Индивидуальный итоговый проект
Вложение | Размер |
---|---|
proekt.docx | 511.17 КБ |
Муниципальное общеобразовательное учреждение
Иркутского районного муниципального образования
«Карлукская средняя общеобразовательная школа»
Индивидуальный итоговый проект
Искусственный интеллект в медицине. Настоящее и будущее
Автор работы: Иванова Татьяна, 10 класс |
Руководитель: Нацюк Ю.Л. Предметная область: Информатика
|
2023
ОГЛАВЛЕНИЕ
Оглавление
Применение ИИ в медицине - 13 -
Автоматизация процессов - 14 -
Перспективы применения ИИ - 16 -
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ…………………………..- 22-
Актуальность: Внедрение систем искусственного интеллекта в медицине – это один из важнейших современных трендов мирового здравоохранения. Технология искусственного интеллекта в корне меняют мировую систему здравоохранения, позволяя кардинальным образом переработать систему медицинской диагностики, а также в целом повысить качество услуг здравоохранения при одновременном снижении расходов для медицинских клиник.
Проблема: Сейчас очень остро поднимается вопрос о том, чтобы на основе рукописных медицинских карт обучить нейронные сети. Из-за огромного количества заболеваний, похожих симптомов и где-то из-за неопытности врачей очень сложно на раннем этапе выявить недуг и назначить правильное лечение.
Цель: Познакомиться с разработками искусственного интеллекта в области медицины, а также изучить доступность сервисов диагностики заболеваний с помощью искусственного интеллекта.
Задачи:
Медицинские сервисы с использованием технологий ИИ
Медицинские технологии — молодая, но быстроразвивающаяся отрасль науки и бизнеса, основной целью которой является повышение качества, удобства и безопасности оказываемых медицинских услуг. Сегодня в медицинской практике активно используются нейросети — модели, которые построены на основе человеческой нервной системы.
Нейросети активно применяются в рентгенологической практике, помогая врачу-рентгенологу поставить диагноз на раннем этапе. Например, нейросеть может проанализировать сотни обезличенных снимков, сравнить их со снимками здоровых пациентов и подсветить врачу наличие или отсутствие опасной патологии. Именно такие системы активно интегрируются в системы поддержки принятия врачебных решений.
Система поддержки принятия врачебных решений (СППВР) — это сервис на основе искусственного интеллекта, который позволяет врачу получить рекомендацию при лечении, диагностике и мониторинге состояния пациента. При этом такие системы включают в себя не только искусственный интеллект, но и электронные справочники, системы проверки безопасности терапии, системы контроля качества и системы скрининга врачебных лекарственных назначений.
Можно легко представить ситуацию: на приём к врачу пришёл пациент с сахарным диабетом. Как правило, у таких пациентов, помимо диабета, есть много сопутствующих заболеваний, о которых врачу также необходимо помнить. И главная задача врача в таком случае — вылечить пациента, учитывая все особенности его анамнеза. В этом врачу помогает СППВР: она видит всю историю болезни и в своих рекомендациях основывается на анализе всех имеющихся данных.
Представим, что врач назначил препарат, который противопоказан пациенту по какому-то из имеющихся у него заболеваний. При сахарном диабете второго типа (СД-2) часто назначают метморфин. Если врач назначит пациенту с хронической сердечной недостаточностью такое лекарство, программа подскажет врачу, что это лекарство лучше заменить, а также предложит ему список более подходящих препаратов. И врач, в свою очередь, может скорректировать план лечения с учётом этих рекомендаций.
Однако важно понимать, что такие системы являются вспомогательными. В российской практике законодательно закреплено, что такое программное обеспечение не может самостоятельно ставить диагноз: это может сделать только врач!
Чтобы разработать такую систему, необходима высокая медицинская технологическая экспертиза, а также очень большое количество медицинских данных, потому что именно на них алгоритмы обучаются ставить диагнозы.
На сегодняшний день существует несколько видов подобных сервисов — СППВР, симптомчекеры, а также сервисы, работающие в режиме реального времени и помогающие врачам при диагностических исследованиях.
Симптомчекер представляет собой анкету с перечнем симптомов. Такие анкеты могут заполняться пациентом либо перед приёмом, либо непосредственно на самом приёме совместно с врачом. В российской практике, чтобы избежать самолечения со стороны пациентов, внедряется предварительное заполнение таких анкет, но без демонстрации пациентам возможных диагнозов: их видит только врач.
Симптомчекеры особенно актуальны в случаях, когда к начинающему врачу приходят пациенты с обширной или размытой симптоматикой — в этих случаях программа может подсказать врачу не только диагнозы, которые наиболее вероятны при определённой клинической картине, но и рекомендации по лечению, а также направления на дополнительные исследования или на приём к узкоспециализированному врачу.
В более продвинутых медицинских сервисах могут использоваться технологии компьютерного зрения. Например, такие технологии применяются при процедурах гастроскопии. В классической практике врач с помощью камеры эндоскопа исследует слизистые оболочки органов и самостоятельно ищет отклонения. В силу сложности данного исследования врач может упустить детали, важные для постановки верного диагноза. Компьютерное зрение помогает врачу замечать такие детали.
