными. Решение систем двух линейных уравнений с двумя переменными. Решение задач методом составления систем уравнений..
Цель – познакомить учащихся со способами решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и прменять их при решении текстовых задач.
Знать, что такое линейное уравнение с двумя переменными, система уравнений, знать различные способы решения систем уравнений с двумя переменными: способ подстановки, способ сложения; понимать, что уравнение – это математический аппарат решения разнообразных задач из математики, смежных областей знаний, практики.
Уметь правильно употреблять термины: «уравнение с двумя переменными», «система»; понимать их в тексте, в речи учителя, понимать формулировку задачи «решить систему уравнений с двумя переменными»; строить некоторые графики уравнения с двумя переменными; решать системы уравнений с двумя переменными различными способами.
6. Элементы статистики и теории вероятностей(4ч)
Цель – познакомить с основными статистическими характеристиками: мода, размах числового ряда, среднее арифметическое, среднее геометрическое.
7. Повторение. Решение задач (11 ч)
Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 7 класса).
Самостоятельные работы
Ср.1 Числовые выражения и выражения с переменными
Ср.2 Преобразования выражений
Ср.3 Решение линейных уравнений
Ср.4 Решение задач с помощью уравнений
Ср.5 Вычисление значений функции по формуле
Ср.6 Линейная функция и ее график
Ср.7 Степень с натуральным показателем
Ср.8 Умножение одночленов
Ср.9 Сложение и вычитание многочленов
Ср.10 Умножение одночлена на многочлен
Ср.11 Умножение многочлена на многочлен
Ср.12 Разложение многочлена на множители
Ср.13 Квадрат суммы и квадрат разности
Ср.14 Разность квадратов
Ср.15 Применение разных способов разложения на множители
Ср.16 Линейное уравнение с двумя неизвестными
Ср.17 Системы линейных уравнений с двумя неизвестными
Ср.18 Решение задач с помощью составления системы уравнений
Контрольные работы
Входная проверочная работа
Контрольная работа № 1 «Преобразование выражений»
Контрольная работа № 2 «Линейное уравнение»
Контрольная работа № 3 «Линейная функция»
Контрольная работа № 4 «Системы линейных уравнений»
Контрольная работа № 6 «Степень с натуральным показателем»
Контрольная работа № 5 «Действия с одночленами и многочленами»
Контрольная работа № 7 «Действия с многочленами»
Контрольная работа № 8 «Квадрат суммы и разности двух выражений»
Контрольная работа № 9 «Преобразование выражений»
Итоговая контрольная работа № 10
Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
ОСНОВНОЕ СОДЕРЖАНИЕ
Геометрия
(70ч)
Начальные понятия и теоремы геометрии (11 часов)
Возникновение геометрии из практики. Геометрические фигуры и тела. Равенство в
геометрии. Точка, прямая и плоскость. Понятие о геометрическом месте точек.
Расстояние. Отрезок, луч. Ломаная. Угол. Прямой угол. Острые и тупые углы.
Вертикальные и смежные углы. Биссектриса угла и ее свойства.
Треугольники (17 часов).
Остроугольные и тупоугольные треугольники. Высота, медиана, биссектриса.
Равнобедренные и равносторонние треугольники; свойства и признаки
равнобедренного треугольника. Признаки равенства треугольников. Окружность и круг.
Параллельные прямые (17 часов)
Параллельные и пересекающиеся прямые. Перпендикулярность прямых. Теоремы параллельности и перпендикулярности прямых. Свойство серединного перпендикуляра к отрезку. Перпендикуляр и наклонная к прямой.
Соотношения между сторонами и углами треугольника(18 часов)
Теорема о сумме углов треугольника. Соотношения между сторонами и углами треугольника. Прямоугольный треугольник. Элементарные задачи на построение.
Повторение (11 часов)
ТРЕБОВАНИЯ К УРОВНЮ
ПОДГОТОВКИ УЧАЩИХСЯ 7 КЛАССА
уметь
· пользоваться языком геометрии для описания предметов окружающего мира;
· распознавать геометрические фигуры прямая, отрезок, луч, угол, треугольник, различать их взаимное расположение;
· изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
· вычислять значения геометрических величин (длин, углов), в том числе находить стороны, углы треугольников;
· решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический аппарат;
· проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
· описания реальных ситуаций на языке геометрии;
· решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
· построений геометрическими инструментами (линейка, угольник, циркуль, транспортир);
· выполнять задачи из разделов курса VII класса: признаки равенства треугольников; соотношения между сторонами и углами треугольника; признаки и свойства параллельных прямых.
· Знать понятия: теорема, свойство, признак.
Учебно-методический комплект
1) Научно-теоретический и методический журнал «Математика в школе»
2) Еженедельное учебно-методическое приложение к газете «Первое сентября» Математика
3) Дидактические материалы по алгебре для 7 класса. /Л.И.Звавич, Л.В.Кузнецова, С.Б.Суворова. Москва «Просвещение» 2005/
4) Контрольные и проверочные работы по геометрии 7-11 классы /Москва. Издательский дом «Дрофа»