Рабочая программа по физике разработана на основе федерального компонента государственного стандарта основного общего образования.
Программа разработана на основе Примерной программы основного общего образования по физике (www.mon.gov.ru, 2005 год) и в соответсвии с программой для общеобразовательных учереждений по физике и на основе авторской программы Г.Я. Мякишева по физике ("Программа. Планирование учебного материала. Физика 10-11/ Н.Н. Тулькибаева, А.Э.Пушкарев. - М.: Просвещение, 2012); календарно-тематического планирования (МИОО. Преподавание физики в 2014-2015 уч.году, методическое пособие. Сайт ОМЦ ВОУО. Методическая помощь. Физика).
Скачать:
Вложение | Размер |
---|---|
rabochaya_programma_10-11_2016.doc | 257.5 КБ |
Предварительный просмотр:
Муниципальное бюджетное общеобразовательное учреждение Бутурлиновская средняя общеобразовательная школа Бутурлиновского муниципального района Воронежской области 397505, Воронежская обл., г.Бутурлиновка, ул. Дорожная, 71 тел.:(47361)2-83-30, 2-83-31,
эл. адрес: but-school@mail.ru
СОГЛАСОВАНО Протокол заседания МО учителей от _____ 201_ года № 1 ___________ _________ подпись руководителя МО Ф.И.О. | СОГЛАСОВАНО Заместитель директора по УВР ______________________ подпись Ф.И.О. __________ 201_ года | УТВЕРЖДЕНО Приказом директора школы __________ Штельцер И.Е. №______
от _________ 201__г . |
РАБОЧАЯ ПРОГРАММА
По ____________физике_________________________________________________
(указать учебный предмет, курс)
Уровень образования (класс) _среднее(полное) общее образование 10Б, 10В, 10Г, 11В, 11Г, 11Д____
(начальное общее, основное общее образование с указанием классов)
Количество часов ___138______
Учитель ____Абрамова Т.И._______________________________________
Программа разработана на основе авторской программы Г.Я. Мякишева по физике («Программа. Планирование учебного материала. Физика 10-11/ Н.Н. Тулькибаева, А.Э. Пушкарев. – М.: Просвещение, 2012); календарно-тематического планирования (МИОО. Преподавание физики в 2014-2015 уч.году, методическое пособие. Сайт ОМЦ ВОУО. Методическая помощь. Физика).
(указать примерную или авторскую программу/программы, издательство, год издания при наличии)
2015-2016 учебный год
Рабочая программа по физике ориентированная на учебники Мякишева Г.Я., Буховцева Б.Б., Сотского Н.Н. «Физика 10» и «Физика 11»
(136 часов. Из них 10 класс 70 часов – 2 часа в неделю и 11 класс 68 часов – 2 часа в неделю)
Пояснительная записка
Значение физики в школьном образовании определяется ролью физической науки в жизни современного общества, ее влиянием на темпы развития научно-технического прогресса. Обучение физике вносит вклад в политехническую подготовку путем ознакомления учащихся с главными направлениями научно-технического прогресса, физическими основами работы приборов, технических устройств, технологических установок.
В задачи обучения физике входит:
— развитие мышления учащихся, формирование у них умений самостоятельно приобретать и применять знания, наблюдать и объяснять физические явления;
— овладение школьными знаниями об экспериментальных фактах, понятиях, законах, теориях, методах физической науки; о современной научной картине мира; о широких возможностях применения физических законов в технике и технологии;
— усвоение школьниками идей единства строения материи и неисчерпаемости процесса ее познания, понимание роли практики в познании, диалектического, характера физических явлений и законов;
— формирование познавательного интереса к физике и технике, развитие творческих способностей, осознанных мотивов учения; подготовка к продолжению образования и сознательному выбору профессии.
При изучении физических теорий, мировоззренческой интерпретации законов формируются знания учащихся о современной научной картине мира. Воспитанию учащихся служат сведения о перспективах развития физики и техники, о роли физики в ускорении научно-технического прогресса.
Данная рабочая программа, тематического и поурочного планирования изучения физики в 10 -11 общеобразовательных классах составлена на основе программы Г.Я. Мякишева для общеобразовательных учреждений. Изучение учебного материала предполагает использование учебника Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. «Физика-10», Мякишев Г.Я., Буховцев Б.Б. «Физика 11».
Изучение физики связано с изучением математики, химии, биологии.
Знания материала по физике атомного ядра формируются с использованием знаний о периодической системе элементов Д. И. Менделеева, изотопах и составе атомных ядер (химия); о мутационном воздействии ионизирующей радиации (биология).
Базовый уровень изучения физики ориентирован на формирование общей культуры и в большей степени связан с мировоззренческими, воспитательными и развивающими задачами общего образования, задачами социализации.
Рабочая программа и поурочное планирование включает в себя основные вопросы курса физики 10 - 11 классов, предусмотренных соответствующими разделами Государственного образовательного стандарта по физике.
Основной материал включен в каждый раздел курса, требует глубокого и прочного усвоения, которое следует добиваться, не загружая память учащихся множеством частых фактов. Таким основным материалом являются для всего курса физики законы сохранения (энергии, импульса, электрического заряда); для механики — идеи относительности движения, основные понятия кинематики, законы Ньютона; для молекулярной физики — основные положения молекулярно-кинетической теории, основное уравнение молекулярно-кинетической теории идеального газа, первый закон термодинамики; для электродинамики — учение об электрическом поле, электронная теория, закон Кулон, Ома и Ампера, явление электромагнитной индукции; для квантово физики — квантовые свойства сета, квантовые постулаты Бора, закон взаимосвязи массы и энергии. В основной материал также входят важнейшие следствия из законов и теорий, их практическое применение. Изучение физических теорий, мировоззренческая интерпретация законов формируют знания учащихся о современной научной картине мира.
Изучение школьного курса физики должно отражать теоретико-познавательные аспекты учебного материла — границы применимости физических теорий и соотношения между теориями различной степени общности, роль опыта в физике как источника знаний и критерия правильности теорий. Воспитанию учащихся служат сведения о перспективах развития физики и техники, о роли физики в ускорении научно-технического прогресса, из истории развития науки (молекулярно-кинетической теории, учения о полях, взглядов на природу света и строение вещества).
