Экологические факторы. Их виды и воздействие на живой организм
план-конспект занятия

Степахина Ирина Валентиновна

Экологические факторы. Их виды и воздействие на живой организм

Скачать:


Предварительный просмотр:

Экологические факторы и их характеристики

Экологическими факторами называют любые компоненты окружающей среды, прямо или косвенно воздействующие на живые организмы. По своим особенностям экологические факторы весьма разнообразны, имеют различную природу и специфику действия. Они делятся на три группы: абиотические (факторы неживой среды), биотические (связанные с влиянием живых существ) и антропогенные (связанные с деятельностью человека).

Абиотические факторы - это совокупность условий неорганической среды, каким-либо образом воздействующих на организм и их сообщества. В экологии они рассматриваются как непременные и важные факторы обеспечивающие жизнь и развитие растений, животных и микроорганизмов, они могут влиять на организмы каждый в отдельности, одновременно или взаимодействуя друг с другом. К абиотическим относятся климатические: годовая сумма температур, среднегодовая температура, влажность, давление воздуха; эдафические (эдафогенные): механический состав почвы, воздухопроницаемость почвы, кислотность почвы, химический состав почвы; орографические: рельеф, высота над уровнем моря, крутизна и экспозиция склона; химические: газовый состав воздуха, солевой состав воды, концентрация, кислотность; физические: шум, магнитные поля, теплопроводность и теплоёмкость, радиоактивность, интенсивность солнечного излучения; гидрографические: плотность воды, течение, прозрачность и т.д.; пирогенные: факторы огня.

Из климатических факторов основное экологическое значение имеют температура, влажность и свет, при этом наиболее важным является температурный фактор. От его значения зависит интенсивность обмена веществ организмов и их географическое распространение. Любой организм способен жить в пределах определенного интервала температур. При этом интервал оптимальных температур, при которых жизненные функции протекают наиболее активно, сравнительно невелик. Температурные пределы, в которых жизненные процессы протекают нормально, носят название биокинетических температур. Уровень их обусловлен многими факторами и прежде всего зависит от таксономического положения данного вида растения или животного, которое в свою очередь связано с географическим местом происхождения вида, определенными условиями его эволюционного развития.

Из климатических факторов также большое значение имеет лучистая энергия Солнца - основной источник жизни на планете. Солнце непрерывно излучает огромное количество лучистой энергии, мощность которой на верхнем пределе атмосферы составляет от 8,4 до 84 Дж/см2 мин (солнечная постоянная). По мере приближения к поверхности Земли значительная часть солнечной энергии задерживается атмосферой и растительностью.

Экологическая эффективность лучистой энергии зависит от длины волны. В зависимости от длины волны, в пределах всего светового спектра, различают видимый свет, ультрафиолетовую и инфракрасную его части.

Ультрафиолетовые лучи оказывают химическое действие на живые организмы, инфракрасные - тепловое. Основную экологическую значимость имеют: фотопериодизм - закономерная смена светлого и темного времени суток; интенсивность освещения (в люксах); напряжение прямой и рассеяной радиации (в джоулях на единицу поверхности и в единицу времени); химическое действие световой энергии.

Значение света - видимой части (0,35 - 0,75 мкм) спектра лучистой энергии, как экологического фактора связано с возможностью фотосинтеза зеленых растений и, в конечном счете, с созданием органического вещества, растительной биомассы, с суточным ритмом организмов и др.

Такие экологические факторы как ветер, атмосферное давление, смог и др. оказывают также большое влияние на биосферу в совокупности и при совместном воздействии температуры и лучистой энергии.

К эдафическим факторам относится вся совокупность физических и химических свойств почв (структура, химический состав, циркулирующие в почве вещества - газ, воды, органические и минеральные элементы и др.). Эдафическими факторами определяется жизнедеятельность организмов, обитающих в почве постоянно или частично.

К гидрохимическим и гидрофизическим факторам относятся все факторы, связанные с водой. Роль воды как экологического фактора определяется ее физическими и химическими свойствами и подвижностью. Вода - среда обитания разнообразных живых организмов. Тела живых организмов в основном состоят из воды. Так, содержание воды в растениях колеблется от 40 до 98%, в теле животных - от 35 до 83%. Без воды не могут осуществляться процессы обмена веществ. Поддержание водного баланса имеет огромное значение для всех живых организмов. Вода может быть в трех состояниях: парообразном, жидком и твердом и это имеет огромное значение в жизни растений и животных.

