Новости РМО учителей математики Сакмарского района

Машенкова Галина Владимировна

Уважаемые коллеги на странице Вы можете познакомиться с материалами работы РМО

Скачать:


Предварительный просмотр:

Методические рекомендации

по подготовке обучающихся к олимпиадам и конкурсам  по математике

1. Роль внеклассной работы в подготовке учащихся, проявляющих к изучению математики повышенный интерес и способности

Внеклассная работа по математике формирует и развивает способности и личность ребёнка. Управлять этим процессом - значит не только развивать и совершенствовать заложенное в человеке природой, но формировать у него потребность в постоянном саморазвитии и самореализации, так как каждый человек воспитывает себя прежде всего сам, добытое лично - добыто на всю жизнь.

Нередко участие во внеклассной работе по математике может явиться первым этапом углубленного изучения математики и привести к выбору факультатива по математике, к поступлению в математическую школу, к самостоятельному изучению заинтересовавшего материала и т.п.

2. Общая характеристика математических конкурсов, олимпиад

. Умение владеть знаниями, применять их на практике, интерпретировать и выражать своё отношение к ним - вот ключевая цель педагога в работе с учениками. Знаю→могу применить→владею способами применения (знаю как применить)→имею своё отношение – эта логическая цепочка определяет развитие детей.

Математические конкурсы, олимпиады школьников являются одной из важных форм внеклассной работы по предмету. Они не только помогают выявить одаренных, способных учащихся, но и стимулируют углубленное изучение предмета, служат развитию интереса к математической науке. Кроме того, конкурсы, олимпиады способствуют пропаганде научных знаний, укреплению связи общеобразовательных учреждений, созданию необходимых условий для поддержки одаренных, способных детей.

Конкурс, олимпиада – это, прежде всего интеллектуальные соревнования способных учащихся.

У учащихся имеется большое желание проверить свои силы, способности, умение решать нестандартные задачи. Их привлекает возможность добровольного участия в соревновании, необычность всей обстановки на конкурсе, олимпиаде.

Олимпиады дают уникальный шанс добиться признания не только в семье и в учительской среде, но и у одноклассников. Последнее особенно важно.

Для тех школьников, которые впервые сталкиваются с более интересными, чем задания из учебника, задачами, участие в олимпиаде, конкурсе - первый шаг к научной деятельности. Особенно это важно для школьников, живущих вдали от крупных городов. Следовательно, математические конкурсы, олимпиады содействуют научно - техническому прогрессу.

3. Методические требования к подготовке учащихся к математическим конкурсам, олимпиадам

Для целенаправленной подготовки учащихся к конкурсам, олимпиадам необходимо знакомить их с типичными приемами рассуждений и расчетов, которые применяются при выполнении многих усложненных, в том числе и олимпиадных, конкурсных заданий.

Подготовка к конкурсам, олимпиадам делится на системную и интенсивную.

Системная работа проводится через кружки, факультативные занятия, обучение в заочных школах, через индивидуальные задания с учащимся и т.п.

Интенсивная подготовка проводится непосредственно перед конкурсами, олимпиадами.

Таким образом, учащиеся, которые постоянно участвуют в конкурсах, олимпиадах, проходят системную, непрерывную подготовку. При интенсивной подготовке к конкурсам, олимпиадам важную роль играет правильная расстановка сил и учет возможностей каждого ученика.

В работе со способными детьми, с детьми, принимающими участие в конкурсах, олимпиадах, можно выделить несколько этапов:

1 этап: Прежде всего, необходимо просто отыскать таких детей, разглядеть среди множества учеников несколько «звездочек», восприимчивых к новой информации, не боящихся трудностей, умеющих находить нетривиальные способы решения поставленных перед ними задач.

2 этап: Разработка личностно - ориентированного подхода к обучению одаренных, способных детей.

