Тема 2.3.2 "Практическое занятие №6. Изучение свойств спиртов, альдегидов, фенола."
план-конспект урока

Нонна Борисовна Глущенко

Химические свойства альдегидов, CnH2nO. Альдегиды – органические вещества, относящиеся к классу карбонильных соединений. Физические свойства и получение ... ... Общая формула предельных альдегидов и кетонов C n H 2 n O.

В названии альдегидов присутствует суффикс –аль.

Химические свойства спиртов. Подобно большинству органических веществ, спирты горят. Пламя, образующееся при горении спиртов с небольшим числом атомов углерода в молекуле, бледно-голубое, практически не коптит, при горении выделяется большое количество теплоты ... Как и вода, спирты способны взаимодействовать со щелочными металлами. При этом также выделяется водород и образуется производное спирта, подобное солям

Скачать:


Предварительный просмотр:

 Урок по теме «Альдегиды и кетоны»

Понятие об альдегидах

https://uchitel.pro/wp-content/uploads/2021/02/2021-02-09_19-39-57.pngСовременный рынок конструкционных и отделочных материалов необыкновенно богат. Древесно-стружечные плиты, из которых изготовлена мебель, искусно маскируются под натуральное дерево. Искусственный камень, из которого сделаны столешницы кухонной мебели, внешне трудно отличить от натурального камня. Стеновые панели и пластиковая вагонка окрашены во все цвета радуги и легко монтируются. Ламинат или линолеум создают иллюзию настоящей древесины. Ручки кухонной посуды, корпуса розеток и выключателей должны выдерживать высокую температуру или электрическое напряжение, при этом не гореть, не плавиться, отвечать гигиеническим нормам, а потому должны быть изготовлены из веществ, соответствующих установленным требованиям.

Что же общего между такими непохожими предметами быта? При изготовлении многих из них используют полимерные вещества, получаемые на основе органического вещества формальдегида. Формальдегид имеет формулу СН2О, однако чаще всего её записывают в виде НСНО, поскольку она точнее отражает строение молекулы: https://uchitel.pro/wp-content/uploads/2021/02/2021-02-09_19-39-49.png

Между атомами углерода и кислорода имеется двойная связь. Группу https://uchitel.pro/wp-content/uploads/2021/02/2021-02-09_19-40-08.png

(или —СНО) называют альдегидной группой. Именно она определяет принадлежность соединения к классу альдегидов.

Вещества, в молекулах которых альдегидная группа связана с углеводородным радикалом (или атомом водорода), называют альдегидами.

Альдегиды и кетоны

(с) Цитата из справочного издания «ХИМИЯ. Справочник в таблицах / М.: Издательство АЙРИС-пресс»

 

Гомологический ряд альдегидов

Формальдегид (метаналь) — родоначальник гомологического ряда альдегидов. Это бесцветный ядовитый газ с характерным запахом, хорошо растворимый в воде. Водный раствор формальдегида называют формалином.

Общая формула представителей гомологического ряда альдегидов СnН2nО. Обозначив углеводородный радикал буквой R, общую формулу альдегидов можно записать так: https://uchitel.pro/wp-content/uploads/2021/02/2021-02-09_19-40-35.png

Формулы и названия первых представителей этого класса органических веществ приведены в таблице 6. Международные названия альдегидов образуются от названий соответствующих алканов с добавлением суффикса  -аль.

https://uchitel.pro/wp-content/uploads/2021/02/2021-02-09_19-40-57.png

 

Способы получения альдегидов

Основной промышленный метод получения формальдегида — уже знакомая вам реакция окисления соответствующего спирта, в данном случае метанола:https://uchitel.pro/wp-content/uploads/2021/02/2021-02-09_19-41-53.png

Кроме того, возможно получение формальдегида в результате каталитического окисления метана:https://uchitel.pro/wp-content/uploads/2021/02/2021-02-09_19-41-59.png

Уксусный альдегид (этаналь) в промышленности получают прямым окислением этилена в присутствии катализатора — хлорида палладия(II):https://uchitel.pro/wp-content/uploads/2021/02/2021-02-09_19-42-05.png

 Химические свойства альдегидов

Химические свойства альдегидов определяются в первую очередь наличием в их молекуле альдегидной группы.