Наглядность преподавания физики и создание условий наилучшего понимания учащимися физической сущности изучаемого материала возможно через применение демонстрационного эксперимента. Перечень демонстраций необходимых для организации наглядности учебного процесса по каждому разделу указан в программе. У большинства учащихся дома в личном пользовании имеют компьютеры, что дает возможность расширять понятийную базу знаний учащихся по различным разделам курса физики. Использование обучающих программ, расположенных в образовательных Интернет-сайтах или использование CD – дисков с обучающими программами («Живая физика», «Открытая физика» и др.) создает условия для формирования умений проводить виртуальный физический эксперимент.
В программе предусмотрено выполнение семи лабораторных работ и одиннадцати контрольных работ по основным разделам курса физики 10 - 11 классов. Текущий контроль ЗУН учащихся рекомендуется проводить по дидактическим материалам, рекомендованным министерством просвещения РФ в соответствии с образовательным стандартом. Практические задания, указанные в планировании, рекомендуются для формирования у учащихся умений применять знания для решения задач, и подготовки учащихся к сдаче базового уровня ЕГЭ по физике.
Прямым шрифтом указан материал, сформулированный в образовательном стандарте подлежащий обязательному изучению и контролю знаний учащихся. В квадратных скобках указан материал, сформулированный в образовательном стандарте (уровень общего образования) который подлежит изучению, но не является обязательным для контроля и не включается в требования к уровню подготовки выпускников. Курсивом указан материал, рекомендованный Г. Я. Мякишевым. С нашей точки зрения изучение этого материала является обязательным для изучения и контроля знаний учащихся в рамках решения задачи, поставленной нами при использовании данной программы в учебном процессе.
Изучение физики на базовом уровне направлено на достижение следующих целей:
- формирование у обучающихся умения видеть и понимать ценность образования, значимость физического знания для каждого человека; умений различать факты и оценки, сравнивать оценочные выводы, видеть их связь с критериями оценок и связь критериев с определенной системой ценностей, формулировать и обосновывать собственную позицию;
- формирование у обучающихся целостного представления о мире и роли физики в создании современной естественно-научной картины мира; умения объяснять объекты и процессы окружающей действительности – природной, социальной, культурной, технической среды, используя для этого физические знания;
- приобретение обучающимися опыта разнообразной деятельности, опыта познания и самопознания; ключевых навыков (ключевых компетентностей), имеющих универсальное значение для различных видов деятельности, - навыков решения проблем, принятия решений, поиска, анализа и обработки информации, коммуникативных навыков, навыков измерений, навыков сотрудничества, эффективного и безопасного использования различных технических устройств;
- овладение системой научных знаний о физических свойствах окружающего мира, об основных физических законах и о способах их использования в практической жизни.
Рабочая программа по физике для 10 класса составлена на основе программы Г.Я. Мякишева (Сборник программ для общеобразовательных учреждений: Физика 10 – 11 кл. / Н.Н. Тулькибаева, А.Э. Пушкарев. – М.: Просвещение, 2012); календарно-тематического планирования (МИОО. Преподавание физики в 2014-2015 уч. году, методическое пособие. Сайт ОМЦ ВОУО. Методическая помощь. Физика).
Учебная программа 10 класса рассчитана на 70 часов, по 2 часа в неделю.
Программой предусмотрено изучение разделов:
1. | Физика и методы научного познания | 1 час |
2. | Механика | 24 часа |
2.1. | Кинематика | 9 часов |
2.2. | Динамика | 8 часов |
2.3. | Законы сохранения | 7 часов |
3. | Молекулярная физика. Термодинамика | 20 часов |
3.1. | Основы молекулярно-кинетической теории | 6 часов |
3.2. | Температура. Энергия теплового движения молекул | 2 часа |
3.3. | Уравнение состояния идеального газа. Газовые законы | 2 часа |
3.4. | Взаимные превращения жидкостей и газов. Твердые тела | 3 часа |
3.5. | Основы термодинамики | 7 часов |
4. | Основы электродинамики | 22 часа |
4.1. | Электростатика | 9 часов |
4.2. | Законы постоянного тока | 8 часов |
4.3. | Электрический ток в различных средах | 5 часов |
5. | Резервное время | 1 час |
По программе за год учащиеся должны выполнить 4 контрольные работы и 4 лабораторные работы.
Основное содержание программы
Научный метод познания природы
Физика – фундаментальная наука о природе. Научный метод познания.
Методы научного исследования физических явлений. Эксперимент и теория в процессе познания природы. Погрешности измерения физических величин. Научные гипотезы. Модели физических явлений. Физические законы и теории. Границы применимости физических законов. Физическая картина мира. Открытия в физике – основа прогресса в технике и технологии производства.
Механика
Системы отсчета. Скалярные и векторные физические величины. Механическое движение и его виды. Относительность механического движения. Мгновенная скорость. Ускорение. Равноускоренное движение. Движение по окружности с постоянной по модулю скоростью. Принцип относительности Галилея.
Масса и сила. Законы динамики. Способы измерения сил. Инерциальные системы отсчета. Закон всемирного тяготения.
Закон сохранения импульса. Кинетическая энергия и работа. Потенциальная энергия тела в гравитационном поле. Потенциальная энергия упруго деформированного тела. Закон сохранения механической энергии.
Демонстрации
- Зависимость траектории от выбора отсчета.
- Падение тел в воздухе и в вакууме.
- Явление инерции.
- Измерение сил.
- Сложение сил.
- Зависимость силы упругости от деформации.
- Реактивное движение.
- Переход потенциальной энергии в кинетическую и обратно.
Лабораторные работы
Изучение закона сохранения механической энергии.
Молекулярная физика
Молекулярно – кинетическая теория строения вещества и ее экспериментальные основания.
Абсолютная температура. Уравнение состояния идеального газа.
Связь средней кинетической энергии теплового движения молекул с абсолютной температурой.
Строение жидкостей и твердых тел.
Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии. Первый закон термодинамики. Принципы действия тепловых машин. Проблемы теплоэнергетики и охрана окружающей среды.