Все живые организмы в зависимости от потребности их в воде, а, следовательно, и по местообитаниям, подразделяются на ряд экологических групп: водные или гидрофильные (живут постоянно в воде), гигрофильные (живут в очень влажных местообитаниях), мезофильные (отличаются умеренными потребностями в воде) и ксерофильные (живут в сухих местообитаниях). Каждая из перечисленных групп - хороший индикатор господствующих в данной местности экологических условий.

К биотическим факторам относят всю сумму воздействий, которые оказывают друг на друга живые существа - бактерии, растения, животные. Биотическими факторами являются не измененные организмами абиотические условия среды (влажность, температура и др.) и не сами организмы, а взаимоотношения между организмами, прямые воздействия одних из них на другие, т.е. характер биотических факторов определяется формой взаимосвязей и взаимоотношений живых организмов. Эти взаимоотношения чрезвычайно разнообразны. Они могут складываться на основе совместного питания, обитания и размножения.

Биотические — связанные с деятельностью живых организмов:

  • фитогенные — влияние растений
  • микогенные — влияние грибов
  • зоогенные — влияние животных
  • микробиогенные — влияние микроорганизмов

Антропогенный (антропический) фактор.

В 1912 г. российский ученый проф. Г. Ф. Морозов в своей книге "Учение о лесе" определил воздействие человека на природу в качестве отдельного экологического фактора и разделил его по характеру влияния на природную среду на прямое, косвенное и условное антропогенное воздействие.

Прямое антропогенное воздействие – непосредственное влияние человека на компоненты экосистемы (биогеоценоза). Это сбор ягод, грибов, вырубка деревьев и т.п.

Косвенное антропогенное воздействие – влияние человека через промежуточный уровень. Это изменение уровня грунтовых вод, изменение температурного режима, радиационное загрязнение и т.п.

Условное антропогенное воздействие - это воздействие биотических и абиотических факторов, усиленных или ослабленных воздействием человека.

В 1981 г. опубликовано определение «Антропогенный фактор» - это всякое, связанное как с сознательной, так и с бессознательной жизнедеятельностью человека воздействие на окружающую (природную) среду, ведущее к количественным и качественным изменениям её компонентов.

В 2011 г. опубликована разработанная на примере широколиственных лесов степной зоны шкала антропогенной дигрессии биогеоценозов (экосистем), включающая 12 стадий разрушения природной среды человеком, от состояния условно не нарушенных экосистем до стадии полной потери биогеоценозами жизненных функций.

Общие закономерности влияния экологических факторов на организмы

Среди всего многообразия экологических факторов нет таких, которые бы действовали на живые организмы одинаково. Однако при всем этом экологи уже давно выделяют общие закономерности, по которым факторы оказывают влияние на организмы.

Факторы сами по себе никак не действуют. По своей природе они сменные и имеют определенную шкалу измерения: температуру измеряют в градусах, влажность - в процентах водяного пара, освещенность - в люксах, соленость в промилле, давление, кислотность почвы (воды) - водородным показателем т.д. Именно это подчеркивает то, что фактор действует с определенной силой, количество которого можно измерить.

Закон оптимума

Любой экологический фактор может восприниматься организмом положительно и отрицательно, в зависимости от дозы. Наиболее благоприятная доза экологического фактора, под действием которой вид (или организм) проявляет максимум жизнедеятельности, является оптимальной дозой. Экологи уже давно отметили, что каждому организму свойственна своя оптимальная доза того или иного фактора. В этом заключается одно из аксиоматических законов экологии - закон оптимума.

Изучать оптимальные дозы экологических факторов для тех или иных видов организмов можно разными методами: наблюдением и экспериментально. Доказательством наличия оптимальных условий существования организмов является их интенсивный рост и размножение в максимальном количестве. Измеряя те или иные дозы факторов и сопоставляя их с проявлением жизнедеятельности организмов, можно эмпирически установить оптимум определенных факторов.

Закон Шелфорда и пределы толерантности

Хотя оптимальные дозы фактора является наиболее благоприятные для организмов, однако не всегда все организмы имеют возможность потреблять экологические факторы именно в оптимальных дозах. Таким образом, некоторые факторы могут быть для них и неблагоприятными, но все равно организмы должны выжить и в этих условиях.

