мои уроки

Панина Лариса Николаевна

технологические карты уроков математики

 

 

Скачать:


Предварительный просмотр:

Технологическая карта урока

Учебный предмет: математика

Класс: 6

Тема урока: Раскрытие скобок.

Тип урока: Урок открытия новых знаний.

Цель урока: формировать навык раскрытия скобок при упрощении выражений (на данном уроке – это ключевое УУД, системообразующее по отношению к другим УУД урока). Создание условий для систематизации, обобщения и углубления знаний учащихся при решении упражнений по  теме «Действия с рациональными числами»

Задачи урока:

образовательные: 

- формировать способность к раскрытию скобок с учётом знака, стоящего перед скобками (познавательные УУД);

- определить готовность учащихся к самостоятельному выполнению заданий на решение задач  различного вида по теме «Раскрытие скобок» (познавательные УУД).

- закрепить вычислительные навыки при работе с положительными и отрицательными числами; (познавательные УУД).

развивающие: 

- способствовать развитию у учащихся УУД (регулятивного) самоопределения в целях учебной деятельности (на основе установления сходства и различия между освоенным ранее и осваиваемым на данном уроке);

- способствовать развитию у учащихся УУД (познавательного) поиска и распознавания полезной информации (на основе наблюдения и оценки выявленных закономерностей).

- способствовать развитию у учащихся УУД (регулятивного) самоконтроля учебной деятельности (на основе сравнения способа действия и его результата с заданным эталоном).

воспитательные:

- способствовать развитию у учащихся УУД (коммуникативного) оценивания ситуаций взаимодействия в соответствии с правилами поведения и этики.

- способствовать развитию у учащихся УУД (личностного) осознания осваиваемого на уроке приема учебной деятельности, как ценности.

Методы и формы обучения: фронтальная, парная, индивидуальная

Образовательные ресурсы: Виленкин Н. Я., Жохов В. И., Чесноков А. С., Шварцбурд С.И. Математика 6 класс: Учебник для общеобразовательных учреждений. - М.: Мнемозина, 2015.

Оборудование: Доска, карточки с заданиями, карточки для физминутки

Этапы урока

Деятельность учителя

Деятельность учащихся

Формы организации взаимодействия на уроке

Формируемые умения (универсальные учебные действия)

1. Мотивация учеб. деятельности (Орг. момент)

Актуализирует проявление учащимися установок на сотрудничество и успех в предстоящей работе.

Оценивает или вносит коррективы в готовность рабочих мест учащихся.

Выполняют необходимые действия.

Демонстрируют готовность к учебной деятельности

Включаются в деловой ритм урока.

Фронтальная

Личностные: понимают значение знаний для человека и принимают его; имеют желание учиться; проявляют интерес к изучаемому предмету,

понимают его важность.

Коммуникативные: планирование учебного сотрудничества с учителем и сверстниками.

Регулятивные: организация своей учебной деятельности.

2. Актуализация знаний

-Знания нам будет очень трудно осваивать без умения быстро и верно считать, поэтому, как всегда начнем урок с устного счета.

Учебник №1244 стр.218

Считают устно. Вспоминают действия с рациональными числами.

Фронтальная, индивидуальная

Личностные: имеют мотивацию учебной деятельности,

 Познавательные: структурирование собственных знаний. Поиск и выделение необходимой информации.

Регулятивные: контроль и оценка процесса и результатов деятельности.

Коммуникативные: Умение с достаточной полнотой и точностью выражать свои  мысли, слушать и вступать в диалог.

3. Постановка цели и задач урока. Мотивация учебной деятельности учащихся

-Ребята, а для чего нужны скобки в математическом выражении?

-А есть ли в математике закон, который позволяет нам избавиться от скобок?

-А ещё я попрошу вас записать в буквенном виде, как числу прибавить сумму двух чисел.

-А теперь как к числу прибавить разность двух чисел.

-Запишите свойство вычитания суммы из числа.

-Запишите свойство вычитания разности из числа.

-Давайте, посмотрим внимательно на левую и правую часть этих равенств, найдите общее отличие для всех записей.

-Что мы с ними сделали?

 Так вот в математике – это называется «Раскрыть скобки».

- Итак, тема нашего урока связана с именем итальянского механика,

физика и математика Николы Тарталья. Годы его жизни с 1499-1557 г  И в 1556 году он ввёл в свои научные работы знак «круглые  скобки», которыми мы пользуемся на уроках математики и в повседневной жизни

-Как вы думаете, какая будет тема сегодняшнего урока?

-Каких целей мы должны достичь в конце урока?

-Чему новому мы должны научиться?

Тема нашего урока: Раскрытие скобок

Наша цель на уроке – познакомиться с правилами раскрытия скобок, выполнять различные задания, где необходимо раскрыть скобки

-Для того чтобы определить порядок действий; иногда упростить вычисления

- Есть, распределительный закон.

