Самостоятельная работа Для группы А41
материал на тему
Решить задачи вы период с 27.01.16 по 05.02.16
Скачать:
Вложение | Размер |
---|---|
Для самостоятельной работы гр.А41 | 298 КБ |
Предварительный просмотр:
Самостоятельная работа № 1
«Определение единичных показателей надежности невосстанавливаемых объектов»
Цель: научить студентов определять показатели безотказности по статистическим данным
Задание: Решить задачи согласно выбранного уровня и ответить на контрольные вопросы
Примеры решения
Пример 1.1. На промысловые испытания поставлено 60 буровых лебедок. Испытания проводились в течение 2000 часов. В ходе испытаний отказало 6 буровых лебедок. Определить статистическую оценку вероятности безотказной работы изделий за время 2000 часов.
Решение.
Вероятность безотказной работы R(t1, t2) – вероятность выполнить требуемую функцию при данных условиях в интервале времени (t1, t2). Вероятность безотказной работы определяется в предположении, что в начале интервала времени (момент начала исчисления наработки) изделие находится в работоспособном состоянии.
Статистическая оценка вероятности безотказной работы определяется по формуле
,
где N – число объектов, работоспособных в начальный момент времени;
п(t) – число объектов, отказавших на отрезке от 0 до t.
Подставляем исходные данные в формулу (1.1)
.
Ответ. Вероятность безотказной работы . Вероятность безотказной работы является:
- показателем безотказности;
- единичным, так как характеризует только одно свойств – безотказность;
- экспериментальным, так как определяется по результатам испытаний;
- групповым, так как характеризует надежность партии изделий.
Пример 1.2. На промысловые испытания поставлено 60 буровых лебедок. Испытания проводились в течение 2000 часов. Зафиксированы отказы буровых лебедок в моменты времени t1 = 1210 ч; t2 = 480 ч; t3 = 900 ч; t4 = 700 ч; t5 = 1900 ч; t6 = 1100 ч; остальные буровые лебедки не отказали. Найти статистическую оценку среднего значения наработки до первого отказа.
Решение:
Средняя наработка до первого отказа – это математическое ожидание наработки по первого отказа.
Средняя наработка до первого отказа по статистическим данным определяется по формуле
~ 1905 ч
Ответ: Средняя наработка до первого отказ Т0 = 1905 ч. Средняя наработка до первого отказа является:
- показателем безотказности;
- единичным, так как характеризует только одно свойств – безотказность;
- экспериментальным, так как определяется по результатам испытаний;
- групповым, так как характеризует надежность партии изделий.
Пример 1.3. На испытания поставили 200 изделий. За 100 часов работы отказало 25 изделий. За последующие 10 часов отказало еще 7 изделий. Определить статистическую оценку вероятности безотказной работы и вероятности отказа на моменты времени t1 = 100 ч и t2 = 110 ч, оценку плотности распределения отказов и интенсивности отказов в промежутке времени между t1 = 100 ч и t2 = 110 ч.
Решение. Статистическую оценку вероятности безотказной работы на момент времени t1 = 100 ч определяем по формуле
;
Определяем количество отказавших изделий на момент времени t2 = 110 ч
изд.
и вероятность безотказной работы на момент времени t2 = 110 ч
.
Статистическая оценка вероятности отказа на соответствующие моменты времени определяется по формуле (1.2)
,
.
Плотность распределения отказов во времени определяем по формуле (1.3)
1/ч.
Оценку интенсивности отказов можно определить по формуле (1.4)
1/ч.
Ответ: ; ; ; ; 1/ч; 1/ч. Данные показатели являются:
- показателями безотказности;
- единичными, так как характеризуют только одно свойств – безотказность;
- экспериментальными, так как определяются по результатам испытаний;
- групповыми, так как характеризуют надежность партии изделий.
Задания для самостоятельной работы
Уровень А
Задача 1. На испытание поставлено 200 однотипных изделий. За 2000 ч отказало 50 изделий. За последующие 100 часов отказало ещё 5 изделий. Требуется определить:
1. статистическую оценку вероятности безотказной работы за время работы t1 = 2000 час и t2 = 2100 час;
2. статистическую оценку вероятности отказа за время работы t1 = 2000 час и t2 = 2100 час;
3. оценку плотности распределения отказов и интенсивности отказов в промежутке времени между t1 = 2000 час и t2 = 2100 час.