Изучением действия неблагоприятных доз экологических факторов на организмы занимался В. Шелфорд. Было показано, что у каждого живого организма в отношении любого фактора существуют свои пределы выносливости - минимальная и максимальная, между которыми находится экологический оптимум. За пределами выносливости организмы не могут воспринимать экологический фактор. Эти границы являются летальными точками. Существование организмов вне их невозможно. Между оптимальными и летальными дозами экологического фактора размещаются зоны песимуму - подавление жизнедеятельности организмов. Организмы могут существовать в условиях песимуму, но полностью не проявляют своей жизнедеятельности (плохо растут, не размножаются и др.). Со времен установления закона Шелфорда прошло много времени, в течение которого собралось много данных о толерантности видов. Исходя из этих материалов, экологи на сегодня сформулировали ряд положений, дополняющих закон толерантности.

Было показано, что организмы могут иметь широкий диапазон толерантности в отношении одного фактора и в то же время узкий в отношении другого. Такой принцип, когда степень устойчивости к любого фактора не означает такой же устойчивости к другим факторам, известный под названием Закон относительной независимости адаптации. Таким образом, организмы, которые выдерживают значительные изменения температуры, совсем не обязательно должны быть также хорошо приспособлены к широким колебаниям фактора влажности или солености.

Организмы, имеют широкий диапазон толерантности ко многим факторам, как правило, наиболее распространены.

Если условия по одному какому-то фактору не оптимальны для вида, то при таких причин может сузиться зона выносливости в других экологических факторов. Например, известно, что недостаток азота в почве снижает засухоустойчивость злаков.

Период размножения является наиболее критическим для организмов. Некоторые факторы в этот период становятся для организмов более влиятельными. Зона толерантности для особей, размножаются, семян, яиц, эмбрионов, проростков, личинок и т.п., уже, чем для тех особей, которые не размножаются. Например, морские лососевые рыбы заходят в реки на нерест в связи с тем, что их икра и личинки рыб не переносят солености морской воды. То есть неблагоприятное действие фактора может проявляться не на всех стадиях развития организма, а только на определенных, когда уязвимость в отношении фактора наибольшая. Эта особенность лежит в основе правила А. Тиннемана (1926) - тот из необходимых факторов окружающей среды определяет плотность популяции определенного вида, действует на стадию развития этого организма, которой свойственна наибольшая уязвимость.

Естественно, что зоны толерантности у различных организмов к различным факторам будут отличаться. Сравнивая организмы, можно выделить среди них таких, которые имеют широкую выносливость до многих факторов.

 И наоборот, в противоположность первым, выделяют организмы, у которых выносливость экологических факторов достаточно низкая - они приспособились к узким доз факторов.

Например, антарктическая рыба пестрый трематом способна переносить колебания температуры воды в довольно узких пределах от - 2С до +2 С. Рыба не способна жить при температурах, выходящих за указанные пределы. А вот большинство наших озерных и прудовых рыб способны переносить температуры от 3-4 С до 20-25 С.

Глубоководные рыбы является также, но относительно температуры и давления.

Большинство внутренних паразитов является, потому что они могут жить только в условиях определенной среды.

Птицы, которые образуют птичьи базары на скалах северных морей, в гнездовой период проявляют себя как организмы. Для своих гнезд они выбирают отвесные скалы и только здесь размножаются.

Экологическая валентность

Широкая или узкая зона выносливости (толерантности) организма к любого отдельного фактора или всей совокупности факторов дает возможность утверждать о его пластичность, или экологическую валентность. Вид считается экологически более приспособленным, например, до температуры, если его зона толерантности относительно этого фактора будет достаточно широкой. О таком виде говорят, что он является пластичным, или имеет высокую экологическую валентность. Понятно, что организмы - менее пластичны, потому что у них низкая экологическая валентность.

Организмы с высокой экологической валентностью, как правило, легко приспосабливаются к большинству условий существования. Это отражается на их распространении и численности. Так, различают космополитов. К первым относят виды, которые распространены почти по всему земному шару, но в той среде обитания, что им свойственно. Типичным космополитом среди растений есть одуванчик, а среди животных - серая крыса. Они встречаются на всех континентах. Тоже имеют глобальное распространение, но они населяют любую среду с разнообразными условиями жизни. Например, волк живет в хвойных и лиственных лесах, в степях, горах и в тундре.

Виды, которые имеют широкое распространение и высокую численность, считаются биологически прогрессивными.