Несмотря на наличие в альдегидной функциональной группе двойной связи, альдегиды не относят к непредельным соединениям. В типичные для непредельных соединений реакции присоединения они вступают с трудом. Тем не менее в присутствии катализатора водород способен присоединяться по связи https://uchitel.pro/wp-content/uploads/2021/02/2021-02-09_20-16-36.png

Формальдегид легко окисляется, образуя при этом карбоновую кислоту. Реакцию окисления формальдегида можно записать упрощённо, обозначив окислитель как [О]:https://uchitel.pro/wp-content/uploads/2021/02/2021-02-09_20-17-02.png

На реакциях окисления основаны качественные реакции на альдегиды. В роли окислителя можно использовать аммиачный раствор оксида серебра. В упрощённом виде эту реакцию можно выразить уравнениемhttps://uchitel.pro/wp-content/uploads/2021/02/2021-02-09_20-17-19.png

При осторожном нагревании альдегида с аммиачным раствором оксида серебра на стенках пробирки образуется блестящий налёт металла, поэтому данная реакция получила название реакция серебряного зеркала.

Альдегиды легко окисляются также свежеприготовленным гидроксидом меди(II) в щелочной среде. При этом голубой цвет осадка изменяется на кирпично-красный в результате образования оксида меди(I):https://uchitel.pro/wp-content/uploads/2021/02/2021-02-09_20-36-38.png

 Фенолформальдегидная смола

Наиболее важны с практической точки зрения реакции альдегидов, приводящие к получению высокомолекулярных продуктов (полимеров).

Взаимодействием формальдегида с фенолом синтезируют полимер фенолформальдегидную смолу. Является ли это взаимодействие реакцией полимеризации? Оказывается, нет. В данном случае протекает процесс поликонденсации, в результате которого, в отличие от полимеризации, помимо высокомолекулярного вещества, образуется побочный низкомолекулярный продукт (чаще всего вода). Схема взаимодействия формальдегида с фенолом:

https://uchitel.pro/wp-content/uploads/2021/02/2021-02-09_20-19-55.png

Уравнении реакции:https://uchitel.pro/wp-content/uploads/2021/02/2021-02-09_20-37-34.png

Реакции получения полимера, протекающие с выделением низкомолекулярного продукта, называют реакциями поликонденсации.

Если фенолформальдегидной смолой пропитать стружки или опилки и спрессовать при нагревании, получится древесно-стружечная плита. Аналогичным образом склеиванием тонких слоёв древесины (шпона) получают фанеру. Если покрыть древесно-стружечную плиту или фанеру плёнкой с рисунком под дерево или камень, получится материал для изготовления мебели. Изделия из ДСП выделяют в окружающую среду токсичные мономеры фенолформальдегидной смолы — фенол и формальдегид. Даже незначительные концентрации этих веществ могут вызывать головную боль, резь в глазах, раздражение дыхательных путей и т. д. Выделение формальдегида из ДСП контролируется и является важным показателем качества плит.

Если в фенолформальдегидную смолу добавляют различные цветные красители, наполнители, помещают в форму и нагревают, то получают устойчивые к высоким температурам изделия из полимерного материала — фенопласта. 

Формальдегид используют для дубления кожи в кожевенном производстве, так как при взаимодействии с белком он вызывает его денатурацию. В результате дубильного действия формалина кожа не подвергается гниению. На этом же свойстве формалина основано его применение для хранения биологических препаратов, дезинфекции и протравливания семян.

https://uchitel.pro/wp-content/uploads/2021/02/2021-02-09_20.png

Понятие о кетонах

В отличие от молекул альдегидов, молекулы кетонов содержат два углеводородных радикала, связанные с функциональной карбонильной группой https://uchitel.pro/wp-content/uploads/2021/02/2021-02-09_20-21-23.png. Простейший представитель кетонов — хорошо известный растворитель лаков и красок ацетон, или диметилкетон:

https://uchitel.pro/wp-content/uploads/2021/02/2021-02-09_20-21-32.png

 

Справочная таблица «Альдегиды и кетоны»

Таблица "Альдегиды и кетоны"



Предварительный просмотр:

Альдегиды

Альдегиды - летучие жидкости органического состава, являющиеся продуктом неполного окисления спиртов. Карбонильная группа в молекулах альдегидов связана с одним атомом водорода и одной группой R.