3 этап: Развитие в способных учащихся психологию лидера, осторожно чтобы это не привело к появлению «звездной болезни». Они должны не стесняться показывать свои способности, не бояться выражать свои мысли, хотя бы потому, что они нестандартны и не имеют аналогов.

Для успешного раскрытия и развития способностей учащихся применяют технологии:

1) личностно-ориентированного обучения;

2) информационно – коммуникационные технологии;

3) технологию дифференцированного обучения;

4) технологию исследовательской деятельности;

5) технологию групповой творческой деятельности;

6) технологию модульного обучения;

7) проблемно – поисковая технология (проблемное обучение).

Математический кружок - одна из наиболее действенных и эффективных форм по подготовке учащихся к участию в конкурсах, олимпиадах.

Также основным видом подготовки учащихся к участию в предметных соревнованиях являются факультативные занятия по математике. Вызывая интерес учащихся к предмету, факультативы способствуют развитию математического кругозора, творческих способностей учащихся. Факультативные занятия по математике ведутся в школах с 5 класса.

Исследовательская деятельность помогает развить у школьников следующие ключевые компетентности:

- автономизационную - быть способным к саморазвитию, самоопределению, самообразованию;

- коммуникативную - умение вступить в общение;

- информационную - владеть информационными технологиями, работать со всеми видами информации;

- продуктивную – уметь работать, быть способным создавать собственный продукт.

Исследовательская деятельность, как никакая другая, позволяет одаренным, способным учащимся реализовать свои возможности, продемонстрировать весь спектр своих способностей, раскрыть таланты, получить удовольствие от проделанной работы.

Проект - это специально организованный учителем и самостоятельно выполняемый учащимися комплекс действий, где они могут быть самостоятельными при принятии решения и ответственными за свой выбор, результат труда, создание творческого продукта.

Проблемное обучение - это тип развивающего обучения. Основополагающее понятие проблемного обучения - проблемная ситуация. Это такая ситуация, при которой учащемуся необходимо решить какие-то трудные для себя задачи, но ему не хватает данных и он должен сам их искать.

Каждое занятие должно содержать проблемные вопросы или задания. Знания, добытые собственным трудом намного прочнее и ценнее, чем знания преподнесенные учителем в готовом виде.

Индивидуальная и групповая работа с учащимися по подготовке к математическим конкурсам, олимпиадам обычно начинается с участия в школьном конкурсе, целями которого являются:

  • расширение кругозора учащихся;
  • развитие интереса учащихся к изучению математики;
  • выявление учащихся, проявивших себя по математике, для участия их в районных, краевых и т.д. конкурсах, олимпиадах и для организации индивидуальной работы с ними.

Если школьные конкурс, олимпиада подразумевают участие только учащихся, способных, одаренных по предмету, то естественно им необходима подготовка к этому туру, желательно самостоятельная, учитель со своей стороны может предоставить вспомогательную литературу и сборники задач для самостоятельного изучения. На данном этапе очень важно проверить собственные возможности и потенциал конкретного учащегося, а не заниматься с ним разбором нестандартных задач.

Возникает вопрос: какие же индивидуальные особенности личности учащегося следует учитывать в первую очередь?

  1. Уровень умственного развития школьника. Это понятие включает в себя как предпосылки к учению (обучаемость), так и приобретенные знания, умения и навыки (обученность). Обучаемость, или способность к учению, представляет собой понятие, характеризующее умственные способности учащегося, то есть способность достигать в более короткий срок более высокого уровня усвоения.
  2. Личные черты характера (волевые качества), которые непосредственно отражаются на развитии ребенка (трудолюбие, отношение к учению, эмоциональные и волевые качества, самостоятельность, инициативность и пр.). Все эти особенности (и уровень развития, и черты характера) сказываются на школьных успехах.
  3. Типологические особенности - динамическая сторона психической жизни (такие характеристики, как быстрота (акселерация, ретардация), темп, работоспособность, сосредоточенность, переключаемость, отвлекаемость внимания, скорость восприятия, запоминания и т.д.)
  4. Возрастные закономерности психологического развития.