Узко специализированные виды никогда не имели широкого распространения и высокой численности. Их нельзя отнести к биологически прогрессивных, однако они существуют в своих собственных условиях, в которых у них нет конкурентов, а если и найдется претендент, то узко приспособленные виды всегда будут иметь преимущество и поэтому останутся победителями. Здесь действует правило прогрессирующей специализации, которое было сформулировано в 1876 г. ПИ. Депере. Согласно этого правила, вид или группа видов, которые стали на путь специализации, в дальнейшем своем развитии будут углублять свою специализацию и совершенствовать приспособленность к определенным условиям жизни. Это очевидно, потому что уже специализированные группы всегда будут победителями в условиях, к которым они приспособились, и с каждым новым эволюционным шагом будут все более специализированными. Например, вряд ли найдутся конкуренты летучим мышам, которые царят в ночном небе, кротам, которые ведут подземный образ жизни.

Итак, одно, что угрожает существованию таких видов, - это изменения экологических условий среды. Любые серьезные нарушения окружающей среды могут стать для узко специализированных видов трагическими. Так это частое осушение болот Еверглейдсу, в результате чего исчезают улитки - основная пища этих хищных птиц.

Прямая и опосредованная действие факторов

Большинство факторов, тщательно изучали и изучают экологи, имеют прямое действие на организм. Это не удивительно, ибо именно через мгновенную или ближайшую реакцию на действие фактора можно судить о характере его действия.

Но в природе редко когда попадаются такие условия, при которых может изменяться только один фактор. Поэтому, казалось бы, простое изучение в полевых условиях действия того или иного фактора никогда не дает адекватных результатов. Исследователям трудно избежать действия других факторов и провести "чистая" полевой опыт.

Даже при условии, что исследователю удалось сделать "чистая" эксперимент, ему надо быть уверенным, что в этом случае не проявляется эффект закон неоднозначного действия фактора на различные функции), а именно: каждый экологический фактор неодинаково влияет на разные функции организма - оптимум для одних процессов может стать песимумом для других.

Например, ряд неблагоприятных условий летнего сезона (недостаточное количество солнечных дней, дождливая погода, относительно низкие температуры и т.д.) мало влияют на жизнь таких птиц, как совы семь солнечный свет непосредственно ненужное, и они хорошо защищены перьевым покровом от влажности и излишней теплоотдачи). Но при таких факторов популяция этих ночных хищных птиц не будет в оптимальных условиях, их численность за летний сезон может не только не увеличиться, но и уменьшиться. Прямое влияние неблагоприятных погодных факторов совы переносят относительно легко, чем неблагоприятные условия обеспеченности пищей. Погодные условия негативно повлияли на вегетацию растений и на популяции мышевидных грызунов (не было урожая злаковых). Сезон оказался неблагоприятным для мышей, а совы, которые в основном питаются ими, страдали от недостатка пищи для себя и своих птенцов. Так, через ряд других факторов через некоторое время чувствуется влияние самых основных факторов, которые напрямую не имеют никакого действия.

Совокупное действие экологических факторов

Окружающая среда, в которой живут организмы, является совокупность различных экологических факторов, которые еще и к тому проявляются в различных дозах. Трудно себе представить, чтобы организм воспринимал каждый фактор отдельно. В природе организм реагирует на действие всей совокупности факторов. Так же и мы, читая сейчас эту книгу, невольно воспринимаем совокупность тех факторов среды, которые на нас действуют. Мы не осознаем, что находимся в определенных температурных условиях, в условиях влажности, земного тяготения, электромагнитного поля Земли, освещенности, определенного химического состава воздуха, шума и др. На нас действует сразу большое количество факторов. Если мы выбрали хорошие условия для чтения книги, то и на действие факторов мы не будем обращать внимания. А представьте себе, что в этот момент один из факторов резко изменился и стал недостаточным (пусть стало темно) или слишком сильно начал действовать на нас (например, стало в комнате очень жарко или шумно). Тогда уже мы по-другому будем реагировать на весь комплекс факторов, которые нас окружают. Хотя большинство факторов будут влиять в оптимальных дозах, это уже нас не будет удовлетворять. Таким образом, комплексное действие экологических факторов не является простой суммой действия каждого из них. В разных случаях одни факторы могут усиливать восприятие других (констелляция факторов), а то и ослаблять их действие (лимитирующая действие факторов).

Длительная совокупное действие экологических факторов вызывает у организмов определенные приспособления и даже анатомо-морфологические изменения в строении тела. Сочетание только двух основных факторов влажности и температуры, да еще и разных доз, предопределяет на суше в глобальных масштабах различные типы климата, что, в свою очередь, формирует определенную растительность, ландшафты.