Задача 2. На испытание поставлено 100 однотипных изделий. За 4000 часов работы отказало 50 изделий. Определить статистические оценки вероятности безотказной работы и вероятности отказа за время работы 4000 часов.
Задача 3. На испытание поставлено 100 однотипных изделий. За 4000 часов работы отказало 50 изделий. За последующие 50 часов еще 5 изделий. Дать оценку плотности распределения отказов и интенсивности отказов в промежутке времени между t1 = 4000 час и t2 = 4050 час.
УРОВЕНЬ В
Задача 1. В течение 500 часов работы из 20 буровых насосов отказало 2. За интервал времени 500 – 520 часов отказал еще один буровой насос. Дать оценку плотности распределения отказов и интенсивности отказов в промежутке времени между t1 = 500 час и t2 = 520 час.
Задача 2. На испытание поставлено 2000 подшипников качения. За первые 3000 часов отказало 80 изделий. За интервал времени 3000 – 4000 часов отказало еще 50 подшипников. Требуется определить статистическую оценку вероятности безотказной работы за время 4000 часов.
УРОВЕНЬ С
Задача 1 На испытание поставлено 600 изделий. За время 1200 часов вышло из строя 125 штук изделий. За последующий интервал времени 1200 – 1250 часов вышло из строя еще 13 изделий. Необходимо определить статистическую оценку вероятности безотказной работы и вероятности отказа за время работы t1 = 1200 час и t2 = 1250 час; оценку плотности распределения отказов и интенсивности отказов в промежутке времени между t1 = 1200 час и t2 = 1250 час.
Задача 3 На испытание поставлено 10 однотипных изделий. Получены следующие значения времени безотказной работы: t1 = 580 час; t2 = 720 час; t3 = 860 час; t4 = 550 час; t5 = 780 час; t6 = 830 час; t7 = 910 час; t8 = 850 час; t9 = 840 час; t10 = 750 час. Определить статистическую оценку среднего времени безотказной работы изделия.
Контрольные вопросы:
- Что такое безотказность?
- Какие показатели надежности являются показателями безотказности?
- Что такое вероятность безотказной работы?
- Что такое вероятность отказа?
- Как определяются статистические оценки вероятности безотказной работы и вероятности отказа?
- Как определяется плотность распределения наработки?
- Что такое интенсивность отказов?
- Кривая зависимости интенсивности отказа во времени.
- Дайте определение средней наработки до отказа и средней наработки до первого отказа.
Литература:
- Острейковский В.А. Теория надежности: учебник для вузов. – 2-е изд., испр. – М.: Высшая школа, 2008. – 464 с.;
Самостоятельная работа № 2
«Определение показателей безотказности невосстанавливаемых объектов по статистическим данным»
Цель: научить студентов определять показатели безотказности по статистическим данным
Задания
На основе представленных статистических данных провести расчет и анализ показателей надежности серии невосстанавливаемых объектов.
Пример выполнения задания
Исходные данные: Число изделий, поставленных на испытание, N = 1000 изделий. Испытания проводятся в течение 100 часов. Каждые сто часов определялось количество отказов изделий. Результаты испытаний представлены в таблице 2.1.
Задание:
1. Найти статистическую оценку распределения вероятностей отказа Q(t) и безотказной работы R(t) во времени.
2. Найти изменение плотности вероятности отказов f(t) и интенсивности отказов λ(t) по времени.
3. Результаты расчета отразить на графиках.
Решение.
- Определяем количество работоспособных изделий на конец каждого периода по формуле
- Определяем статистическую оценку вероятности безотказной работы на конец каждого периода по формуле
.
- Определяем количество отказавших деталей нарастающим итогом на конец каждого периода по формуле
- Определяем статистическую оценку вероятности отказа на конец каждого периода по формуле
.
- Определяем статистическую оценку плотности вероятности отказов по формуле
.