Не часто встречаются в природе в отдельном виде, но, несомненно, играют важную роль в физиологических процессах растений и животных. Общая формула альдегидов CnH2nO.

Карбонильная группа

Многие альдегиды имеют специфический запах. Высшие альдегиды, в особенности непредельные, используются в пищевой промышленности и парфюмерии.

Запах альдегидов

Номенклатура и изомерия альдегидов

Названия альдегидов формируются путем добавления суффикса "аль" к названию алкана с соответствующим числом атомов углерода: метаналь, этаналь, пропаналь, бутаналь, пентаналь и т.д.

Вы можете встретить их молекулярные формулы, где группа OH записана наоборот - HO. Например: метаналь - HCHO, этаналь - CH3CHO, пропаналь - C2H5CHO. Это делают специально для того, чтобы их было легче отличить от спиртов.

Многие альдегиды имеют тривиальные названия. Наиболее известные: метаналь - формальдегид, этаналь - ацетальдегид. Замечу, что формалином называется 40% раствор формальдегида.

Номенклатура альдегидов

Для альдегидов характерна структурная изомерия: углеродного скелета, межклассовая изомерия с кетонами.

Изомерия альдегидов

Получение альдегидов и кетонов

  1. Окисление спиртов

Важно заметить, что при окислении первичных спиртов образуются альдегиды, при окислении вторичных спиртов - кетоны. Окисление с помощью оксида меди относится к лабораторным способам получения альдегидов.

Окисление спиртов

  1. Пиролиз солей карбоновых кислот

Этот способ также просто осуществить в лабораторных условиях. При пиролизе (нагревании без доступа кислорода) кальциевых или бариевых солей карбоновых кислот возможно получение кетонов.

Получение кетонов

  1. Каталитическое дегидрирование спиртов

В присутствии катализатора и при нагревании спиртов от гидроксогруппы и прилежащего к ней атома углерода отщепляется по атому водорода. В результате образуется карбонильная группа.

Дегидрирование спиртов

  1. Реакция Кучерова

Реакцией Кучерова называют гидратацию алкинов в присутствии солей двухвалентной ртути.

В результате такой реакции ацетилен превращается в уксусный альдегид. Все остальные его гомологи: пропин, бутин, пентин и т.д. превращаются в соответствующие кетоны.

Реакция Кучерова

  1. Гидролиз дигалогеналканов

Для получения альдегида два атома галогена должны находиться у первичного атома углерода, для получения кетонов - у вторичного.

В результате такого гидролиза образуются двухатомные спирты, в которых две OH-группы прилежат к одному атому углерода. Такие соединения неустойчивы и распадаются на карбонильное соединение (альдегид или кетон) и воду.

Получение альдегидов гидролизом дигалогеналканов

  1. Окисление метана

В промышленности окислением метана при температуре 500 °C и в присутствии катализатора получают формальдегид.

Окисление метана до формальдегида

  1. Кумольный способ получения ацетона (и фенола)

В прошлой теме, посвященной фенолам, мы касались данного способа. В результате такой реакции образуется не только фенол, но и ацетон.

Кумольный способ получения фенола и ацетона

Химические свойства альдегидов и кетонов

Запомните, что для альдегидов и кетонов характерны реакции присоединения по карбонильной группе. Это является важным отличием альдегидов от карбоновых кислот, для которых реакции присоединения не характерны.

  1. Реакции присоединения

Для понимания механизма реакции важно вспомнить об электроотрицательности. В карбонильной группе кислорд, как более электроотрицательный элемент, тянет электронную плотность на себя от углерода. На атоме кислорода возникает частичный отрицательный заряд (δ-), а на атоме углерода частичный положительный (δ+).