Демонстрации
- Механическая модель броуновского движения.
- Изменение давления газа с изменением температуры при постоянном объеме.
- Изменение объема газа с изменением температуры при постоянном давлении.
- Изменение объема газа с изменением давления при постоянной температуре.
- Устройство гигрометра и психрометра.
- Кристаллические и аморфные тела.
- Модели тепловых двигателей.
Лабораторные работы
Опытная проверка закона Гей-Люссака.
Электродинамика
Элементарный электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Электрическое поле. Разность потенциалов. Источники постоянного тока. Электродвижущая сила. Закон Ома для полной электрической цепи. Электрический ток в металлах, электролитах, газах и вакууме. Полупроводники.
Демонстрации
- Электризация тел.
- Электрометр.
- Энергия заряженного конденсатора.
- Электроизмерительные приборы.
Лабораторные работы
- Изучение последовательного и параллельного соединения проводников.
- Измерение ЭДС и внутреннего сопротивления источника тока.
Экспериментальная физика
Опыты, иллюстрирующие изучаемые явления.
Требования к уровню подготовки учеников 10 класса
В результате изучения физики в 10 классе ученик должен:
знать/понимать
- смысл понятий: физическое явление, физическая величина, модель, гипотеза, физический закон, теория, принцип, постулат, пространство, время, вещество, взаимодействие, инерциальная система отсчета, материальная точка, идеальный газ, электромагнитное поле;
- смысл физических величин: путь, перемещение, скорость, ускорение, масса, плотность, сила, давление, импульс, работа, мощность, кинетическая энергия, потенциальная энергия, коэффициент полезного действия, момент силы, период, частота, амплитуда колебаний, длина волны, внутренняя энергия, удельная теплота парообразования, удельная теплота плавления, удельная теплота сгорания, температура, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, удельная теплоемкость, влажность воздуха, электрический заряд, сила электрического тока, электрическое напряжение, электрическое сопротивление, работа и мощность электрического тока, напряженность электрического поля, разность потенциалов, электроемкость, энергия электрического поля, электродвижущая сила;
- смысл физических законов, принципов, постулатов: принципы суперпозиции и относительности, закон Паскаля, закон Архимеда, законы динамики Ньютона, закон всемирного тяготения, закон сохранения импульса и механической энергии, закон сохранения энергии в тепловых процессах, закон термодинамики, закон сохранения электрического заряда, закон Ома для участка электрической цепи, закон Джоуля – Ленца, закон Гука, основное уравнение кинетической теории газов, уравнение состояния идеального газа, закон Кулона, закон Ома для полной цепи; основные положения изучаемых физических теорий и их роль в формировании научного мировоззрения;
уметь
- описывать и объяснять:
физические явления: равномерное прямолинейное движение, равноускоренное прямолинейное движение, передачу давления жидкостями и газами, плавание тел, диффузию, теплопроводность, конвекцию, излучение, испарение, конденсацию, кипение, плавление, кристаллизацию, электризацию тел, взаимодействие электрических зарядов, тепловое действие тока;
физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел;
результаты экспериментов: независимость ускорения свободного падения от массы падающего тела; нагревание газа при его быстром сжатии и охлаждение при быстром расширении; повышение давления газа при его нагревании в закрытом сосуде; броуновское движение; электризацию тел при их контакте; зависимость сопротивления полупроводников от температуры и освещения;
описывать фундаментальные опыты, оказавшие существенное влияние на развитие физики;
- приводить примеры практического применения физических знаний законов механики, термодинамики и электродинамики в энергетике;
- определять характер физического процесса по графику, таблице, формуле;
- отличать гипотезы от научных теорий; делать выводы на основе экспериментальных данных; приводить примеры, показывающие, что наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные явления;
- приводить примеры опытов, иллюстрирующих, что наблюдения и эксперимент служат основой для выдвижения гипотез и построения научных теорий; эксперимент позволяет проверить истинность теоретических выводов; физическая теория дает возможность объяснять явления природы и научные факты; физическая теория позволяет предсказывать еще неизвестные явления и их особенности; при объяснении природных явлений используются физические модели; один и тот же природный объект или явление можно исследовать на основе использования разных моделей; законы физики и физические теории имеют свои определенные границы применимости;
- измерять расстояние, промежутки времени, массу, силу, давление, температуру, влажность воздуха, силу тока, напряжение, электрическое сопротивление, работу и мощность электрического тока; скорость, ускорение свободного падения; плотность вещества, работу, мощность, энергию, коэффициент трения скольжения, удельную теплоемкость вещества, удельную теплоту плавления льда, ЭДС и внутреннее сопротивление источника тока; представлять результаты измерений с учетом их погрешностей;
- применять полученные знания для решения физических задач;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, оценки влияния на организм человека и другие организмы загрязнения окружающей среды; рационального природопользования и охраны окружающей среды;
- определения собственной позиции по отношению к экологическим проблемам и поведению в природной среде.
Результаты освоения курса физики
Личностные результаты:
- в ценностно-ориентационной сфере – чувство гордости за российскую физическую науку, гуманизм, положительное отношение к труду, целеустремленность;
- в трудовой сфере – готовность к осознанному выбору дальнейшей образовательной траектории;
- в познавательной (когнитивной, интеллектуальной) сфере – умение управлять своей познавательной деятельностью.
Метапредметные результаты:
- использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системно-информационный анализ, моделирование и т.д.) для изучения различных сторон окружающей действительности;
- использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, обобщение, систематизация, выявление причинно-следственных связей, поиск аналогов;
- умение генерировать идеи и определять средства, необходимые для их реализации;
- умение определять цели и задачи деятельности, выбирать средства реализации целей и применять их на практике;
- использование различных источников для получения физической информации, понимание зависимости содержания и формы представления информации от целей коммуникации и адресата.