- Определяем значение интенсивности отказов по формуле
- Результаты расчета для удобства сводим в таблицу 2.1
- По данным расчета строим графики зависимости расчетных величин по времени (рисунки 1.1, 1.2, 1.3)
Таблица 2.1 – Результаты расчета статистических оценок показателей безотказности
Временной интервал Δt, час | Количество отказов за данный интервал Δn(t) | Количество работоспособных изделий на конец периода N(t) | Количество отказавших изделий на конец периода | Вероятность безотказной работы R(t) | Вероятность отказа Q(t) | Плотность вероятности отказов f(t), ·10-2 | Интенсивность отказов λ(t), ·10-2 |
1000 | |||||||
0 – 100 | 50 | 950 | 50 | 0,95 | 0,05 | 0,0005 | 0,00052632 |
100 – 200 | 40 | 910 | 90 | 0,91 | 0,09 | 0,0004 | 0,00043956 |
200 – 300 | 20 | 890 | 110 | 0,89 | 0,11 | 0,0002 | 0,00022472 |
300 – 400 | 20 | 870 | 130 | 0,87 | 0,13 | 0,0002 | 0,00022989 |
400 – 500 | 10 | 860 | 140 | 0,86 | 0,14 | 0,0001 | 0,00011628 |
500 – 600 | 70 | 790 | 210 | 0,79 | 0,21 | 0,0007 | 0,00088608 |
600 – 700 | 110 | 680 | 320 | 0,68 | 0,32 | 0,0011 | 0,00161765 |
700 – 800 | 280 | 400 | 600 | 0,4 | 0,6 | 0,0028 | 0,007 |
800 – 900 | 250 | 150 | 850 | 0,15 | 0,85 | 0,0025 | 0,01666667 |
900 – 1000 | 150 | 0 | 1000 | 0 | 1 | 0,0015 |
|
Рисунок 2.1 – График зависимости вероятности безотказной работы и вероятности отказа от времени
Рисунок 2.2 – График зависимости плотности распределения отказов во времени
Рисунок 2.3 – График зависимости интенсивности отказов от времени
Таблица 2.2 – Исходные данные для выполнения домашнего задания по практической работе № 2
Номер варианта | Общее кол-во изделий | Количество отказавших изделий за интервал времени ti, шт. | |||||||||
0 – 100 | 100 – 200 | 200 – 300 | 300 – 400 | 400 – 500 | 500 – 600 | 600 – 700 | 700 – 800 | 800 – 900 | 900 – 1000 | ||
1 | 1000 | 30 | 170 | 50 | 20 | 30 | 20 | 280 | 200 | 70 | 130 |
2 | 2500 | 80 | 320 | 300 | 20 | 80 | 600 | 600 | 110 | 210 | 200 |
3 | 3000 | 100 | 500 | 200 | 10 | 90 | 100 | 100 | 600 | 100 | 500 |
4 | 5100 | 150 | 950 | 200 | 100 | 50 | 190 | 1360 | 1100 | 250 | 750 |
5 | 1150 | 50 | 180 | 60 | 20 | 35 | 25 | 330 | 220 | 50 | 170 |
6 | 7300 | 1240 | 370 | 140 | 230 | 140 | 2060 | 1450 | 450 | 1000 | 1240 |
7 | 8300 | 250 | 1410 | 420 | 170 | 250 | 160 | 2320 | 1660 | 420 | 1240 |
8 | 300 | 9 | 51 | 15 | 6 | 9 | 6 | 84 | 60 | 15 | 45 |
9 | 1000 | 30 | 170 | 50 | 30 | 20 | 20 | 180 | 300 | 140 | 60 |
10 | 300 | 9 | 51 | 15 | 9 | 6 | 6 | 54 | 90 | 42 | 18 |
11 | 700 | 22 | 117 | 38 | 20 | 12 | 13 | 143 | 195 | 98 | 42 |
12 | 6700 | 200 | 1140 | 260 | 270 | 140 | 134 | 1206 | 2010 | 890 | 450 |
13 | 3700 | 110 | 630 | 190 | 110 | 70 | 80 | 660 | 1110 | 520 | 220 |
14 | 1200 | 40 | 200 | 60 | 36 | 24 | 24 | 216 | 360 | 168 | 72 |
15 | 1800 | 60 | 300 | 90 | 60 | 30 | 36 | 324 | 540 | 252 | 108 |
16 | 1300 | 34 | 224 | 66 | 30 | 14 | 16 | 276 | 380 | 186 | 74 |
17 | 13300 | 390 | 2270 | 510 | 530 | 270 | 258 | 2402 | 4010 | 1770 | 890 |
18 | 7300 | 210 | 1250 | 370 | 210 | 130 | 150 | 1310 | 2210 | 1030 | 430 |
19 | 2300 | 70 | 390 | 110 | 62 | 38 | 38 | 422 | 710 | 326 | 134 |
20 | 3500 | 110 | 590 | 170 | 110 | 50 | 62 | 638 | 1070 | 494 | 206 |
Контрольные вопросы:
- Свойства функции вероятности безотказной работы?