Основы школьного курса физики подсказывают, что отрицательный заряд притягивает положительный: именно так и будет происходить при присоединении различных молекул к карбонильной группе альдегидов и кетонов.

Присоединения к альдегидам кислот и солей

Реакция гидрирования альдегидов происходит по типу присоединения, сопровождается разрывом двойной связи в карбонильной группе. Гидрирование альдегидов приводит к образованию первичных, а гидрирование кетонов - вторичных спиртов.

Гидрирование альдегидов

  1. Окисление альдегидов

В результате полного окисления, горения, образуется углекислый газ и вода.

2CH3CHO + 5O2 → 4CO2 + 4H2O

Альдегиды легко окисляются до карбоновых кислот в лабораторных условиях. Это осуществляется с помощью известной реакции серебряного зеркала. Данная реакция является качественной для альдегидов.

Кетоны, в отличие от альдегидов, в реакции окисления не вступают.

Реакция серебряного зеркала

Обратите особое внимание, что при написании реакции с аммиачным раствором серебра в полном виде, правильнее будет указать не кислоту, а ее аммиачную соль. Это связано с тем, что выделяющийся аммиак, который обладает основными свойствами, реагирует с кислотой с образованием соли

Реакция серебряного зеркала

Важно заметить, что при окислении метаналя, образовавшаяся муравьиная кислота тут же окисляется до угольной кислоты, которая распадается на углекислый газ и воду. Это связано с интересным фактом - наличием альдегидной группы у муравьиной кислоты.

Реакция серебряного зеркала с метаналем

Окисление также возможно другим реагентом - гидроксидом меди II. Эта реакция также относится к качественным для альдегидов, в результате образуется кирпично-красный осадок оксида меди I.

Окисление альдегидов гидроксидом меди II



Предварительный просмотр:

Спирты

Спирты - кислородсодержащие органические соединения, функциональной группой которых является гидроксогруппа (OH) у насыщенного атома углерода.

Спирты также называют алкоголи. Первый член гомологического ряда - метанол - CH3OH. Общая формула их гомологического ряда - CnH2n+1OH.

Классификация спиртов

По числу OH групп спирты бывают одноатомными (1 группа OH), двухатомными (2 группы OH - гликоли), трехатомными (3 группы OH - глицерины) и т.д.

Одноатомные, двухатомные, трехатомные спирты

Одноатомные спирты также подразделяются в зависимости от положения OH-группы: первичные (OH-группа у первичного атома углерода), вторичные (OH-группа у вторичного атома углерода) и третичные (OH-группа у третичного атома углерода).

Первичные, вторичные, третичные спирты

Номенклатура и изомерия спиртов

Названия спиртов формируются путем добавления суффикса "ол" к названию алкана с соответствующим числом атомов углерода: метанол, этанол, пропанол, бутанол, пентанол и т.д.

Номенклатура спиртов

Для спиртов характерна изомерия углеродного скелета (начиная с бутанола), положения функциональной группы и межклассовая изомерия с простыми эфирами, которых мы также коснемся в данной статье.

Изомерия  спиртов

Получение спиртов

  1. Гидролиз галогеналканов водным раствором щелочи

Помните, что в реакциях галогеналканов со сПИртовым раствором щелочи получаются Пи-связи (π-связи) - алкены, а в реакциях с водным раствором щелочи образуются спирты.

Гидролиз галогеналканов в водном растворе щелочи

  1. Гидратация алкенов

Присоединения молекулы воды (HOH) протекает по правилу Марковникова. Атом водорода направляется к наиболее гидрированному атому углерода, а гидроксогруппа идет к соседнему, наименее гидрированному, атому углерода.

Гидратация алкенов

  1. Восстановление карбонильных соединений

В результате восстановления альдегидов и кетонов получаются соответственно первичные и вторичные спирты.

Получение спиртов восстановлением альдегидов и кетонов

  1. Получение метанола из синтез-газа

Синтез газом в промышленности называют смесь угарного газа и водорода, которая используется для синтеза различных химических соединений, в том числе и метанола.