Предметные результаты (на базовом уровне):
- в познавательной сфере:
- давать определения изученным понятиям;
- называть основные положения изученных теорий и гипотез;
- описывать демонстрационные и самостоятельно проведенные эксперименты, используя для этого естественный (русский, родной) язык и язык физики;
- классифицировать изученные объекты и явления;
- делать выводы и умозаключения из наблюдений, изученных физических закономерностей, прогнозировать возможные результаты;
- структурировать изученный материал;
- интерпретировать физическую информацию, полученную из других источников;
- применять приобретенные знания по физике для решения практических задач, встречающихся в повседневной жизни, для безопасного использования бытовых технических устройств, рационального природопользования и охраны окружающей среды;
- в ценностно-ориентационной сфере – анализировать и оценивать последствия для окружающей среды бытовой и производственной деятельности человека, связанной с использованием физических процессов;
- в трудовой сфере – проводить физический эксперимент;
- в сфере физической культуры – оказывать первую помощь при травмах, связанных с лабораторным оборудованием и бытовыми техническими устройствами.
Учебно-методический комплект
- Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский. Физика. 10 класс. – М.: Просвещение, 2014.
- А.П. Рымкевич. Сборник задач по физике. 10 – 11 класс. – М.: Дрофа, 2012.
- Программы для общеобразовательных учреждений. Физика. Астрономия. 7- 11 классы. – М.: Дрофа, 2011.
- Кодификатор элементов содержания и требований к уровню подготовки выпускников общеобразовательных учреждений для проведения в 2016 году единого государственного экзамена по ФИЗИКЕ.
- М.Л. Корневич. Календарно-тематическое планирование /Преподавание физики в 2014-2015 учебном году. Методическое пособие МИОО. М.: «Московские учебники», 2014; сайт ОМЦ ВОУО: Методическая помощь. Физика.
- Рабочие программы для 7 – 11 класса. Издательство «Глобус», Волгоград, 2014.
Материал комплекта полностью соответствует Примерной программе по физике среднего (полного) общего образования (базовый уровень), обязательному минимуму содержания, рекомендован Министерством образования РФ.
Изучение курса физики в 10 классе структурировано на основе физических теорий следующим образом: механика, молекулярная физика, электродинамика. Ознакомление учащихся с разделом «Физика и методы научного познания» предполагается проводить при изучении всех разделов курса.
11 Класс. Содержание учебного материала.
(68 часов, 2 часа в неделю, резерв 1 час)
Основы электродинамики (продолжение).
Магнитное поле (5 часов).
Взаимодействие токов. Магнитное поле тока. Магнитная индукция. Сила Ампера. Сила Лоренца.
Демонстрации:
- Взаимодействие параллельных токов.
- Действие магнитного поля на ток.
- Устройство и действие амперметра и вольтметра.
- Устройство и действие громкоговорителя.
- Отклонение электронного лучка магнитным полем.
Знать: понятия: магнитное поле тока, индукция магнитного поля.
Практическое применение: электроизмерительные приборы магнитоэлектрической системы.
Уметь: решать задачи на расчет характеристик движущегося заряда или проводника с током в магнитном поле, определять направление и величину сил Лоренца и Ампера,
Электромагнитная индукция (7 часов)
Явление электромагнитной индукции. Магнитный поток. Закон электромагнитной индукции. Правило Ленца. Самоиндукция. Индуктивность. Взаимосвязь электрического и магнитного полей. Электромагнитное поле.
Лабораторная работа №1: Изучение электромагнитной индукции.
Демонстрации:
- Электромагнитная индукция.
- Правило Ленца.
- Зависимость ЭДС индукции от скорости изменения магнитного потока.
- Самоиндукция.
- Зависимость ЭДС самоиндукции от скорости изменения силы цели и от индуктив-ности проводника.
Знать: понятия: электромагнитная индукция; закон электромагнитной индукции; правило Ленца, самоиндукция; индуктивность, электромагнитное поле.
Уметь: объяснять явление электромагнитной индукции и самоиндукции, решать задачи на применение закона электромагнитной индукции, самоиндукции.
Электромагнитные колебания и волны (10 часов)
Свободные колебания в колебательном контуре. Период свободных электрических колебаний. Переменный электрический ток. Генерирование электрической энергии. Трансформатор. Передача электрической энергии. Электромагнитные волны. Свойства электромагнитных волн. Принципы радиосвязи. Телевидение.
Демонстрации:
- Свободные электромагнитные колебания низкой частоты в колебательном контуре.
- Зависимость частоты свободных электромагнитных колебаний от электроемкости и индуктивности контура.
- Незатухающие электромагнитные колебания в генераторе на транзисторе.
- Получение переменного тока при вращении витка в магнитном поле.
- Устройство и принцип действия генератора переменного тока (на модели).
- Осциллограммы переменною тока
- Устройство и принцип действия трансформатора
- Передача электрической энергии на расстояние с мощью понижающего и повышающего трансформатора.
- Электрический резонанс.
- Излучение и прием электромагнитных волн.
- Отражение электромагнитных волн.
- Преломление электромагнитных волн.
- Интерференция и дифракция электромагнитных волн.
- Поляризация электромагнитных волн.
- Модуляция и детектирование высокочастотных электромагнитных колебаний.
Знать: понятия: свободные и вынужденные колебания; колебательный контур; переменный ток; резонанс, электромагнитная волна, свойства электромагнитных волн.
Практическое применение: генератор переменного тока, схема радиотелефонной связи, телевидение.
Уметь: Измерять силу тока и напряжение в цепях переменного тока. Использовать трансформатор для преобразования токов и напряжений. Определять неизвестный параметр колебательного контура, если известны значение другого его параметра и частота свободных колебаний; рассчитывать частоту свободных колебаний в колебательном контуре с известными параметрами. Решать задачи на применение формул:, , , ,
, , . Объяснять распространение электромагнитных волн.
Оптика (15 часов)
Световые волны. (9 часов)
Скорость света и методы ее измерения. Законы отражения и преломления света. Волновые свойства света: дисперсия, интерференция света, дифракция света. Когерентность. Поперечность световых волн. Поляризация света.
Лабораторная работа №2: Измерение показателя преломления стекла.
Лабораторная работа №3: Измерение длины световой волны.
Демонстрации:
- Законы преломления снега.
- Полное отражение.
- Световод.
- Получение интерференционных полос.
- Дифракция света на тонкой нити.