Имея элементарные знания по природоведению можно догадаться, что в условиях низких температур и высокой влажности формируется зона тундры, при высоких влажности и температуре - зона влажных тропических лесов, при высокой температуре и низкой влажности - зона пустынь.

Попарное сочетание других факторов и их длительное воздействие на организмы может вызывать определенные анатомо-морфологические изменения в организмах. Так, например, было замечено, что у рыб (сельдь, треска и др.), которые обитают в водоемах с высокой соленостью и низкими температурами возрастает число позвонков (в хвостовой части скелета); это служит приспособлением к движениям в более плотной среде (правило Жордана).

Есть также другие обобщения по комплексной длительного действия факторов на организмы в глобальных масштабах. Они больше известны как зоогеографические правила, или законы.

Правило Глогера утверждает, что географические расы животных, которые обитают в теплых и влажных зонах, имеют более интенсивную пигментацию тела (чаще всего черную или темно-коричневую), чем обитатели холодных и сухих регионов (светлую или белую окраску).

Правило Гессе отмечает, что особи популяций животных в северных районах характеризуются относительно большей массой сердца по сравнению с особями южных мест.

Как уже было отмечено, факторы никогда не действуют на организм отдельно друг от друга и их совокупное действие никогда не является простой суммой действия каждого из них. Часто случается так, что при совокупной действия факторов действие каждого может усилиться. Общеизвестно, что большие морозы в сухую погоду переносятся легче, чем небольшие во влажную погоду. Так же ощущение холода будет больше во время теплого летнего дождика, но при наличии ветра, чем в безветренную погоду. Жара труднее переносится при повышенной влажности воздуха, чем при сухом воздухе.

Противоположное эффекта совокупного действия факторов является ограничение восприятия одних факторов через другие. Это явление было открыто в 1840 году немецким агрохимиком Ю. Либихом. Изучая условия, при которых можно добиться высоких урожаев зерновых культур, Либих показал, что от вещества, концентрация которого находится в минимуме, зависят рост растений, величина и устойчивость их урожая. То Есть Ю. Либих установил, что урожай зерна часто лимитируется не теми питательными веществами, которые требуются в больших количествах, такими, как, например, двуокись углерода, азота и вода, а теми, которые требуются в малых количествах (например, бор), но которых мало. Этот принцип получил название Закона минимума Либиха: стойкость организма определяется самым слабым звеном в цепи его экологических потребностей.

Установлен экспериментально на растениях закон Либиха в дальнейшем стал применяться шире. Некоторые авторы расширили круг факторов, которые могут лимитировать биологические процессы в природе, и к питательных веществ отнесли ряд других факторов, как например, температуру и время.

Практика показала, что для успешного применения закона Либиха к нему надо добавить две вспомогательные принципы.

Первый - ограничительный; закон Либиха может быть применен только в условиях стационарного состояния, т.е. когда поступление энергии и веществ сбалансировано с их оттоком.

Другой вспомогательный принцип касается факторов. Так, высокая концентрация или доступность какого-то вещества или действие другого фактора может изменить потребление минимальной питательного вещества. Иногда случается так, что организм способен заменить вещество, которого не хватает, на другую, химически близкое и достаточно представленную в окружающей среде. Этот принцип лег в основу Закон компенсации факторов (Закон взаимозаменяемости факторов), еще известен под именем автора Е. Рюбеля с 1930 г. Так, моллюски, которые живут в местах, где много стронция, частично используют его для построения своих створок (ракушки) при дефиците кальция. Недостаточная освещенность теплицы может быть компенсирована или увеличением концентрации двуокиси углерода, или стимулювальною действием некоторых биологически активных веществ (напр., гиббереллинов - стимуляторов роста).

Но при этом не стоит забывать о существовании Закон незаменимости фундаментальных факторов (или Закона Уильямса). В соответствии с ним полное отсутствие в окружающей среде фундаментальных экологических факторов (света, воды, двуокиси углерода, питательных веществ) не может быть заменено (компенсировано) другими факторами.

Лимитирующим (ограничивающим) фактором, как выяснилось в дальнейшем, может быть не только тот, который находится в минимуме, а даже и то, что имеющийся в избытке (верхняя доза толерантности). И минимальная, и максимальная дозы какого-то фактора (пределы толерантности) ограничивают восприятие оптимальных доз других факторов. То есть любой дискомфортный фактор не способствует нормальному восприятию других оптимальных факторов.