CO + 2H2 → (t,p,кат.) CH3-OH

  1. Получение этанола брожением глюкозы

В ходе брожения глюкозы выделяется углекислый газ и образуется этанол.

Брожение глюкозы

  1. Окисление алкенов KMnO4 в нейтральной (водной) среде

В результате такой реакции у атомов углерода, прилежащих к двойной связи, формируются гидроксогруппы - образуется двухатомный спирт (гликоль).

Окисление алкенов

Химические свойства спиртов

Предельные спирты (не содержащие двойных и тройных связей) не вступают в реакции присоединения, это насыщенные кислородсодержащие соединения. У спиртов проявляются новые свойства, которых мы раньше не касались в органической химии - кислотные.

  1. Кислотные свойства

Щелочные металлы (Li, Na, K) способны вытеснять водород из спиртов с образованием солей: метилатов, этилатов, пропилатов и т.д.

Кислотные свойства спиртов

Необходимо особо заметить, что реакция с щелочами (NaOH, KOH, LiOH) для предельных одноатомных спиртов невозможна, так как образующиеся алкоголяты (соли спиртов) сразу же подвергаются гидролизу.

  1. Реакция с галогеноводородами

Реакция с галогеноводородами протекают как реакции обмена: атом галогена замещает гидроксогруппу, образуется молекула воды.

Реакция с галогеноводородами

  1. Реакции с кислотами

В результате реакций спиртов с кислотами образуются различные эфиры.

Реакции спиртов с неорганическими кислотами

  1. Дегидратация спиртов

Дегидратация спиртов (отщепление воды) идет при повышенной температуре в присутствии серной кислоты (водоотнимающего) компонента.

Возможен межмолекулярный механизм дегидратации (при t < 140°С), в результате которого образуются простые эфиры. При более высокой температуре (t > 140°С) механизм дегидратации становится внутримолекулярный - образуются алкены.

Названия простых эфиров формируются проще простого - по названию радикалов, входящих в состав эфира. Например:

  • Диметиловый эфир - CH3-O-CH3
  • Метилэтиловый эфир - CH3-O-C2H5
  • Диэтиловый эфир - C2H5-O-C2H5

Дегидратация спиртов

  1. Окисление спиртов

Качественной реакцией на спирты является взаимодействие с оксидом меди II. В ходе такой реакции раствор приобретает характерное фиолетовое окрашивание.

Замечу, что в обычных условиях третичные спирты окислению не подвергаются. Для них необходимы очень жесткие условия, при которых углеродный скелет подвергается деструкции.

Качественная реакция на спирты

Вторичные и третичные спирты определяются другой качественной реакцией с хлоридом цинка II и соляной кислотой. В результате такой реакции выпадает маслянистый осадок.

Качественная реакция на спирты

Первичные спирты окисляются до альдегидов, а вторичные - до кетонов. Альдегиды могут быть окислены далее - до карбоновых кислот, в отличие от кетонов, которые являются "тупиковой ветвью развития" и могут только снова стать вторичными спиртами.

Окисление спиртов

  1. Качественная реакция на многоатомные спирты

Такой реакцией является взаимодействие многоатомного спирта со свежеприготовленным гидроксидом меди II. В результате реакции раствор окрашивается в характерный синий цвет.

Качественная реакция на многоатомные спирты

  1. Кислотные свойства многоатомных спиртов

Важным отличием многоатомных спиртов от одноатомных является их способность реагировать со щелочами (что невозможно для одноатомных спиртов). Это говорит об их более выраженных кислотных свойствах.

Многоатомные спирты реагируют с щелочами



Предварительный просмотр:

 Тема урока «Одноатомные спирты»

Этиловый спирт и его действие на организм

Изготавливать алкогольные напитки люди научились ещё до нашей эры. С давних времён способ получения вин сбраживанием фруктовых соков дошёл до наших дней.

Дурманящий компонент алкогольных напитков впервые был выделен алхимиками только в XI в. и получил название aqua vitae — жизненная вода. Вскоре за ним закрепилось название винный спирт. Употребление алкоголя нашими предками преследовало практическую цель: за счёт вина, разбавленного водой, или пива организм получал до 25 % энергии. До сих пор можно услышать, как пиво за его калорийность называют жидким хлебом.