а+(в+с)=а+в+с

а+(в-с)=а+в-с

а-(в+с)=а-в-с

а-(в-с)=а-в+с

-В левой части есть скобки, а в правой части нет

-Убрали,  применив свойства

Учащиеся  формулируют тему и цель урока, записывают в тетради дату и тему урока

Фронтальная

Познавательные: извлекают необходимую информацию из высказываний одноклассников, систематизируют собственные знания.

Личностные: осознают свои возможности в учении; способны адекватно рассуждать о причинах своего успеха или неуспеха в учении, связывая успехи с усилиями, трудолюбием.

Регулятивные: Выделение и осознание того, что уже пройдено. Формулировка темы. Постановка цели урока.

Коммуникативные: обмениваются мнениями, умеют слушать друг друга, строить понятные для партнера по коммуникации речевые высказывания.

4. Объяснение нового материала

-Итак, ещё раз обратимся к записанным на доске свойствам. Обратите внимание, перед скобками  стоит знак «+», изменились ли знаки слагаемых стоящих в скобках?

-Итак, какое же правило раскрытия скобок, перед которыми стоит знак «+», можно сформулировать?

- Делаем вывод, что если, перед скобками стоит знак +, то можно опустить скобки, сохранив знаки слагаемых, стоящих в скобках. Если перед скобкой нет никакого знака, то мы считаем, что перед ней стоит «+»

-А теперь посмотрите на выражения,  в которых перед скобкой стоял знак

«-». Как вы раскрыли скобки? Что сделали со знаками слагаемых, стоящих в скобках?

Итак, какое же правило раскрытия скобок, перед которыми стоит знак «-», можно сформулировать?

- Делаем вывод,  что если, перед скобками стоит знак -,  то  надо заменить этот знак на +, поменяв знаки всех слагаемых в скобках на противоположные, а потом раскрыть скобки.

-А теперь составим алгоритм раскрытия скобок

-А теперь, я попрошу каждого из вас придумать, математическое выражение, где нужно будет раскрыть скобки и записать его в тетрадь

Нет, знак не изменился

-Ребята своими словами формулируют правило

-Изменили знаки на противоположные.

-Ребята своими словами формулируют правило

Отрабатывают алгоритм  раскрытия скобок.

Алгоритм:  

  1. Посмотреть, какой знак стоит перед скобкой
  2. Если + или ничего, то знаки, стоящие в скобках, оставляем без изменения
  3. Если, стоит -, то знаки, стоящие в скобках, меняем на противоположные .    

-Записывают самостоятельно составленное математическое выражение.

Фронтальная

Познавательные: формирование интереса к данной теме; рефлексия способов и условий действия.

Анализ объектов и синтез

Личностные: самоопределение

Коммуникативные: уметь оформлять свои мысли в устной форме; слушать и понимать речь других

Регулятивные: планирование своей деятельности для решения поставленной задачи и контроль полученного результата.

5. Физ. минутка

- Я предлагаю вам немного отдохнуть, но не забывать о теме нашего урока. Я вам буду показывать карточку с заданием и ответ, если ответ правильный – вы встаёте на носочки и поднимаете руки вверх, а если неправильный-то вы поворачиваетесь вправо, если вообще не можете никак ответить-то поворачиваетесь влево. А сейчас давайте выполним несколько упражнений.

 - Сели все ровно, продолжим работу.

а+(3-с)=а+3-с верно

6-(к+d)=6-k+d  неверно

-(f-b)= -f+b   верно

c+(-a-b)=c-a-b  верно

8-(3+n)=5+n     неверно

-c+(-f-b)= -c-f-b верно

Учащиеся сменили вид деятельности (отдохнули) и готовы продолжать работу.

Групповая

6. Контроль усвоения знаний

Работа с учебником

Выполнение заданий из учебника:   

№ 1234 (а,б) ; № 1235(а,б). № 1236 (а-г), №1238(а-б)

 Работа в парах – математическое лото

Необходимо правильно совместить 2 карточки, решение записываем в тетрадь

 

Учащиеся решают предложенные задания и сравнивают с эталоном на доске.

5,5+(3,7-5,4)             3,7

7,2-(3,2-5,9)              9, 9

(-m+n)-(n-m)             0

-1,3+(x-4,8)= -7,1        -1

           1

Выполняют задание на доске и в тетрадях

Учащиеся в паре выполняют решение предложенных заданий и сравнивают его с эталоном.

Личностные: формирование позитивной самооценки

Регулятивные: умение самостоятельно анализировать правильность выполнения действий и вносить необходимые коррективы, саморегуляция.

Коммуникативные

Поддержание здорового духа соперничества для поддержания мотивации учебной деятельности.

7. Итоги урока.

Рефлексия

– Вот и подошёл к концу наш урок.