- Свойства функции вероятности отказа?
- Каким образом определяется плотность распределения наработки во времени?
- Кривая зависимости интенсивности отказа во времени.
- Кривая плотности распределения отказов во времени
Литература:
- Острейковский В.А. Теория надежности: учебник для вузов. – 2-е изд., испр. – М.: Высшая школа, 2008. – 464 с.;
Самостоятельная работа № 3
«Определение единичных и комплексных показателей восстанавливаемых объектов»
Цель: научить студентов определять показатели надежности по статистическим данным
Примеры решения
Пример 3.1. На промысловые испытания поставлено 3 буровых насоса. В ходе испытаний у первого насоса было зафиксировано 144 отказа, у второго – 160 отказов, у третьего – 157 отказов. Суммарная наработка на отказ для первого насоса составила 3250 часов, для второго – 3600 часов, для третьего – 2800 часов. Определить среднюю наработку до отказа и средний ресурс бурового насоса.
Решение. Средняя наработка до отказа определяется по формуле
час.
Средний ресурс определяем по формуле
час.
Ответ. Средняя наработка до отказа равна час, данный показатель является:
- показателем безотказности;
- единичным, так как характеризует только одно свойств – безотказность;
- экспериментальным, так как определяется по результатам испытаний;
- смешанным, так как характеризует надежность небольшой партии изделий.
Средний ресурс равен , час, данный показатель является:
- показателем долговечности;
- единичным, так как характеризует только одно свойств – долговечность;
- экспериментальным, так как определяется по результатам испытаний;
- смешанным, так как характеризует надежность небольшой партии изделий.
Пример 3.2. На испытания поставлено 500 изделий. Результаты определения ресурса представлены в таблице 1.4. По данным испытаний определить гамма-процентный ресурс для γ = 95 %, 90 % и 80 %.
Таблица 3.1 – Результаты испытаний изделий
№№ | Интервал времени, час | Количество отказавших изделий n(t) |
1 | 0 – 100 | 24 |
2 | 100 – 200 | 29 |
3 | 200 – 300 | 35 |
4 | 300 – 400 | 15 |
5 | 400 – 500 | 16 |
6 | 500 – 600 | 20 |
7 | 600 – 700 | 35 |
8 | 700 – 800 | 57 |
9 | 800 – 900 | 133 |
10 | 900 – 1000 | 136 |
Решение. Для определения гамма-процентного ресурса необходимо найти значение наработки, вероятность которой равна 0,95; 0,90; 0,80, согласно формуле
.
Определим количество работоспособных изделий и вероятность безотказной работы на конец каждого временного интервала, результаты расчета сведены в таблицу 3.2.
Таблица 3.2 – Результаты расчета
№№ | Интервал времени, час | Количество отказавших изделий n(t) | Количество работоспособных изделия N(t) к концу периода | Вероятность безотказной работы P(t) |
1 | 0 – 100 | 24 | 476 | 0,952 |
2 | 100 – 200 | 29 | 447 | 0,894 |
3 | 200 – 300 | 35 | 412 | 0,824 |
4 | 300 – 400 | 15 | 397 | 0,794 |
5 | 400 – 500 | 16 | 381 | 0,762 |
6 | 500 – 600 | 20 | 361 | 0,722 |
7 | 600 – 700 | 35 | 326 | 0,652 |
8 | 700 – 800 | 57 | 269 | 0,538 |
9 | 800 – 900 | 133 | 136 | 0,272 |
10 | 900 – 1000 | 136 | 0 | 0 |
По представленному расчету вероятностям 0,95; 0,90 и 0,80 соответствуют значения наработки равные 100, 200 и 400 часов соответственно (выделены в таблице 3.2).