Итак, Закон толерантности (закон Шелфорда) можно определить так: лимитирующим (ограничивающим) фактором процветания организма может быть как минимум, так и максимум экологического воздействия, диапазон между которыми определяет степень выносливости (толерантности) организма к данному фактору.

Однако при всем этом следует учитывать еще один этап изучения совокупного действия факторов. В 1909 году немецкий агрохимик и физиолог растений провел после Либиха ряд опытов и показал, что количество урожая зависит не только от какого-либо одного (пусть даже лимитирующего) фактора, но от всей совокупности действующих факторов одновременно. Эта закономерность была названа Законом эффективности факторов, но в 1918 году Б. Бауле переименовал его в Закон совокупного действия природных факторов (поэтому иногда его называют Законом Митчерлиха-Бауле). Таким образом, установлено, что в природе один экологический фактор может действовать на другой. Поэтому успех вида в окружающей среде зависит от взаимодействия факторов. Например, повышенная температура способствует большему испарению влаги, а уменьшение освещенности приводит к снижению потребностей растений в цинке и др. Этот закон может рассматриваться как поправка к закону минимума Либиха.

Организмы поддерживают со средой определенное равновесие с помощью саморегуляции. Способность организмов (популяций, экосистем) поддерживать свои свойства на определенном, достаточно стабильном уровне называют гомеостазом.

Итак, присутствие и процветание определенного вида в среде обитания обусловлена его взаимодействием с целым комплексом экологических факторов. Недостаточная или чрезмерная интенсивность действия любого из них делают невозможным процветание и само существование отдельных видов.

Температура

Любой организм способен жить только в пределах определенного интервала температур: особи вида погибают при слишком высоких либо слишком низких температурах. Где-то внутри этого интервала температурные условия наиболее благоприятны для существования данного организма, его жизненные функции осуществляются наиболее активно. По мере того как температура приближается к границам интервала, скорость жизненных процессов замедляется и, наконец, они вовсе прекращаются - организм погибает.

Пределы температурной выносливости у разных организмов различны. Существуют виды, способные выносить колебания температуры в широких пределах. Например, лишайники и многие бактерии способны жить при самой различной температуре. Среди животных наибольшим диапазоном температурной выносливости характеризуются теплокровные. Тигр, например, одинаково хорошо переносит как сибирский холод, так и жару тропических областей Индии или Малайского архипелага. Но есть и такие виды, которые могут жить только в более или менее узких температурных пределах. Сюда относятся многие тропические растения, как, например, орхидеи. В умеренном поясе они могут произрастать только в теплицах и требуют тщательного ухода. Некоторые кораллы, образующие рифы, могут жить только в морях, где температура воды не ниже 21 С. Однако кораллы отмирают и когда вода сильно перегревается.

В наземно-воздушной среде и даже во многих участках водной среды температура не остается постоянной и может сильно варьировать в зависимости от сезона года или от времени суток. В тропических областях годовые колебания температуры могут быть даже менее заметны, чем суточные. И, наоборот, в умеренных областях температура значительно различается в разные времена года. Животные и растения вынуждены приспосабливаться к неблагоприятному, зимнему сезону, в течение которого активная жизнь затруднена или просто невозможна. В тропических областях такие приспособления выражены слабее. В холодном периоде с неблагоприятными температурными условиями в жизни многих организмов как бы наступает пауза: спячка у млекопитающих, сбрасывание листвы у растений и т. д. Некоторые животные совершают длительные миграции в места с более подходящим климатом.

На примере температуры видно, что этот фактор переносится организмом лишь в определённых пределах. Организм погибает, если температура среды слишком низкая или слишком высокая. В среде, где температура близка к этим крайним значениям, живые обитатели встречаются редко. Однако их число увеличивается по мере того, как температура приближается к среднему значению, которое является наилучшим (оптимальным) для данного вида.

Влажность

На протяжении большей части своей истории живая природа была представлена исключительно водными формами организмов. Завоевав сушу, они, тем не менее, не утратили зависимости от воды. Вода является составной частью значительного большинства живых существ: она необходима для их нормального функционирования. Нормально развивающийся организм постоянно теряет воду и поэтому не может жить в абсолютно сухом воздухе. Рано или поздно такие потери могут привести к гибели организма.