- Дифракция света на узкой щели.
- Разложение света в спектр с помощью дифракционной решетки.
- Поляризация света поляроидами.
- Применение поляроидов для изучения механических напряжений в деталях конструкций.
Знать: понятия: интерференция, дифракция и дисперсия света.
Законы отражения и преломления света,
Практическое применение: полного отражения, интерференции, дифракции и поляризации света.
Уметь: измерять длину световой волны, решать задачи на применение формул, связывающих длину волны с частотой и скоростью, период колебаний с циклической частотой; на применение закона преломления света.
Элементы теории относительности. (3 часа)
Постулаты теории относительности. Принцип относительности Эйнштейна. Постоянство скорости света. Пространство и время в специальной теории относительности. Релятивистская динамика. Связь массы с энергией.
Знать: понятия: принцип постоянства скорости света в вакууме, связь массы и энергии.
Уметь: определять границы применения законов классической и релятивистской механики.
Излучения и спектры. (3 часа)
Различные виды электромагнитных излучений и их практическое применение: свойства и применение инфракрасных, ультрафиолетовых и рентгеновских излучений. Шкала электромагнитных излучений.
Демонстрации:
- Невидимые излучения в спектре нагретого тела.
- Свойства инфракрасного излучения.
- Свойства ультрафиолетового излучения.
- Шкала электромагнитных излучений (таблица).
- Зависимость плотности потока излучения от расстояния до точечного источника.
Знать: практическое применение: примеры практического применения электромагнитных волн инфракрасного, видимого, ультрафиолетового и рентгеновского диапазонов частот.
Уметь: объяснять свойства различных видов электромагнитного излучения в зависимости от его длины волны и частоты.
Квантовая физика (17 часов)
[Гипотеза Планка о квантах.] Фотоэффект. Уравнение Эйнштейна для фотоэффекта. Фотоны. [Гипотеза де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм. Соотношение неопределенности Гейзенберга.]
Строение атома. Опыты Резерфорда. Квантовые постулаты Бора. Испускание и поглощение света атомом. Лазеры.
[Модели строения атомного ядра: протонно-нейтронная модель строения атомного ядра.] Ядерные силы. Дефект массы и энергия связи нуклонов в ядре. Ядерная энергетика. Влияние ионизирующей радиации на живые организмы. [Доза излучения, закон радиоактивного распада и его статистический характер. Элементарные частицы: частицы и античастицы. Фундаментальные взаимодействия]
Значение физики для объяснения мира и развития производительных сил общества. Единая физическая картина мира.
Лабораторная работа №4: «Изучение треков заряженных частиц».
Демонстрации:
- Фотоэлектрический эффект на установке с цинковой платиной.
- Законы внешнего фотоэффекта.
- Устройство и действие полупроводникового и вакуумного фотоэлементов.
- Устройство и действие фотореле на фотоэлементе.
- Модель опыта Резерфорда.
- Наблюдение треков в камере Вильсона.
- Устройство и действие счетчика ионизирующих частиц.
Знать: Понятия: фотон; фотоэффект; корпускулярно-волновой дуализм; ядерная модель атома; ядерные реакции, энергия связи; радиоактивный распад; цепная реакция деления; термоядерная реакция; элементарная частица, атомное ядро.
Законы фотоэффекта: постулаты Борщ закон радиоактивного распада.
Практическое применение: устройство и принцип действия фотоэлемента; примеры технического - использования фотоэлементов; принцип спектрального анализа; примеры практических применений спектрального анализа; устройство и принцип действия ядерного реактора.
Уметь: Решать задачи на применение формул, связывающих энергию и импульс фотона с частотой соответствующей световой волны. Вычислять красную границу фотоэффекта и энергию фотоэлектронов на основе уравнения Эйнштейна. Определять продукты ядерных реакций на основе законов сохранения электрического заряда и массового числа.
Рассчитывать энергетический выход ядерной реакции. Определять знак заряда или направление движения элементарных частиц по их трекам на фотографиях.
Строение Вселенной (7 часов)
Строение солнечной системы. Система «Земля – Луна». Общие сведения о Солнце (вид в телескоп, вращение, размеры, масса, светимость, температура солнца и состояние вещества в нем, химический состав). Источники энергии и внутреннее строение Солнца. Физическая природа звезд. Наша Галактика (состав, строение, движение звезд в Галактике и ее вращение). Происхождение и эволюция галактик и звезд.
Демонстрации:
- Модель солнечной системы.
- Теллурий.
- Подвижная карта звездного неба.
Знать: понятия: планета, звезда, Солнечная система, галактика, Вселенная.
Практическое применение законов физики для определения характеристик планет и звезд.
Уметь: объяснять строение солнечной системы, галактик, Солнца и звезд. Применять знание законов физики для объяснения процессов происходящих во вселенной. Пользоваться подвижной картой звездного неба.
Повторение. (7 часов)
Литература
1. Астрономия: Учеб. для 11 класса общеобразовательных учреждений / В.В. Порфирьев. - 2-е издание переработано и доп. - М.: Просвещение, 2011- 174 с.
2. Астрономия: Учеб. для 11 кл. общеобразоват. учреждений / Е.П. Левитан. - 8 -е изд. - М.: Просвещение, 2011. - 224 с.
3. Гомоюнов К.К., Кесамаллы М.Ф., Кесамаллы Ф.П. и др. Толковый словарь школьника по физике: Учеб. пособие для средней школы / под общей ред. К.К. Гомоюнова.- серия «Учебники для вузов. Специальная литература». - СПб.: изд-во «Специальная литература», изд-во «Лань», 2011 - 384 с.
4. Единый государственный экзамен: Физика: Тестовые задания для подг. к Единому гос. экзамену: 10-11 кл. / Н.Н. Тулькибаева, А.Э. Пушкарев, М.А. Драпкин, Д.В. Климентьев – M.: Просвещение, 2015.-254 с.
5. Единый государственный экзамен: Физика: Сборник заданий / Г.Г.Никифоров, В.А.Орлов, Н.К.Ханнанов. – М.Просвещение,Эксмо,2015. 240 с.
