МАТЕМАТИКИ НАШЛИ НОВЫЙ ПЯТИУГОЛЬНЫЙ ПАРКЕТ
Паркетом называется такое замощение плоскости многоугольниками, при котором вся плоскость оказывается покрытой этими многоугольниками и любые два многоугольника либо имеют общую сторону, либо имеют общую вершину, либо не имеют общих точек.
Ещё пифагорейцам были известны заполнения плоскости: квадратами, равносторонними треугольниками, правильными шестиугольниками.
Математики из филиала Вашингтонского университета в Ботелле обнаружили новый, пятнадцатый способ замощения плоскости выпуклыми пятиугольниками. Об этом сообщает The Guardian.
Существует несколько теорем, которые описывают возможные паркеты для выпуклых многоугольников. Известно, что любым треугольником и четырехугольником (кстати, и невыпуклым тоже) плоскость замостить можно. Также, в 60-х годах была доказана теорема, что существует всего три вида выпуклых шестиугольников, из которых можно собрать паркет. Кроме этого для выпуклых многоугольников с количеством сторон больше шести паркетов не существует.
Ситуация с пятиугольниками намного сложнее: на настоящий момент не существует теоремы, описывающей классификацию замощений плоскости выпуклыми пятиугольниками. Последний до недавнего времени паркет за номером 14 был открыт математиком-любителем Маржори Райс в 1985 году.