Работа сервиса выглядит следующим образом: к камере эндоскопа подключается специальный алгоритм на базе искусственного интеллекта. На специальном мониторе он подсвечивает врачу области с возможными отклонениями и даёт рекомендации дополнительно сфотографировать и исследовать выделенные области. После обследования врач загружает снимки в СППВР, которая помогает подтвердить или скорректировать ранее поставленный диагноз.
В настоящий момент ГК «МЕДСИ» разрабатывает подобное программное обеспечение совместно с компанией-партнёром «Третье мнение». Так, платформа «Третье мнение» предназначена для помощи врачам КТ и МРТ. Анализ такого снимка занимает у врача от одного до нескольких часов, что связано со сложностью данного вида исследований. Программа же выдаёт результат практически мгновенно, анализируя изображение по заданным алгоритмам. Врач видит уже размеченный снимок, на котором подсвечены опасные зоны, а также предварительные диагнозы, поставленные на основе анализа этого снимка.
Главная ценность таких программ состоит в том, что они значительно сокращают время рутинных задач врача. Это позволяет сделать диагностику пациента более персонализированной и быстрой: СППВР ранжирует пациентов по степени тяжести, что также позволяет врачам своевременно реагировать на эти данные и оказывать помощь в первую очередь тем, кто нуждается в ней больше всего.
Как создать медицинский сервис с использованием ИИ
Как происходит разработка медицинских сервисов с использованием ИИ — с момента постановки задачи до выхода готового продукта в клиническую практику?
Диагностика заболеваний
Чат-боты уже могут с высокой эффективностью помогать пациентам самостоятельно ставить диагноз, а также помогать в постановке диагноза и врачам. Например, ИИ компании Babylon Health предоставляет соответствующую информацию о здоровье на основе симптомов, описанных самим пациентом. Понятно, что симптомы могут быть описаны неверно или пациент может попытаться ввести ИИ в заблуждение умышленно. Поэтому в компании прямо заявляют, что их компьютерный ассистент не ставит диагноз. Это сделано для того, чтобы свести к минимуму юридическую ответственность компании, но в будущем мы наверняка увидим, как чат-боты будут ставить диагнозы по мере повышения точности их работы.
А на перспективы ИИ в Babylon Health смотрят оптимистично, заявляя, что они уже доказали эффективность своего ИИ в первичной медико-санитарной помощи, а также смогли создать такую систему искусственного интеллекта для медицины, которая не является «черным ящиком». Это отличает их, например, от Alphabet, материнской компании Google, представители которой еще сравнительно недавно заявляли о том, что до сих пор не знают, что конкретно изучают их модели машинного обучения, о чём мы писали в статье, посвященной LLM. И пока сложно сказать, насколько они продвинулись в понимании алгоритмов работы своих программ глубокого обучения. А вот исследователи из Babylon Health продвинулись совершенно точно.
Также современные ИИ решают проблемы приоритизации и медицинской сортировки. Рекомендации на основе глубокого анализа данных поступающих пациентов для обеспечения точной приоритизации и медицинской сортировки ИИ дает очень быстро в режиме реального времени. Наиболее известные решения для этих целей предлагает Enlitic. ИИ Enlitic Curie сканирует поступающих пациентов, обрабатывая множество клинических данных (в том числе учитываются и старые диагностические карты) и определяя приоритет на лечение, после чего сразу же направляет больных к наиболее подходящему врачу. Трудно переоценить пользу этих алгоритмов, исключающих из анализа человеческий фактор, ведь после того как они будут усовершенствованы, они помогут спасти тысячи жизней. Стоит рассказать и о новом алгоритме ИИ, который поможет диагностировать рак легких. Много лет человечество проигрывало борьбу с онкологическими заболеваниями, которые ежегодно убивают около 10 миллионов человек по всему миру. Одной из самых страшных форм онкологии является рак легких, распознавание которого на ранних стадиях и до сих пор является для ученых сложнейшей задачей. Но весьма вероятно, что справиться с этим человеку поможет искусственный интеллект.
Исследователи из Бостонского университета разработали ИИ, который долгое время обучался на полноформатных фотографиях легочных тканей пациентов (размеры таких изображений составляют обычно более 1 Гб, что делает их анализ человеком крайне сложным). ИИ на примере фото обучали распознавать аденокарциному легкого, плоскоклеточный рак легкого и соседнюю не раковую ткань. Результаты обучения оказались положительными: алгоритм смог продемонстрировать более высокую эффективность, чем другие современные методы распознавания патологий на полноформатных слайдах.