6. Извозчиков В.А., Слуцкий A.M. Решение задач по физике на компьютере: Кн. для учителя. - М.: Просвещение, 2011. - 256 с.
7. Сборник задач по физике: для 10-11 кл. общобразоват. учрежедний / Сост. Г.Н Степанова - 9-е изд. М.: Просвещение, 2012. - 288 с.
8. Физика. Задачник. 10-11 кл.: Пособие для общеобразоват. учреждений / Рымкевич А. П. - 7-е изд., стереотип. - М.: Дрофа, 2012. - 192 с.
9. Физика: Учеб. для 10 кл. общеобразоват. учреждений / Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. - 10-е изд. - М.: Просвещение, 2014. - 336 с.
10. Физика: Учеб. для 11 кл. общеобразоват. учреждений / Г.Я. Мякишев, Б.Б. Буховцев. - 1-е изд. -М.: Просвещение, 2012. - 336 с.
11. Фронтальные лабораторные работы по физике в 7-11 классах общеобразовательных учреждениях: Кн. для учителя / В.А. Буров, Ю.И. Дик, Б.С. Зворыкин и др.; под ред. В.А. Бурова, Г.Г. Никифорова. - М.: Просвещение: Учеб, лит., 2014 - 368 с.
1. Демонстрационный эксперимент по физике в средней школе: пособие для учителей / В. А. Буров, Б. С. Зворыкин, А. П. Кузьмин и др.; под ред. А. А. Покровского. — 3-е изд., перераб. — М.: Просвещение, 2012. — 287 с.
2. Кабардин О. Ф. Экспериментальные задания по физике. 9—11 кл.: учеб. пособие для учащихся общеобразоват. учреждений / О. Ф. Кабардин, В. А. Орлов. — М.: Вербум-М, 2011. — 208 с.
3. Шахмаев Н. М. Физический эксперимент в средней школе: колебания и волны. Квантовая физика / Н. М. Шахмаев, Н. И. Павлов, В. И. Тыщук. — М.: Просвещение, 2011. — 223 с.
4. Шахмаев Н. М. Физический эксперимент в средней школе: механика. Молекулярная физика. Электродинамика / Н. М. Шахмаев, В. Ф. Шилов. — М.: Просвещение, 2011. — 255 с.
5. Сауров Ю. А. Молекулярная физика. Электродинамика / Ю. А. Сауров, Г. А. Бутырский. — М.: Просвещение, 2012. — 255 с.
6. Мякишев Г. Я. Физика: учеб. для 10 кл. общеобразоват. учреждений / Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Сотский. — 14-е изд. — М.: Просвещение, 2005. — 366 с.
7. Мякишев Г. Я. Физика: учеб. для 11 кл. общеобразоват. учреждений / Г. Я. Мякишев, Б. Б. Буховцев. — 14-е изд. — М.: Просвещение, 2014. — 382 с.
8. Сауров Ю. А. Физика в 10 классе: модели уроков: кн. для учителя / Ю. А. Сауров. — М.: Просвещение, 2011. — 256 с.
9. Сауров Ю. А. Физика в 11 классе: модели уроков: кн. для учителя / Ю. А. Сауров. — М.: Просвещение, 2011. — 271 с.
10. Левитан Е. П. Астрономия: учеб. для 11 кл. общеобразоват. учреждений / Е. П. Левитан. — 10-е изд. — М.: Просвещение, 2011. — 224 с.
11. Порфирьев В. В. Астрономия: учеб. для 11 кл. общеобразоват. учреждений / В. В. Порфирьев. — 2-е изд., перераб. и доп. — М.: Просвещение, 2011. — 174 с.
Муниципальное бюджетное общеобразовательное учреждение Бутурлиновская средняя общеобразовательная школа Бутурлиновского муниципального района Воронежской области 397505, Воронежская обл., г.Бутурлиновка, ул. Дорожная, 71 тел.:(47361)2-83-30, 2-83-31,
эл. адрес: but-school@mail.ru
СОГЛАСОВАНО Протокол заседания МО учителей от _____ 201_ года № 1 ___________ _________ подпись руководителя МО Ф.И.О. | СОГЛАСОВАНО Заместитель директора по УВР ______________________ подпись Ф.И.О. __________ 201_ года | УТВЕРЖДЕНО Приказом директора школы __________ Штельцер И.Е. №______
от _________ 201__г . |
РАБОЧАЯ ПРОГРАММА
По ____________физике_________________________________________________
(указать учебный предмет, курс)
Уровень образования (класс) _среднее(полное) общее образование 10А, 11А, 11Б____
(начальное общее, основное общее образование с указанием классов)
Количество часов ___345______
Учитель ____Абрамова Т.И._______________________________________
Программа разработана на основе авторской программы среднего (полного) общего образования по физике профильный уровень, 10-11 классы, рекомендованная Министерством образования и науки РФ.
(указать примерную или авторскую программу/программы, издательство, год издания при наличии)
2015-2016 учебный год
Рабочая программа по физике
для 10-11 класса (профильное обучение)
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Нормативные правовые документы, на основании которых разработана рабочая программа:
- закон «Об образовании РФ» ФЗ - 273;
- Федеральный компонент государственного образовательного стандарта, утвержденный Приказом Минобразования РФ № 1089 от 05.03.2004;
- примерная программа среднего (полного) общего образования по физике, профильный уровень, X-XI классы, рекомендованная Министерством образования и науки РФ. 2004 г.;
- Федеральный перечень учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию, на 2015/2016 учебный год.