Коварство алкогольных напитков заключается в том, что они очень быстро вызывают привыкание, а их токсическое действие на организм проявляется не сразу. Однозначно доказано, что любое, даже незначительное, употребление алкоголя вредит здоровью человека. При попадании винного спирта в организм происходят психические и неврологические изменения, снижаются острота мышления и чёткость восприятия, формируется неадекватное поведение. Кроме этого, под действием алкоголя происходит обезвоживание организма, кровеносные сосуды расширяются, усиливается ток крови в капиллярах, в результате чего появляется ощущение тепла и покраснение кожи. В больших количествах алкоголь приводит к тяжёлым отравлениям и гибели клеток печени.

Химическое название винного спирта вам уже знакомо: этиловый спирт, или этанол. Его химическая формула С2Н5ОН. Его молекулы содержат функциональную гидроксильную группу —ОН.

Функциональная группа — атом или группа атомов, которые определяют наиболее характерные свойства вещества и его принадлежность к определённому классу соединений.

Гомологический ряд предельных одноатомных спиртов

Этиловый спирт относится к одному из классов кислородсодержащих органических соединений — спиртам.

Спирты — органические вещества, в молекулах которых углеводородный радикал связан с гидроксильной группой —ОН.

https://uchitel.pro/wp-content/uploads/2021/02/2021-02-09_16-24-32.pngВ молекуле этилового спирта содержится одна гидроксильная группа, связанная с остатком предельного углеводорода — этильным радикалом. Именно поэтому этиловый спирт относится к гомологическому ряду предельных одноатомных спиртов. Их состав соответствует общей формуле CnH2n+1OH.

Этиловый спирт, содержащий в молекуле два углеродных атома, является вторым представителем предельных одноатомных спиртов. Родоначальник гомологического ряда — метиловый спирт СН3ОН.

Химические формулы и названия первых представителей гомологического ряда предельных одноатомных спиртов приведены в таблице.

https://uchitel.pro/wp-content/uploads/2021/02/2021-02-09_16-24-41.png

Номенклатура и изомерия спиртов

По международной номенклатуре названия спиртов образуют от названия соответствующего алкана с добавлением суффикса -ол, указывающего на принадлежность вещества к данному классу органических соединений. Обратите внимание, что при составлении названия спиртов углеродные атомы нумеруют с того конца цепи, к которому ближе гидроксильная группа.

Два последних спирта (см. табл.) обладают одной и той же молекулярной формулой С3Н7ОН, а вот химическое строение у них различное. Пропанол-1 и пропанол-2 — это изомеры, различающиеся положением функциональной группы в молекуле. Это ещё один вид структурной изомерии.

спирты

Физические свойства спиртов

В отличие от углеводородов, гомологические ряды которых начинаются с газообразных веществ, в ряду предельных одноатомных спиртов нет газов. Кроме того, в противоположность углеводородам, практически нерастворимым в воде, спирты с числом углеродных атомов от 1 до 4 смешиваются с водой в любых соотношениях. Оба эти свойства обусловлены способностью спиртов за счёт гидроксильных групп образовывать между молекулами особые связи, которые называют водородными связями.

Связь между атомом водорода одной молекулы и атомом с высокой электроотрицательностью (фтор, кислород, азот) другой молекулы называют водородной связью.

https://uchitel.pro/wp-content/uploads/2021/02/2021-02-09_16-25-53.png

За счёт водородных связей молекулы спиртов ассоциированы в жидкости (рис. 23, а) и хорошо растворимы в воде (рис. 23, б).

Спирты — прекрасные растворители органических веществ.

