Практическое работа по математике по теме "Матрицы. Операции над матрицами" для 2 курса в системе СПО
методическая разработка на тему
Цель работы: сформировать умение выполнять основные операции над матрицами.
Скачать:
Вложение | Размер |
---|---|
prakticheskaya_rabota_no1.docx | 134.75 КБ |
Предварительный просмотр:
Практическая работа №1
Тема: Матрицы. Операции над матрицами.
Цель: сформировать умение выполнять основные операции над матрицами.
Теоретические сведения к практической работе
Определение. Матрицей размером n×m называется прямоугольная таблица, составленная из n m чисел и имеющая n строк и m столбцов. Числа αij, составляющие матрицу, называются элементами матрицы
А=(αij)=
Определение. Матрицу Аt называют транспонированной по отношению к матрице А, если она получена из матрицы А заменой строк этой матрицы её столбцами, и, наоборот, столбцов строками.
.
Пример, , .
Определение. Квадратная матрица называется треугольной, если все ее элементы, размещенные над главной диагональю (под ней), равны нулю, т.е.
- верхняя треугольная матрица,
– нижняя треугольная матрица.
Определение. Матрица, все элементы которой равны нулю, называется нуль-матрицей.
Матрица-строка , матрица-столбец .
Операции над матрицами.
1) Пусть матрицы и одинаковой размерности. Суммой матриц и называется матрица той же размерности, каждый элемент которой равен сумме соответствующих элементов матрицы и .
для всех и .
2) Разностью матриц и одинаковой размерности называется матрица той же размерности, каждый элемент которой рамен разности соответствующих элементов матрицы и .
для всех и .
3) Произведением матриц на число называется матрица , каждый элемент которой равен .
4) Матрицу можно умножить на матрицу () лишь в то случае, когда число столбцов первой матрицы равно число строк второй матрицы , т.е. . При этом каждый элемент матрицы-произведения определяется так:
, для всех и .
Т.е., элемент равен сумме произведений элементов -й строки матрицы на соответствующие элементы -го столбца матрицы .
Найти произведение матрицы-строки и матрицы-столбца:
Пример 1.
1) ,
2) ,
3) ,
4) ,
5) .
Пример 2
Для заданных матриц , , найти матрицы , , , , , , .
, , .
Решение
1.1)
;
1.2) ;
1.3)
;
1.4)
;
1.5)
.
Подчеркнем еще раз, что .
1.6)
;
Содержание практической работы:
Задание 1. Для матриц , , вычислить:
1) , 2) , 3) ,
4) , 5) , 6) , если
, , .
Задание 2. Для матриц , , вычислить:
1) , 2) ,
3) , 4) , если
, , .
Задание 3. Найти произведение матриц:
1) ; 2) ;
3) ; 4) ;
5) ; 6) ;
7) ; 8)
По теме: методические разработки, презентации и конспекты
Методические рекомендации по выполнению практических работ по математике для обучающихся в СПО
Методические рекомендации по выполнению практических работ по математике предназначены для обучающихся, которые уже освоили общеобразовательную дисциплину математика и перешли к изучению высшей матема...
Практические работы по математике 10 и 11 классы
Данный материал используется учащимися во внеурочной работе...
Срезовая работа по математике за I семестр для 1 курса
для мониторинга знаний за 1 семестр ...
Практическая работа по математике для студентов 2 курса по теме иннтеграл
Данная разработка включает в себя следующие разделы: цели работы,перечень справочной литературыпорядок проведения и оформления работыкраткий теоретический материалзадания для самостоятельной рабо...
Практическое работа по математике по теме "Матрицы. Операции над матрицами" для 2 курса в системе СПО
Цель работы: сформировать умение выполнять основные операции над матрицами....
Практическое работа по математике по теме "Вычисление определителей" для 2 курса в системе СПО
Цель работы: сформировать умение вычислять определители второго, третьего и n-го порядка....
Практические работы по математике 1 курс
Практические работы по математике для специальности 38.02.03 Операционная деятельность в логистике содержат 10 работ по изучаемым темам, в работах размещен теоретический материал, основные форму...