презентация на тему "Математическая логика"
презентация к уроку на тему
презентация на тему "Математическая логика"
Скачать:
Вложение | Размер |
---|---|
matematicheskaya_logika.pptx | 1.46 МБ |
Предварительный просмотр:
Подписи к слайдам:
Содержание Предисловие Что такое логика? - История изучения - Высказывания Алгебра логики - Действия над высказываниями - Приоритет выполнения операций - Законы алгебры логики Примеры решения задач Предикаты Заключение
Предисловие В повседневной жизни мы часто сталкиваемся с ситуациями, когда не знаем, как прийти к выводу из предпосылок и получить истинное знание о предмете размышления. Логика служит одним из инструментов почти любой науки. Пример тому школьный курс математики.
Предмет логики Логика ( др.-греч . « λογική » — «искусство рассуждения») — наука, изучающая законы и формы мышления.
История Как самостоятельная наука логика оформилась в трудах греческого философа Аристотеля (384-322 г.г до н.э.). Он систематизировал известные до него сведения, и эта система стала впоследствии называться формальной или Аристотелевой логикой. Впервые в истории идеи о построении логики на математической основе были высказаны немецким математиком Г. Лейбницем (1646-1716) в конце XVII века. Он считал, что основные понятия логики должны быть обозначены символами, которые соединяются по особым правилам. Это позволит всякое рассуждение заменить вычислением. Реализация идеи Лейбница принадлежит английскому учёному Д. Булю. Он создал алгебру, в которой буквами обозначены высказывания. Введение символических обозначений в логику имело для этой науки такое же решающее значение, как и введение буквенных обозначений для математики. Именно благодаря введению символов в логику была получена основа для создания новой науки – МАТЕМАТИЧЕСКОЙ ЛОГИКИ
Высказывания Высказывание – утвердительное предложение, относительно которого можно сказать истинно оно или ложно. Обычно высказывания обозначаются заглавными латинскими буквами, а само предложение заключается в фигурные скобки. Понятие высказывания является исходным понятием математической логики.
Алгебра высказываний Дизъюнкция Импликация Эквиваленция Строгая дизъюнкция Конъюнкция Действия над высказываниями Отрицание
Приоритет выполнения операций Аν (В ~С) ∧ А → ( ВνС ) 1. Действия в скобках 1 1 2 3 4 5 5. Импликация, эквиваленция, строгая дизъюнкция 4. Дизъюнкция 3. Конъюнкция 2. Отрицание
Законы математической логики Коммутативность А В ν Ассоциативность А ν В ν С ( ) А ∧ В ∧ С ( ) Дистрибутивность А В ∧ А ν В ∧ С ( ) А ν ( ) А ∧ В ν С ( ) А ∧ ( ) Законы де Моргана А В ν ∧ А В ν ∧
Законы алгебры логики 1. А = А 2. А ν А = А 3. А ∧ А = А 4. А ν А = I 5. A ν (A ν A) = I 6. A ∧ (A ∧ A) = A 7. L = I 8. A ν L = A 9. A ∧ L = A 10. A ∧ A = L I – тождественно-истинное высказывание L – тождественно-ложное высказывание
Отрицание А А И Л Л И Отрицанием высказывания А называется такое высказывание, что В ложно, когда А истинно и В истинно, когда А ложно.
Дизъюнкция Дизъюнкцией высказываний А и В называется такое высказывание АνВ , ложное лишь в том случае, если оба высказывания А и В ложные. А В А ν В и и и и л и л и и л л л АνВ ≡ { Луна - спутник Земли или Солнце - спутник Земли } A ≡ { Луна - спутник Земли } В ≡ { Солнце- спутник Земли }
импликация Импликацией высказываний А и В называется такое высказывание А→В, ложное лишь в том случае, когда высказывание А – истинное и В – ложное. А В А → В и и и и л л л и и л л и A ≡ { Лето жаркое }, B ≡ { Зима будет холодной } А→В ≡ {E сли лето жаркое, то зима будет холодной. }
конъюнкция Конъюнкцией высказываний А и В называется такое высказывание А∧В, истинное лишь в том случае, если оба высказывания А и В истинные. А В А ∧ В и и и и л л л и л л л л A ≡ { Наталья учится в 11 а классе } В ≡ { Людмила учится в 11 а классе } 11 а класс А∧В ≡ { Наталья и Людмила учатся вместе в 11 а классе }
эквиваленция Эквиваленцией высказываний А и В называется такое высказывание А~В, истинное когда А и В – оба истинные или оба ложные высказывания. A ≡ { Убийство раскрыто }, B ≡ { Есть свидетели } Для того чтобы раскрыть убийство необходимо и достаточно найти свидетелей. А В А ~ В и и и и л л л и л л л и
Строгая дизъюнкция Строгой дизъюнкцией высказываний А и В называют высказывание А ⊕ В, истинное лишь в случаях, когда А – истинное и В – ложное высказывание или А – ложное и В – истинное высказывание. А В А ⊕ В и и л и л и л и и л л л А ≡ { Сейчас Ксюша в Москве } В ≡ { Сейчас Ксюша в Лондоне } А ⊕ В ≡ { Сейчас Ксюша в Москве или Лондоне }
Тогда, слушайте загадку! Да, капитан! Так точно, капитан! Я не слышу!! Согласно инструкции я должен находиться на судне всегда, за исключением случаев, когда с судна выгружают груз, если же груз не выгружают, то рулевой никогда не отсутствует, если не отсутствую и я. В каких случаях рулевой обязан присутствовать на судне? Вы готовы дети?