Способы получения спиртов

В промышленности спирты получают присоединением воды к этиленовым углеводородам. Например, в присутствии кислот этилен вступает в реакцию гидратации с образованием этилового спирта:https://uchitel.pro/wp-content/uploads/2021/02/2021-02-09_16-26-33.png

Ввести в молекулу органического вещества гидроксильную группу можно и с помощью реакции замещения. Так, при обработке галогеналканов водным раствором щёлочи атом галогена замещается группой ОН:https://uchitel.pro/wp-content/uploads/2021/02/2021-02-09_16-26-41.png

 Химические свойства спиртов

Подобно большинству органических веществ, спирты горят. Пламя, образующееся при горении спиртов с небольшим числом атомов углерода в молекуле, бледно-голубое, практически не коптит, при горении выделяется большое количество теплоты:

С2Н5ОН + 3O2  →  2СO2 + 3Н2O + Q

Горючесть спиртов позволяет использовать их в качестве добавки к автомобильному бензину. В некоторых странах (Бразилия, США, Венесуэла) миллионы автомобилей адаптированы к использованию в качестве топлива чистого этанола.

Окисление спиртов может протекать не только до углекислого газа и воды. Если в качестве окислителя использовать нагретый оксид меди(II), молекула спирта теряет два атома водорода, гидроксильная группа превращается в другую функциональную группу — альдегидную:https://uchitel.pro/wp-content/uploads/2021/02/2021-02-09_16-28-51.png

Данную реакцию можно использовать для обнаружения спиртов.

От молекулы этилового спирта можно отщепить не только атомы водорода, но и молекулу воды. Дегидратация спиртов — один из способов получения углеводородов этиленового ряда: https://uchitel.pro/wp-content/uploads/2021/02/2021-02-09_16-28-58.png

Из курса химии основной школы вам известно, что вода бурно реагирует с активными металлами (щелочными, щелочноземельными) с выделением водорода:

2Н—О—Н + 2Na = 2NaOH + H2

По строению молекулы спиртов напоминают молекулы воды, только вместо одного из двух атомов водорода они содержат углеводородный радикал. Как и вода, спирты способны взаимодействовать со щелочными металлами. При этом также выделяется водород и образуется производное спирта, подобное солям: https://uchitel.pro/wp-content/uploads/2021/02/2021-02-09_16-31-3222.png

Ещё одно важное свойство спиртов — взаимодействие с карбоновыми кислотами с образованием сложных эфиров: https://uchitel.pro/wp-content/uploads/2021/02/2021-02-09_16-31-48.png

Реакцию образования эфира называют реакцией этерификации.

 Применение спиртов

Область применения спиртов чрезвычайно широка. Метанол используют в качестве сырья для производства формальдегида, уксусной кислоты, пластмасс, лекарственных веществ. В некоторых странах его также используют как добавку к моторному топливу. В нашей стране в этих целях метанол не используют. Он очень ядовит! Уже 5—7 мл метанола, попавшие в организм, вызывают полную потерю зрения в результате поражения сетчатки глаза, а 30 мл и более могут привести к летальному исходу.

Этиловый спирт благодаря своей растворяющей способности используют в качестве растворителя лаков и красок. Также его применяют как компонент моющих жидкостей, в парфюмерной и фармацевтической промышленности. Кроме того, этиловый спирт широко применяют в медицине для дезинфекции, компрессов, обтираний и др.

На основе этилового спирта в промышленности получают десятки органических веществ: сложные эфиры, галогенпроизводные углеводородов, уксусную кислоту. Помимо спиртных напитков, этанол в небольших количествах содержат и продукты, получаемые брожением: кефир (0,1—0,2 %), квас (0,5—1 %), кумыс (до 3 %).



Предварительный просмотр:

ЦЕЛЬ: Получить альдегид из спирта .Изучить качественные реакции на альдегиды, глицерин и фенол.

ОБОРУДОВАНИЕ: Этиловый спирт, медная проволока, формальдегид, аммиачный раствор оксида серебра, глицерин, фенол, хлорид железа (3), сульфат меди, гидроксид  калия, штатив с пробирками, спиртовка, спички.

Учебник: :  Рудзитис Г.Е. Химия. 10 класс: учебник для общеобразовательных организаций: базовый уровень, М.: Просвещение.2017г.

.

                                                      СОДЕРЖАНИЕ  ОТЧЕТА:

  1.   Оформление таблицы лабораторной работы.