Ответ: гамма-процентные ресурсы равны Тр95 = 100 часов; Тр90 = 200 часов; Тр95 = 400 часов, показатели являются:
- показателем долговечности;
- единичным, так как характеризует только одно свойств – долговечность;
- экспериментальным, так как определяется по результатам испытаний;
- смешанным, так как характеризует надежность небольшой партии изделий.
Пример 3.3. В результате наблюдений за работой буровой лебедки получены следующие данные о времени, затраченном на смену тормозных лент, в часах: 2,5; 1,8; 1,8; 2,6; 0,8; 1,2; 0,6; 2,0; 1,6; 3.2. Всего 10 наблюдений. Определить среднее время восстановления буровой лебедки.
Решение: Статистическая оценка среднего времени восстановления вычисляется по формуле (1.13)
часа,
Ответ: среднее время восстановления равно часа, показатель является:
- показателем ремонтопригодности;
- единичным, так как характеризует только одно свойств – ремонтопригодность;
- эксплуатационным, так как определяется по результатам эксплуатации;
- единичным, так как характеризует надежность одного изделия.
Пример 3.4. Определить коэффициент готовности системы при среднем времени восстановления равном 2 часа и средней наработке на отказ равной 100 часов.
Решение: Среднее значение коэффициента готовности Кг вычисляют по формуле (1.16)
.
Ответ: Коэффициент готовности равен.
- показателем готовности;
- комплексным, так как характеризует безотказность, ремонтопригодность и готовность;
- эксплуатационным, так как определяется по результатам эксплуатации;
- единичным, так как характеризует надежность одного изделия.
Пример 3.5. Определить коэффициент технического использования, если известно, что система эксплуатируется в течение 1 года, годовой фонд времени системы составляет 8760 часов. Время проведения ежегодного техосмотра составляет 20 суток, суммарное время, затраченное на ремонтные работы, составляет 20 часов.
Решение: Коэффициент технического использования определяется по формуле (1.17)
.
Ответ: Коэффициент технического использования равен , показатель является:
- показателем готовности;
- комплексным, так как характеризует безотказность, ремонтопригодность и готовность;
- эксплуатационным, так как определяется по результатам эксплуатации;
- единичным, так как характеризует надежность одного изделия.
Задания для самостоятельной работы
Задача 3.1. На промысловые испытания поставлено 3 вертлюга. В ходе испытаний у первого насоса было зафиксировано 37 отказа, у второго – 29 отказов, у третьего – 48 отказов. Суммарная наработка на отказ для первого вертлюга составила 3100 часов, для второго – 2200 часов, для третьего – 2700 часов. Определить среднюю наработку до отказа.
Задача 3.2. На эксплуатацию поставлено 250 изделий. На моменты времени t1 – t7 зафиксировано определенное количество отказов (таблица 1.6). Остальные изделия не отказали. Определить средний ресурс.
Таблица 1.6.
ti, час | 50 | 100 | 150 | 200 | 250 | 300 | 350 |
n(ti) | 5 | 8 | 11 | 15 | 21 | 31 | 9 |
Задача 3.3. На промысловые испытания поставлено 3 насоса. В ходе испытаний у первого насоса было зафиксировано 37 отказа, у второго – 29 отказов, у третьего – 48 отказов. Суммарная наработка до отказа для первого насоса составила 3100 часов, для второго – 2200 часов, для третьего – 2700 часов. Определить средний ресурс насоса.
Задача 3.4. Длительность проведения технического обслуживания для бурового насоса составляет 45 часов. Межремонтный цикл составляет 2335 часов. Определить коэффициент готовности бурового насоса.