Например, в интересующем нас среднем школьном возрасте отмечается повышенная активность, неутомимость в приложении сил, разнообразие увлечений, склонность к смене видов деятельности.

  1. Состояние здоровья ребенка.

Болезни, в зависимости от их характера, оказывают на учащегося временное или постоянное отрицательное воздействие.

Поскольку задача учителя - не усложнять, а облегчать учебную деятельность детей, знание природных особенностей своих учеников и умение учитывать их в педагогической деятельности и есть основа индивидуализации обучения.

Дистанционные олимпиады и конкурсы проводятся с целью:

- подготовки школьников к участию в районных, краевых и Всероссийских предметных олимпиадах, конкурсах

- стимулирования самостоятельной исследовательской деятельности учащихся в рамках предметных, экспериментальных заданий,

- привлечения внимания школьников к углубленному изучению предметов,

- активизацию внеклассной и внешкольной работы по предмету,

- предоставление участникам возможности соревноваться в масштабе,

- использования в учебной сфере современных информационных технологий.

Особо стоит отметить, что включиться в участие в такие конкурсы, олимпиады может любой ученик, не зависимо от его успеваемости по предмету. Такие мероприятия позволяют практически осуществлять пропаганду научных знаний, развивать у школьников творческие способности и интерес к научной деятельности, а так же развивать информационную компетентность учащихся и выявить наиболее способных учащихся для дальнейшей их поддержки и реализации индивидуальной образовательной траектории.

4. Организационные формы и методы подготовки к участию в конкурсах, олимпиадах.

Что необходимо школьнику для успешного участия в интеллектуальном состязании?

Учитывая особенности математики как естественной науки, можно выделить три составляющих такого успеха:

  • развитый математический кругозор;
  • умение решать нестандартные задачи, владение необходимым для этого математическим аппаратом;
  • практические умения и навыки, знание основных приемов, способов решения математических задач.

Эти ключевые моменты и определяют основные направления подготовки школьника.

Немаловажным моментом подготовки учащихся к олимпиадам по математике является формирование умения определять уровень сложности задачи, для распределения времени при выполнении заданий на самом конкурсе. Учителю математики, занимающемуся подготовкой учащихся к олимпиадам, также необходимо учитывать, что такая субъективная характеристика как трудность задачи, прежде всего, зависит от наличия практики в решении подобного рода задач.

При подготовке необходимо обращать особое внимание на отработку основных направлений и разделов таких как:

  • Ребусы, криптограммы.
  • Текстовые задачи.
  • Теория чисел.
  • Планиметрия.
  • Стереометрия.
  • Уравнения, неравенства и их системы.
  • Доказательства числовых неравенств.
  • Задачи на взвешивание.
  • Логические задачи.
  • Комбинаторные задачи.
  • Построение графика сложной функции.
  • Тригонометрические преобразования.

Из каждого раздела не стоит рассматривать случайную выборку задач, нужно выделить основные темы, методы, способы.

Помимо традиционной формы постановки математической задачи необходимо знакомить учащихся с вариантами различных конкурсов, олимпиад в тестовой форме, обращая внимание на их специфику: в некоторых заданиях все-таки можно оттолкнуться от предложенных вариантов ответов и выстроить собственное решение.

Несмотря на то, что основной формой подготовки школьников к конкурсам, олимпиадам является индивидуальная работа, наличие творческой группы имеет большое значение. Она позволяет реализовать взаимопомощь, передачу опыта участия в конкурсах, психологическую подготовку новых участников. Наличие группы школьников, увлеченных общим делом, служит своеобразным центром кристаллизации, привлекающих новых участников. Это позволяет также уменьшить нагрузку учителя, так как часть работы по подготовке младших могут взять на себя старшие, и, обучая других, они будут совершенствовать и свои знания. Наконец, в такой группе будет работать принцип "соленого огурца" (В.Ф. Шаталов): постоянно находясь в атмосфере решения проблем, методов решения задач, обсуждения, любой школьник будет даже неосознанно впитывать новые знания, умения, психологические установки.