Разгадали? Давайте проверим Пусть А≡{Капитан присутствует на судне}, В≡{С судна выгружают груз}, С≡{Рулевой присутствует на судне}, тогда (В → А) и ( B→ (A→C) ) – истинные высказывания. Конъюнкция истинных высказываний истинна, т.е. (B→A) ∧( B→ (A→C))=( BvA )(B→(Av С ))= ( BvA )( Bv (Av С ))= BvA (Av С )= BvLvAC = BvAC = B→AC. Проанализировав полученное, выяснили, что рулевой присутствует на судне, если с судна не выгружают груз. Ответ: рулевой присутствует на судне, если с судна не выгружают груз.
Предикаты Утверждение, зависящее от переменной, заданной на определенном множестве и обращающееся в верное высказывание при конкретном значении переменной, называется неопределенным высказыванием или предикатом. A ( х ) ≡ {d=x+34} d
Множеством истинности предиката Р( х ), заданного на множестве М, называют множество таких значений х , при которых высказывание Р( х ) истинно. -города Российской Федерации. A ≡ { Город Х находится в Российской Федерации }
Для предикатов характерны те же действия, что и для высказываний, а именно: Конъюнкция Дизъюнкция Импликация Эквиваленция и др. ПРЕДИКАТЫ К примеру, система уравнений есть конъюнкция предикатов: х-1=5; х 2 =36; х=6; х=-6; х=6; х=6 Р1( х )=х-1=5; Р2( х )=х 2 =36; Р1( х ) ∧Р2( х )=6; (х-1=5)∧ (х 2 =36); (х=6) ∧((х=-6 ) ν (х=6)); х=6 Ответ: {6}
Кванторы Одним из способов получения высказываний из предикатов является навешивание кванторов. Для этого перед предикатом пишут кванторы – слова, описывающие его множество истинности. А Е Квантор существования Квантор всеобщности
квантор существования « ∃» Квантор существования — это символ, обозначающий единственное существование и читается как «существует» или «для некоторого». Из предиката {Ученик X Лицея №1 сдал ЕГЭ по математике на 100 баллов } получаются высказывание: {Найдется такой ученик Лицея №1, который сдаст ЕГЭ по математике на 100 баллов}
квантор всеобщности «∀» Квантор всеобщности — это символ, обозначающий всеобщность и читается как «для любого» или «для всех». Из предиката {Ученик X Лицея №1 сдал ЕГЭ по математике на 100 баллов } получаются высказывание : {Все ученики Лицея №1 сдали ЕГЭ по математике на 100 баллов}
Заключение Таким образом, мы познакомились с основными понятиями алгебры логики, научились выполнять операции с высказываниями, определенными и неопределёнными.
По теме: методические разработки, презентации и конспекты
Контрольная работа Основы двоичной логики и схемотехники
Контрольная работа Основы двоичной логики и схемотехникиЗадание: установить соответствие между терминами и их определениями/...
РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ ЛОГИКИ Среднее профессиональное образование по специальности 230111/Компьютерные сети
РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ ЛОГИКИ Среднее профессиональное образование по специальности 230111/Компьютерные сети...
Проведение интегрированных уроков в колледже (математическая логика+ английский язык, математическая логика+ основы программирования).
Конспекты интегрированных уроков, проведенных в МКЭИТ по предметам:«Элементы математической логики» и «Основыпрограммирования» с использованием программного обеспечения Microso...
Элементы математической логики - Практическое занятие №3 - Упрощение формул логики
Практическая работа "Упрощение формул логики" позволяет закрепить знание законов алгебры логики, отработать навыки преобразования формулы с помощью равносильных преобразований, сформировать умение реш...
презентация "Где логика автомобилист"
Поезентация является приложением к викторине "Где логика автомобилист"...
Презентация к уроку "Нормальные формы для формул алгебры логики"
Презентацияк уроку по дисциплине ЕН.02 Элементы математической логики на тему "Нормальные формы для формул алгебры логики". Тема расчитана на 2 академических часа....
Презентация по информатике на тему "Элементы алгебры логики. Высказывания. Логические операции"
Презентация по информатике на тему "Элементы алгебры логики. Высказывания. Логические операции"...