В физике влажность измеряется количеством водяных паров в воздухе. Однако наиболее простым и удобным показателем, характеризующим влажность той или иной местности, является количество осадков, выпадающих здесь за год или иной период времени. Растения извлекают воду из почвы при помощи корней. Лишайники могут улавливать водяной пар из воздуха. Растения обладают рядом приспособлений, обеспечивающих минимальную потерю воды. Все сухопутные животные для компенсации неизбежной потери воды за счет испарения или выделения нуждаются в ее периодическом поступлении. Многие животные пьют воду; другие, например амфибии, некоторые насекомые и клещи, через покровы тела всасывают её в жидком или парообразном состоянии. Большая часть животных пустынь никогда не пьет. Они удовлетворяют свои потребности за счет воды, поступающей с пищей. Наконец, есть животные, получающие воду еще более сложным путем в процессе окисления жиров. Примерами могут служить верблюд и некоторые виды насекомых, например рисовый и амбарный долгоносики, платяная моль, питающиеся жиром. У животных, как и у растений, существует множество приспособлений для экономии расходов воды.

Свет

Для животных свет как экологический фактор имеет несравненно меньшее значение, чем температура и влажность. Но свет совершенно необходим живой природе, поскольку служит для нее практически единственным источником энергии.

С давних пор отличают светолюбивые растения, которые способны развиваться только под солнечными лучами, и растения теневыносливые, которые способны хорошо расти под пологом леса. Большую часть подлеска в буковом лесу, отличающемся особой тенистостью, образуют теневыносливые растения. Это имеет большое практическое значение для естественного возобновления древостоя: молодая поросль многих древесных пород способна развиваться под прикрытием больших деревьев. У многих животных нормальные условия освещенности проявляются в положительной или отрицательной реакции на свет.

Однако наибольшее экологическое значение свет имеет в смене дня и ночи. Многие животные ведут исключительно дневной образ жизни (большинство воробьиных), другие - исключительно ночной (многие мелкие грызуны, летучие мыши). Мелкие рачки, парящие в толще воды, держатся ночью в поверхностных водах, а днем опускаются на глубину, избегая слишком яркого света.

По сравнению с температурой или влажностью свет почти не оказывает непосредственного влияния на животных. Он служит лишь сигналом к перестройке протекающих в организме процессов, что позволяет им наилучшим образом отвечать на происходящие изменения внешних условий.

Перечисленными выше факторами вовсе не исчерпывается набор экологических условий, определяющих жизнь и распространение организмов. Важное значение имеют так называемые вторичные климатические факторы, например, ветер, атмосферное давление, высота над уровнем моря. Ветер обладает кос венным действием: усиливая испарение, увеличивая сухость. Сильный ветер способствует охлаждению. Это действие оказывается важным в холодных местах, на высокогорьях или в полярных областях.

Фактор тепла (температурные условия) существенно зависит от климата и от микроклимата фитоценоза, однако не меньшую роль играют орография и характер поверхности почвы; фактор влажности (вода) также в первую очередь зависит от климата и микроклимата (осадки, относительная влажность и т. д.), однако орография и биотические воздействия играют не меньшую роль; в действии светового фактора главную роль играет климат, но не меньшее значение имеют орография (например, экспозиция склона) и биотические факторы (например, затенение). Свойства почвы здесь уже почти несущественны; химизм (включая кислород) прежде всего, зависит от почвы, а также от биотического фактора (почвенные микроорганизмы и т. д.), однако и климатическое состояние атмосферы тоже немаловажно; наконец, механические факторы в первую очередь зависят от биотических (вытаптывание, сенокошение и пр.), но здесь определенное значение имеют орография (падение склона) и климатические воздействия (например град, снег и т. д.).

По способу действия экологические факторы можно подразделить на прямодействующие (т. е. непосредственно на организм) и косвенно действующие (влияющие на другие факторы). Но один и тот же фактор в одних условиях может быть прямодействующим, а в других — косвенно действующим. Причем иногда косвенно действующие факторы могут иметь очень большое (определяющее) значение, меняя совокупное действие других, прямодействующих, факторов (например геологическое строение, высота над уровнем моря, экспозиция склона и т. д.).

Приведем еще один несколько типов классификации экологических факторов:

1. Постоянные факторы (факторы, не меняются) — солнечная радиация, состав атмосферы, сила тяжести и т.д.

2. Факторы, которые меняются. Они подразделяются на периодические (температура — сезонная, суточная, ежегодная; приливы и отливы, освещение, влажность) и непериодические (ветер, пожар, гроза, все формы человеческой деятельности).