1. Изучение физики в образовательных учреждениях среднего (полного) общего образования направлено на достижение следующих целей:
- освоение знаний о методах научного познания природы; современной физической картине мира: свойствах вещества и поля, пространственно-временных закономерностях, динамических и статистических законах природы, элементарных частицах и фундаментальных взаимодействиях, строении и эволюции Вселенной; знакомство с основами фундаментальных физических теорий: классической механики, молекулярно-кинетической теории, термодинамики, классической электродинамики, специальной теории относительности, квантовой теории;
- овладение умениями проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, выдвигать гипотезы и строить модели, устанавливать границы их применимости;
- применение знаний по физике для объяснения явлений природы, свойств вещества, принципов работы технических устройств, решения физических задач, самостоятельного приобретения и оценки достоверности новой информации физического содержания, использования современных информационных технологий для поиска, переработки и предъявления учебной и научно-популярной информации по физике;
- развитие познавательных интересов, интеллектуальных и творческих способностей в процессе решения физических задач и самостоятельного приобретения новых знаний, выполнения экспериментальных исследований, подготовки докладов, рефератов и других творческих работ;
- воспитание духа сотрудничества в процессе совместного выполнения задач, уважительного отношения к мнению оппонента, обоснованности высказываемой позиции, готовности к морально-этической оценке использования научных достижений, уважения к творцам науки и техники, обеспечивающим ведущую роль физики в создании современного мира техники;
- использование приобретенных знаний и умений для решения практических, жизненных задач, рационального природопользования и защиты окружающей среды, обеспечения безопасности жизнедеятельности человека и общества.
Обще учебные умения, навыки и способы деятельности
Программа предусматривает формирование у школьников общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций. В этом направлении приоритетами для школьного курса физики на этапе основного общего образования являются:
Познавательная деятельность:
- использование для познания окружающего мира различных естественнонаучных методов: наблюдение, измерение, эксперимент, моделирование;
- формирование умений различать факты, гипотезы, причины, следствия, доказательства, законы, теории;
- овладение адекватными способами решения теоретических и экспериментальных задач;
- приобретение опыта выдвижения гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез.
Информационно-коммуникативная деятельность:
- владение монологической и диалогической речью, развитие способности понимать точку зрения собеседника и признавать право на иное мнение;
- использование для решения познавательных и коммуникативных задач различных источников информации.
Рефлексивная деятельность:
- владение навыками контроля и оценки своей деятельности, умением предвидеть возможные результаты своих действий:
- организация учебной деятельности: постановка цели, планирование, определение оптимального соотношения цели и средств.
2. Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению.
Гуманитарное значение физики как составной части общего образовании состоит в том, что она вооружает школьника научным методом познания, позволяющим получать объективные знания об окружающем мире.
Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ.
Курс физики структурируется на основе физических теорий: механика, молекулярная физика, электродинамика, электромагнитные колебания и волны, квантовая физика.
Особенностью предмета физика является и тот факт, что овладение основными физическими понятиями и законами стало необходимым практически каждому человеку в современной жизни.
Используемый математический аппарат не выходит за рамки школьной программы по элементарной математике и соответствует уровню математических знаний у учащихся данного возраста.
Программа предусматривает использование Международной системы единиц СИ.
Резерв свободного учебного времени (35 часов) распределён согласно таблице в Приложении 1.
3. Данная программа конкретизирует содержание предметных тем образовательного стандарта, показывает последовательность изучения разделов физики по годам обучения, адаптирована к учебникам:
1) Балашов М.М., Гомонова А.И., Долоцкий АБ. И др. под ред. Мякишева Г Я. Механика (профильный уровень) 10 класс Дрофа 2014
2) Мякишев ГЯ. Синяков А.З. Молекулярная физика. Термодинамика (профильный уровень)10 класс. Дрофа 2014
3) Мякишев ГЯ. Синяков А.З., Слободсков Б.А. Электродинамика (профильный уровень)10-11 класс. Дрофа 2014
4) Мякишев ГЯ. Синяков А.З. Колебанияи волны (профильный уровень) 11 класс. Дрофа 2014
5) Мякишев ГЯ. Синяков А.З. Оптика. Квантовая физика (профильный уровень) 11 класс. Дрофа. 2014
Программа определяет минимальный набор опытов, демонстрируемых учителем в классе, лабораторных и практических работ, выполняемых учащимися.
4. Срок реализации рабочей учебной программы – 2014-2016 г.
5. Формы, методы, технологии обучения.
а) Урок изучения нового материала. Сюда входят вводная и вступительная части, наблюдения и сбор материалов - как методические варианты уроков:
Виды: урок-лекция, урок – беседа, урок с использованием учебного видеофильма, урок теоретических или практических самостоятельных работ (исследовательского типа), урок смешанный (сочетание различных видов урока на одном уроке).
б) Уроки совершенствования знаний, умений и навыков. Сюда входят уроки формирования умений и навыков, целевого применения усвоенного и др.:
Виды: урок самостоятельных работ, урок-лабораторная работа, урок практических работ, урок-экскурсия, семинар.
в) Урок обобщения и систематизации. Сюда входят основные виды всех пяти типов уроков:
- урок-семинар, урок-конференция, интегрированный урок, творческое занятие, урок-диспут, урок-деловая/ролевая игра.
г) Уроки контроля, учета и оценки знаний, умений и навыков:
Виды: - устная форма проверки (фронтальный, индивидуальный и групповой опрос), письменная проверка, зачет, зачетные практические и лабораторные работы, контрольная (самостоятельная) работа, смешанный урок (сочетание трех первых видов), урок-соревнование.
д) Комбинированные уроки: на них решаются несколько дидактических задач.
6. Используемые формы, способы и средства проверки и оценки результатов обучения.