При непосредственной подготовке учащихся к математическим конкурсам и олимпиадам необходимо акцентировать внимание учащихся на следующих моментах:

  • в качестве одной из задач конкурса любого уровня может быть задача, в условии которой фигурирует год проведения конкурса, олимпиады;
  • как правило, в числе конкурсных задач отсутствуют задачи с длительными выкладками, на использование трудно запоминающихся формул, на использование справочных таблиц, однако конкурсные задачи требуют нестандартного мышления и оригинального подхода;
  • при оформлении конкурсной задачи необходимо помнить про тип задачи, если задачу требуется решить, то достаточно четкости в этапах решения с кратким обоснованием, а если это задача на доказательство, то необходимо доказывать утверждения с полным обоснованием, иначе неминуема частичная или даже полная потеря баллов;
  • если в условии требуется указать все возможные способы решения задачи, то от полноты количества указанных способов зависит и количество полученных баллов;
  • если в условии задачи фигурирует вопрос «Можно ли...?», то для того чтобы доказать, что «можно» достаточно привести всего один положительный пример, а для того чтобы ответить, что «нельзя», необходимо рассмотреть все возможные случаи, обобщая их в стройное доказательство;
  • необходимо привыкнуть к самостоятельному анализу условия задачи, уметь самостоятельно разбираться во всех своих сомнениях и выполнять задания согласно тому, как ты понял условие, не задавая бесконечных вопросов ассистентам очных конкурсов, которые по положению конкурса, олимпиады могут отвечать только на организационные вопросы, не касаясь содержания варианта;
  • всегда помнить, что задания составляются компетентными специалистами, и «некорректных формулировок условий задач», как правило, в конкурсных вариантах не встречается, а непонятные и непривычные формулировки как раз и характеризуются категорией нестандартности задачи;
  • необходимо изучить задачу на предмет применения наиболее рационального метода, ускоряющего решение для экономии времени на конкурсе (например, функциональный метод решения уравнений и неравенств).

Совершенствование системы подготовки учащихся к конкурсам, олимпиадам по математике может быть осуществлено по трем основным направлениям:

  • систематическое проведение занятий  во внеурочное время при активном привлечении учащихся к ним и доступности обучения;
  • регулярное проведение школьных конкурсов и   олимпиад на основе мотивированного содержания и разнообразных форм организации;
  • сочетая  в процессе подготовки к олимпиаде индивидуальную работу и работу в разновозрастных группах (начиная с 5 класса) предоставлять учащимся возможность соревноваться.

5. Методические рекомендации учителю для подготовки учащихся  классов к конкурсам, олимпиадам по математике