Классификация по расходованию:

• Ресурсы — элементы среды, которые организм потребляет, уменьшая их запас в среде (вода, CO2, O2, свет);

• Условия — не расходуемые организмом элементы среды (температура, движение воздуха, кислотность почвы).

Классификация по направленности:

• Векторизованные — направленно изменяющиеся факторы: заболачивание, засоление почвы;

• Многолетние-циклические — с чередованием многолетних периодов усиления и ослабления фактора, например изменение климата в связи с 11-летним солнечным циклом;

• Осцилляторные (импульсные, флуктуационные) — колебания в обе стороны от некоего среднего значения (суточные колебания температуры воздуха, изменение среднемесячной суммы осадков в течение года).

По периодичности делятся на:

- периодические (регулярно повторяются): первичные и вторичные;

- непериодические (возникают неожиданно).

Влияние экологических факторов на организмы

Факторы среды воздействуют на организм не по отдельности, а в комплексе, соответственно, любая реакция организма является многофакторно обусловленной. При этом интегральное влияние факторов не равно сумме влияний отдельных факторов, так как между ними происходят различного рода взаимодействия, которые можно подразделить на четыре основных типа:

Монодоминантность - один из факторов подавляет действие остальных и его величина имеет определяющее значение для организма. Так, полное отсутствие, либо нахождение в почве элементов минерального питания в резком недостатке или избытке препятствуют нормальному усвоению растениями прочих элементов.

Синергизм - взаимное усиление нескольких факторов, обусловленное положительной обратной связью. Например, влажность почвы, содержание в ней нитратов и освещённость при улучшении обеспечения любым из них повышают эффект воздействия двух других.

Антагонизм - взаимное гашение нескольких факторов, обусловленное обратной отрицательной связью: увеличение популяции саранчи способствует уменьшению пищевых ресурсов и её популяция сокращается.

Провокационность - сочетание положительных и отрицательных для организма воздействий, при этом влияние вторых усилено влиянием первых. Так, чем раньше наступает оттепель, тем сильнее растения страдают от последующих заморозков.

Влияние факторов также зависит от природы и текущего состояния организма, поэтому они оказывают неодинаковое воздействие как на разные виды, так и на один организм на разных этапах онтогенеза: низкая влажность губительна для гидрофитов, но безвредна для ксерофитов; низкие температуры без вреда переносятся взрослыми хвойными умеренного пояса, но опасны для молодых растений.

Факторы могут частично замещать друг друга: при ослаблении освещённости интенсивность фотосинтеза не изменится, если увеличить концентрацию углекислого газа в воздухе, что обычно и происходит в теплицах.

Результат воздействия факторов зависит от продолжительности и повторяемости действия их экстремальных значений на протяжении всей жизни организма и его потомков: непродолжительные воздействия могут и не иметь никаких последствий, тогда как продолжительные через механизм естественного отбора ведут к качественным изменениям.


По теме: методические разработки, презентации и конспекты

Интегрированныйурок «физика + биология» На тему: «Ядерная энергетика. Воздействие радиации на живые организмы и окружающую среду»

В связи с актуальностью данной темы нами был разработан интегрированный урок «Ядерная энергетика. Воздействие радиации на живые организмы и окружающую среду» для обучающихся первого курса (СПО) или вт...

Экологически факторы среды и их влияние на живые организмы

Экологическими факторами называют любые влияющие на организмы свойства или компоненты внешней среды, действие которых поддается измерению.Факторы делят на абиотические , биотические и антропогенныйК а...

«Электромагнитное поле и его воздействие на живые организмы».

Отрицательное воздействие электромагнитных полей на человека  прямо пропорционально мощности поля и времени облучения. У человека нарушается работа эндокринной системы, обменные процессы, функции...

Значение химических соединений для живых организмов

В материале представлена практическая работа, выполняемая при изучении раздела "Биология" дисциплины "Естествознание"...

Среды обитания живых организмов

Таблица"Среды обитания живых организмов"...

Кураторский час на тему "Вредное воздействие табакокурения на организм человека" для группы 1221

В кураторском часе проводилась воспитательная беседа между обучающимися группы 1221 специальности 38.02.05 "Товароведение и экспертиза качества потребительских товаров" КГБ ПОУ "Комсомо...

Проект на тему "Воздействие красок на организм детей"

В этои исследовании определяются и анализируются основные принадлежности детского художественного творчества....