Задача 3.5. Какую длительность восстановления работоспособности должен иметь объект с межремонтным циклом 2000 часов, чтобы коэффициент готовности объекта составлял 0,95.
Задача 3.6. Определить среднее время восстановления компрессора, если на проведение 5 мелких ремонтов было затрачено 30,5 часа.
Задача 3.7. Годовое время работы одной буровой лебедки составляет 3500 часов. За год проводится 4 технических обслуживания продолжительностью 65 часов каждое и 1 средний ремонт продолжительностью 360 часов. Определить коэффициент технического использования буровой лебедки.
Задача 3.8. По данным задачи 3.7 определить коэффициент готовности буровой лебедки.
Задача 3.9. В ходе наблюдений за работой турбобура были зафиксированы отказы в следующие моменты времени: 110, 167, 284, 365, 512, 650 часов работы. Определить среднюю наработку между отказами турбобура.
Задача 3.10. По данным задачи 3.9 определить вероятность безотказной работы и вероятность отказа за 300 и 600 часов работы.
Контрольные вопросы:
- дайте определение средней наработки до отказа и средней наработки на отказ;
- какие показатели используются при определении долговечности;
- как определяются средний и гамма-процентный ресурс;
- как определяются средний и гамма-процентный срок службы,
- дайте характеристику показателям ремонтопригодности: вероятности восстановления, интенсивности восстановления, среднему сроку восстановления;
- дайте характеристику показателям сохраняемости: среднему сроку сохраняемости, гамма-процентному сроку сохраняемости;
- приведите определение и дайте характеристику коэффициенту готовности;
- приведите определение и дайте характеристику коэффициенту оперативной готовности;
- приведите определение и дайте характеристику коэффициенту технического использования;
- приведите определение и дайте характеристику коэффициенту сохранения эффективности.
Литература:
- Острейковский В.А. Теория надежности: учебник для вузов. – 2-е изд., испр. – М.: Высшая школа, 2008. – 464 с.
По теме: методические разработки, презентации и конспекты
Методические указания по выполнению практических работ и организации самостоятельной работы по профессиональному модулю «Выполнение работ по рабочей профессии «Кассир» для студентов СПО специальности38.02.01Экономика и бухгалтерский учет (по отраслям)
Методические указания содержат общие указания по выполнению практических работ и организации самостоятельной работы студентов, задания для практических работ, задания для самостоятельной работы, тесты...
Самостоятельная работа в группах на занятиях МДК.01.01. Конструкция, техническое обслуживание и ремонт подвижного состава (тепловозы и дизель-поезда) по теме: «Конструкция бесчелюстного и челюстного буксовых узлов»
В методической разработке представлена групповая форма самостоятельной работы. Данная методика самостоятельной работы предполагает дифференцированную групповую работу, выполнение гру...
Самостоятельная работа на уроке как способ развития познавательной самостоятельности младших школьников
Самостоятельная работа учеников подразумевается во всех классификациях методов. Это та часть любого метода, которая содержит к нему необходимое дополнение – обучение, выполнение учебных заданий ...
МЕТОДИЧЕСКИЕ УКАЗАНИЯ для самостоятельной работы в группах ТОП-50 профессии Повар, кондитер ОП. 01 «Основы микробиологии, физиологии питания, санитарии и гигиены»
Данные методические указания разработаны в помощь обучающимся для выполнения внеаудиторной самостоятельной работы по учебной дисциплине ОП. 01 «Основы микробиологии, физиологии питания, санитари...
Задания для самостоятельной работы по литературе для группы 1БС91
Задания для самостоятельной работы для 1БС 91 по литературе предлагаются для индивидуального изучения в рамках дистанционного обучения...
Задания для самостоятельной работы по литературе для группы 1МНЭ90
Задания для самостоятельной работы для 1БС 91 по литературе предлагаются для индивидуального изучения в рамках дистанционного обучения...
16.09.2020. Задание для самостоятельной работы для группы 1МНЭ02
Задание для самостоятельной работы по теме И. А.Гончаров. Жизненный и творческий путь. Роман "Обломов"предназначено для группы 1МНЭ02 в рамках дистанционного обучения...