     2.      Защита лабораторной работы

ПОРЯДОК ВЫПОЛНЕНИЯ:

  1. Проделайте опыты лабораторной работы. (см. таблицу)
  2. Запишите в таблицу результаты наблюдений и уравнения соответствующих реакций.
  3. Сделайте вывод из результатов наблюдения.
  4. Ответьте на предлагаемые вопросы.

ВОПРОСЫ  ДЛЯ  ЗАЩИТЫ:

       1. Укажите функциональную группу альдегидов

  1. При помощи какой реакции  можно  получить альдегид в лаборатории?

  1. Как можно отличить альдегиды от других веществ?

  1. Какая реакция является качественной на глицерин?

  1. Укажите сходство и различие в свойствах одноатомных и  

     многоатомных спиртов.

  1. Укажите сходство и различие в свойствах одноатомных спиртов

     фенолов.

7.  Какая реакция является качественной на фенол?

ТаТЖТ- филиал РГУПС       ПЗ-06

Изм.

Лист

№  докум.

Подпись

Дата

Разраб.

Исследование свойств спиртов, альдегидов, фенола

Лист

Лист

Листов

Провер.

Глущенко Н.Б.

1

2

Реценз.

ТаТЖТ- филиал РГУПС  гр

Н. Кнтр.

Утверд.



Предварительный просмотр:

Выполнение работы:

Опыты

Что наблюдаете

Вывод и уравнения реакций

Опыт 1:   Смочите стенки сухой пробирки этиловым спиртом. Прокалите медную проволоку в пламени спиртовки и быстро внесите в   пробирку. Обратите внимание на цвет проволоки. Ощущаете ли вы запах альдегида?

Опыт 2:    В пробирку налейте аммиачный раствор нитрата серебра и добавьте формальдегид. Пробирку нагрейте. Что наблюдаете?

Опыт 3. . В пробирку         гидроксид калИЯ,по каплям добавьте

'налейте сульфат меди добавьте гидроксид натрия. Обратите внимание на цвет осадка. К полученному осадку прилейте формалин, смесь нагрейте. Что наблюдаете?

Опыт 4:   Налейте в пробирку раствор щелочи и добавьте несколько капель сульфата меди. К образовавшемуся осадку прилейте раствор глицерина и смесь взболтайте. Какие изменения произошли?

Опыт 5.    В пробирку поместите немного фенола и добавьте воды. Обратите внимание на растворимость фенола. Пробирку подогрейте. Полностью ли растворился фенол?

Опыт 6:    К  полученному раствору фенола прилейте        фенола по каплнм прилейте

раствор хлорида железа (З). Что наблюдаете?

    Выводы;

 


По теме: методические разработки, презентации и конспекты

Разработка открытого урока по теме "Спирты и фенолы"

Открытый урок с использованием технологии критического мышления...

Презентация на тему "Спирты и фенолы"

Презентация включает в себя разнообразные задания с применением  технологии критического мышления....

Тема 2.2.3 "Практическое занятие №5. Изучение свойств алкенов и алкинов."

Алкены. Пространственная (геометрическая) изомерия. Реакции дегидратации. Реакции присоединения (гидратация, гидрогалогенирование, галогенирование). Правило Марковникова. Реакции полимеризации. Мономе...

Тема 2.3.3 "Практическое занятие №7 Изучение свойств уксусной кислоты."

Карбоновые кислоты – производные углеводородов, содержащие карбоксильную группу –COOH. ... O RCOH. Карбоновые кислоты и их производные чрезвычайно важны ...

Тема 4.7 "Практическое занятие №2. Изучение строения нуклеиновых кислот"

Нуклеиновые кислоты – это высокомолекулярные органические соединения. (полинуклеотиды), обеспечивающие хранение и передачу генетической. информации. Нуклеи новая кисло та (от лат. nucl...

Тема 4.9 "Практическое занятие №3 Изучение строения клеток под микроскопом"

Эукариоты – это растения, животные и грибы. Прокариоты – это бактерии (в том числе цианобактерии, они же "сине-зеленые водоросли"). Главное отличие. У прокари...