Перед скобкой плюс стоит

И тебе он говорит:

Скобки смело опускай

И все числа выпускай

Перед скобкой минус строгий-

Он загородил дорогу

Чтобы скобки нам убрать

Надо знаки поменять.

Давайте подведём итоги нашего урока.  

-Какую цель мы поставили в начале урока.

-Как вы считаете, достигли ли мы её?

 -Что нового мы узнали на уроке?

-Для чего необходимо уметь правильно раскрывать скобки?

-Какую бы вы поставили себе оценку на уроке и почему? Обосновать её. Поставьте себе оценку на полях.

Если на уроке вам всё было понятно и сложностей не возникало – на полях нарисуйте солнышко, если были некоторые затруднения – то солнышко с тучкой, если ничего нового на уроке вы не узнали или было непонятно - нарисуйте тучку.

Отвечают

на вопросы, обосновывают своё мнение.

Фронтальная

Регулятивные: оценивают собственную деятельность на уроке.

Коммуникативные

Управление поведением партнёра- контроль, коррекция, оценка

8. Информация о домашнем задании

Учитель: Сегодня мы говорили о том, как раскрываются скобки. На следующем уроке мы будем учиться применять изученное правило в более сложных заданиях.

Запишем домашнее задание. Чтобы вам было проще разобраться в условиях задач,

прочитайте    п.39 , выучите определения и решите

№ 1254(а-в), № 1255(а,б), № 1258(а,б). №1259(а)

 Спасибо за работу на уроке!

Учащиеся записывают домашнее задание

п.38, , выучить определения.

№ 1254(а-в),

№ 1255(а,б),

№ 1258(а,б). №1259(а)

 



Предварительный просмотр:

Поворот

Цели:

  • познакомить учащихся с понятиями “поворот плоскости” , «угол поворота», “поворот”;
  • научить учащихся выполнять построение точки, луча, фигуры относительно данной точки на угол поворота;
  • сформировать у учащихся представление о повороте;
  • развивать внимание, память, логическое мышление, умение пользоваться чертежными инструментами;
  • воспитывать интерес к математике и окружающему миру.

Оборудование: мультимедийный проектор, экран, чертежные инструменты, учебник “Геометрия 7-9” авт. А.В.Погорелов.

План урока.

1. Организационный момент.

2. Повторение понятия движения и его свойств.

3. Изучение нового материала.

4. Закрепление.

5. Подведение итогов.

6. Домашнее задание.

Ход урока

I. Организационный момент.

Приветствие учащихся, сообщение им темы урока: “Поворот” и цели урока. Слайд 1

II. Опрос д/з.(Повторение понятия движения и его свойств.)

1) Какое преобразование фигуры называется движением?

(Ответ. Движением называется преобразование одной фигуры в другую, если оно сохраняет расстояние между точками.)

2) Перечислите свойства движения.

(Ответы.

-Два движения выполненные последовательно, дают снова  движение.

-Преобразование, обратное движению, также является движением.

-Точки, лежащие на прямой, при движении переходят в точки, лежащие на прямой, и сохраняется порядок их взаимного         расположения.

-При движении прямые переходят в прямые, полупрямые – в полупрямые, отрезки – в отрезки.

-При движении сохраняются углы между полупрямыми.)

Слайд 2 с ответами  для подтверждения правильности ответов.

3) Слайд 3.

Ответ: 2 см или 10 см.

III. Изучение нового материала.

1) Сейчас мы познакомимся, что такое поворот … Слайд 4

2) Сейчас мы узнаем, как задать центр поворота и угол поворота    Слайд 5.

3) Рассмотрим ещё примеры поворота фигур  Слайд 6-7.

4) А теперь ребята посмотрим, как благодаря повороту образуются симметричные фигуры в жизни(связь с жизнью)  Слайд.8

IV. Физминутка

V. Закрепление.

1)а)Выполнить поворот треугольника MNK на 60О вокруг точки О по часовой стрелке. Слайд 9

   б)№ 31(1)

2)Ответим на вопросы: Слайд 10
-Что такое поворот поворот?

-Что необходимо, чтобы задать поворот?

VI.Подведение итогов 

Существует притча о буридановом осле. У одного философа, был осёл. Однажды, уезжая надолго, философ положил по обе стороны от его морды, на совершенно равных расстояниях, две в точности одинаковые охапки сена. Осёл не смог решить, с какой охапки ему начать и умер с голода]. В каждой шутке есть доля истины: если мы имеем дело с поворотом, то одна и другая фигуры настолько одинаковы, что невозможно отдать предпочтение ни тому, ни другому.

-Что было трудно?

-Чему научились?

-Где пригодится?

-На следующем уроке продолжим тему движения и познакомимся с параллельным переносом.

VII. Выставление оценок

Домашнее задание

П.88. вопр.15., № 30-31(2-3)  Слайд 11