  • необходимо усилить теоретическую подготовку школьников по всем разделам геометрии;
  • при подготовке уделять особое внимание геометрическим нестандартным задачам, векторному методу, методу доказательства от противного и смешанным задачам (например, с комбинаторикой и теорией чисел);
  • усилить подготовку учащихся по внепрограммному материалу:
  • каждому учителю, прежде чем готовить учащегося к конкурсу, олимпиаде по математике, выработать педагогическую систему подготовки;
  • готовить учащихся методом изменения условий типовых задач;
  • развивать логическое мышление, алгоритмическую культуру, пространственное воображение и творческие способности учащихся;
  • на уроках и во внеурочное время прививать учащимся исследовательские навыки;
  • использовать возможности кружковой работы, факультативных занятий по математике для подготовки к решению конкурсных, олимпиадных задач;
  • на занятиях кружков разбираются подготовительные задания к предстоящему конкурсу, олимпиаде и задания, предложенные на прошлых конкурсах, олимпиадах;
  • отбор задач необходимо начать заблаговременно;
  • обычно это задачи, требующие для своего решения проявления смекалки, самостоятельной мысли, хорошего пространственного воображения, известных навыков к логическому мышлению, твердого, неформального знания основных понятий и методов школьного курса. 
  1. Агаханов Н.Х, Подлипский О.К. Математические олимпиады Московской области. Изд. 2-е, испр. и доп. - М.: Физмат книга, 2006.
  2. Васильев Н.Б., Савин А.П., Егоров А.А. Избранные олимпиадные задачи. Математика.- М.: Бюро Квантум, 2007.
  3. Горбачев Н.В. Сборник олимпиадных задач по математике. - М.: МЦНМО, 2005
  4. Григорьева Г.И. Задания для подготовки к олимпиадам.10-11 классы. Волгоград: "Учитель", 2005.
  5. Ковалева С.П. Олимпиадные задания по математике. - Волгоград: "Учитель", 2007.
  6. Перельман Я.И. Занимательная алгебра. Занимательная геометрия. Ростов на Дону: ЗАО "Книга", 2005.
  7. Перельман Я.И. Занимательная арифметика. -М.: АСТ, 2007.
  8. Маркова И.С. Новые олимпиады по математике. - Ростов на Дону: "Феникс", 2005.
  9. Шарыгин И.Ф., Шевкин А.В. Задачи на смекалку. Учебное пособие для 5-6 классов общеобразовательных учреждений. 8-е изд.-М.: Просвещение, 2006.
  10. Шеховцов В.А. Решение олимпиадных задач повышенной сложности.
  11. Волгоград "Учитель", 2009.
  12. Фарков А.В. Как готовить учащихся к математическим олимпиадам. М.: "Чистые пруды", 2006.
  13. Фарков А.В. Математические олимпиады в школе. 5-11 классы.- 8-е изд., испр. и доп.- М.: Айрис - пресс, 2009. .
  14.  Методика преподавания математики в средней школе: Общая методика / Ю.М. Колягин, Г.Л. Луканкин, В.А. Оганесян, В.Я. Санницкий. - М.: Просвещение, 1980. - 367с.
  15. Епишева О.Б. Общая методика преподавания математики в средней школе / Тобольск, Изд-во ТГПИ им. Д.И. Менделеева, 1997
  16. Бабанский Ю.К. Методы обучения в современной общеобразовательной школе. - М.: Просвещение, 1985
  17. Битуова Д.Р. Одаренные дети: проблемы и перспективы. // Исследовательская деятельность школьников. - №3. – 2005. - 157с.
  18.  Унт И.Э. Индивидуализация и дифференциация обучения. - М.: Педагогика, 1990
  19.  Селевко Г.К. Современные общеобразовательные технологии: Учебное пособие. - М.: Народное образование, 1998
  20. Волкова М.Г. Развитие способностей у детей - основа жизненного успеха. - М.: НИИВШ, 1989. - 119с.
  21.  Гусев В. А., Орлов А.И., Розенталь А.Л. Внеклассная работа по математике в 6-8 классах: Книга для учителя. - М.: Просвещение, 1984. - 286с.

Интернет ресурсы.

  1. http://www.mat.1september.ru?- Газета "Математика" Издательского дома "Первое сентября".
  2. http://www.math.ru?- Math.ru: Математика и образование.
  3. http://www.allmath.ru?- Allmath.ru - вся математика в одном месте.
  4. http://www.math-on-line.- Занимательная математика - школьникам (олимпиады, игры, конкурсы по математике).
  5. http://www.zaba.ru?- Математические олимпиады и олимпиадные задачи.
  6. http://mihailovoschool. -Математические термины в ребусах.
  7. http://www.shevkin.ru/?action=Page&ID=384
  8.  http://olympiads.mccme.ru/vmo
  9.  https://olimpiada.ru/activities