Приложение № 1
Раздел | Всего часов (согласно примерной программы) | СОДЕРЖАНИЕ УЧЕБНОГО КУРСА | |||||||||
10 класс | 11 класс | ||||||||||
Физика как наука. Методы научного познания природы. | Механика | Молекулярная физика и термодинамика | Электростатика. Постоянный ток | Магнитное поле | Магнитное поле | Электромагнитные колебания и волны | Квантовая физика | Строение и эволюция Вселенной | Повторение | ||
Физика и методы научного познания. | 6 | 6 | |||||||||
Механика. | 68 | 68 | |||||||||
Молекулярная физика | 40 | 40 | |||||||||
Электростатика. Постоянный ток. | 44 | 44 | |||||||||
Магнитное поле. | 26 | 12 | 14 | ||||||||
Электромагнитные колебания и волны. | 63 | 79 | |||||||||
Квантовая физика. | 40 | 41 | |||||||||
Строение Вселенной. | 8 | 11 | |||||||||
Обобщающее | 20 | 20 | |||||||||
Резерв свободного учебного времени | 35 | 0 | 5 | ||||||||
Итого | 350 | 170 | 170 |
СОДЕРЖАНИЕ УЧЕБНОГО КУРСА 10 класс
№ п/п | Разделы/темы | 10 Б класс |
1 | Физика как наука. Методы научного познания природы. | 6ч |
2 | Механика (68 ч). Кинематика. | 16 ч |
3 | Динамика и силы в природе. | 19 ч |
4 | Законы сохранения. | 33 ч |
5 | Молекулярная физика и термодинамика (40 ч). Основы МКТ. Температура. Газовые законы. МКТ идеального газа. | 14 ч |
6 | Термодинамика. | 10 ч |
7 | Взаимные превращения жидкостей и газов. Твёрдые тела. | 16 ч |
8 | Электростатика. Постоянный ток (44 ч). Электростатика. | 14 ч |
9 | Постоянный ток. | 14 ч |
10 | Электрический ток в различных средах. | 16 ч |
11 | Магнитное поле. | 12 ч |
Итого | 170 ч |
СОДЕРЖАНИЕ УЧЕБНОГО КУРСА 11 класс
№ п/п | Разделы/темы | 11Б класс |
1 | Магнитное поле (14 ч) Электромагнитная индукция. Магнитные свойства вещества. | 14 ч |
2 | Электромагнитные колебания и волны (79 ч) Механические колебания. | 6 ч |
3 | Электромагнитные колебания. | 8 ч |
4 | Производство, передача и использование электрической энергии. | 6 ч |
5 | Механические волны. Звук. | 11 ч |
6 | Электромагнитные волны. | 13 ч |
7 | Оптика. Световые волны. | 20 ч |
8 | Элементы теории относительности. | 8 ч |
9 | Излучение и спектры. | 7 ч |
10 | Квантовая физика (41 ч) Световые кванты. | 8 ч |
11 | Атомная физика. | 10 ч |
12 | Физика атомного ядра. Элементарные частицы. | 21 ч |
13 | Значение физики для развития мира и развития производительных сил общества. | 2 ч |
14 | Строение Вселенной (11 ч) | 11 ч |
15 | Обобщающее повторение (20 ч) Резерв свободного учебного времени (5 ч) | 25 ч |
Итого | 170 ч |
ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОБУЧЕНИЯ
Требования к уровню подготовки учащихся,
после окончании изучения курса физики в 10 классе
В результате изучения физики на базовом уровне ученик должен
знать/понимать
смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие,
смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;
смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики
вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие физики;
уметь
описывать и объяснять физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел;
отличать гипотезы от научных теорий; делать выводы на основе экспериментальных данных; приводить примеры, показывающие, что: наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные явления;
приводить примеры практического использования физических знаний: законов механики, термодинамики и электродинамики в энергетике;
воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов;
- оценки влияния на организм человека и другие организмы загрязнения окружающей среды;
рационального природопользования и защиты окружающей среды
Требования к уровню подготовки выпускников
В результате изучения физики на базовом уровне ученик 11 класса должен
знать/понимать
- смысл понятий: электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, галактика, Вселенная;
- смысл физических законов электромагнитной индукции, фотоэффекта;
- вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие физики;
уметь
- описывать и объяснять физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел; электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;
- отличать гипотезы от научных теорий;
- делать выводы на основе экспериментальных данных;
- приводить примеры, показывающие, что: наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные явления;
- приводить примеры практического использования физических знаний: различных видов электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров;
- воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- обеспечения безопасности жизнедеятельности в процессе использования средств радио- и телекоммуникационной связи
Приложение № 4
ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА
Учебно-методическое обеспечение для учащихся:
1. Енохович А.С. Справочник по физике и технике. Учебное пособие для учащихся. М. Просвещение, 2014
2. Генденштейн Л.Э., Кирик Л.А., Гельфгат И.М., Ненашев И.Ю., «Физика 11 кл. Задачник» 2014
3. Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М., «Физика -11 кл.», Москва, «Просвещение», 2014
4. Рымкевич А.П. Сборник задач по физике. 9-11 кл. М.: Просвещение, 2014.
5. Сборник задач по физике: для 10-11 кл. общобразоват. учрежедний / Сост. Г.Н. Степанова. – 9-е изд. М.: Просвещение, 2012. – 288 с.
Учебно-методическое обеспечение для учителя:
6. Астрономия: Учеб. для 11 кл. общеобразоват. учреждений / Е.П. Левитан. – 8-е изд. – М.: Просвещение, 2014
7. Волков В.А. «Поурочные разработки по физике» 2014
8. Головин П.П., Фронтальные лабораторные работы и практикум по электродинамике. 2014
9. Кибальченко А.Я., Кибальченко И.А. «Физика для увлечённых», Ростов-на-Дону, «Феникс», 2012
10. Самойленко П.И., Сергеев А.В. «Сборник задач и вопросов по физике», Москва, ACADEMA, 2011
11. Семке А.И. «Нестандартные задачи по физике», Ярославль, Академия развития, 2011
12. Тарасов Л.В. «Физика в природе», Москва, «Вербум-М», 2012
13. Тульчинская Г.М. «Тесты по физике», Псков, 2012
Перечень информационного обеспечения образовательного процесса:
№ | Аудиопродукция | Видеопродукция | Технические средства обучения | Цифровые образовательные ресурсы |
1 | Видео энциклопедия для народного образования: Физика. (комплект из 5 видеокассет) | ПК Intel(R) Pentium(R) Dual CPU E2200 @ 2,2 GHz, 1,00 ГБ ОЗУ | WWW.ZAVUCH.RU.FISIKA. | |
2 | Видео энциклопедия для народного образования: Астрономия. (комплект из 2 видеокассет) | ПК Intel Pentium(IV) CPU @ 2,0 GHz, 512 ГБ ОЗУ | ||
3 | Физика 7-11. Библиотека наглядных пособий. | ПК Intel Pentium(IV) CPU @ 2,0 GHz, 512 ГБ ОЗУ | ||
4 | Электронные уроки и тесты «Физика в школе» (комплект из 6 дисков) | Мультимедиапроектор Panasonic |