На данный момент новый алгоритм планируется внедрить в помощь патологоанатомам, однако при успешном внедрении возможности ИИ могут быть расширены, ведь главное — научиться диагностировать опасные заболевания на самых ранних стадиях, пока сохраняются высокие шансы на полноценное излечение. Существуют и компании, специализирующиеся на разработке ИИ-продуктов для ранней диагностики различных заболеваний. Они позволяют анализировать хронические состояния, используя лабораторные и другие медицинские данные, чтобы выявлять опасные болезни как можно раньше. Так, программное обеспечение от Ezra использует ИИ при анализе МРТ-сканов всего тела, чтобы помочь специалистам в раннем выявлении рака. Их слоган говорит сам за себя: «Мы обнаружили самую большую слабость рака — раннее обнаружение». С помощью алгоритмов, разработанных командой Ezra, удалось выявить рак на ранней стадии у 13% людей, обследовавшихся при помощи этого ПО. И это большой успех, ведь согласно статистике, раннее выявление онкологии обеспечивает 80% выживаемость по сравнению с менее чем 20% при обнаружении рака на поздних стадиях.
SkinVision — компания, занимающаяся диагностикой рака кожи на основе медицинской визуализации, то есть диагностикой по фото. ИИ, разработанный командой SkinVision, позволяет обнаруживать рак кожи на ранней стадии по фотографиям, сделанным на телефон. Умные алгоритмы после исследования очередного фото просигнализируют о том, если с кожей что-то не так. Таким образом, пациент сможет вовремя обратиться в клинику за помощью. Медицинская визуализация на основе ИИ также широко используется для диагностики ОРВИ и выявления пациентов, которым требуется клиническая поддержка. Например, китайская компания Huiying Medical разработала решение для медицинской визуализации на основе искусственного интеллекта с точностью определения пневмонии 96%, что позволит спасти драгоценные часы для своевременного лечения.
Нейросеть научилась отличать родинки от некоторых видов рака кожи
Американские ученые создали систему искусственного интеллекта, которая умеет отличать родинки от некоторых видов рака кожи лучше врачей. Работа исследователей опубликована в журнале Nature.
На протяжении последних десятилетий число людей, у которых обнаруживают рак кожи, постоянно увеличивается. По данным Всемирной организации здравоохранения, раком кожи страдает каждый третий онкологический больной, а каждый пятый американец заболеет им в течение жизни. Это заболевание особенно опасно тем, что злокачественное образование легко не заметить и спутать с родинкой. При этом, если вовремя обратить внимание на опухоль, шансы на выздоровление резко увеличиваются. Пациенты, у которых находят меланому (самый распространенный и злокачественный вид опухоли) на ранней стадии развития, выживают в 97 процентах случаев, в то время как при поздней диагностике заболевания эта доля сокращается до 14 процентов.
Основным способом первичного выявления рака кожи до сих пор остается визуальный осмотр (за которым обычно следует дерматоскопия или биопсия). Чтобы помочь пациентам самостоятельно обнаружить злокачественное образование на ранней стадии, ученые из Стэнфордского университета создали систему искусственного интеллекта, которая анализирует фотографии «подозрительных» родинок.
Авторы новой работы использовали сверточную нейросеть Inception v3, которая была ранее разработана компанией Google. Исследователи удалили ее верхний слой и обучили систему, изначально ориентированную на распознавание различных объектов, определять некоторые виды рака кожи — меланому и карциному. Для этого они использовали 130 тысяч фотографий более двух тысяч различных кожных заболеваний. После того, как программа научилась ставить диагноз, ее работу сравнили с работой двух ведущих дерматологов США. Анализ показал, что система не только справляется не хуже специалистов, но и превосходит их: нейросеть верно отличала родинки от злокачественной меланомы и карциномы в 72 процентах случаев, в то время как врачи успешно справились с заданием лишь в 66 процентах случаев. Дополнительная проверка нейросети, в которой принял участие уже 21 специалист, также показала, что, чувствительность и специфичность алгоритма (которая отражает способность корректно определить доброкачественную и злокачественную опухоль) не уступает чувствительности и специфичности дерматологов.
В будущем компьютерная программа может быть адаптирована для смартфона или планшета, и позволит любому желающему пройти первичную диагностику рака кожи. Тем не менее, до этого момента системе будет необходимо пройти еще много дополнительных проверок. Так, по мнению авторов статьи, программа может плохо справляться с определением редких типов карцином и меланом, по каким-либо причинам не окрашенным в черный или коричневый цвет.
Недавно американские ученые также создали алгоритм, который успешно справляется с ранней диагностикой меланомы. В ходе эксперимента система смогла правильно определить меланому в 98 процентах случаев. В то же время специфичность алгоритма оказалась не такой высокой — диагностика доброкачественных образований была проведена верно лишь в 36 процентах случаев.
Применение ИИ в медицине
Данные о пациентах
Информация о пациентах может храниться в десятках клиник и медицинских карточек. Это усложняет сбор анамнеза и постановку диагноза. Интерпретация анализов, тестов и снимков тоже может быть недостаточно точной из-за объема данных. Даже если у врача на руках находится вся необходимая информация, он не всегда может правильно ее интерпретировать и заметить каждую деталь. От этого могут зависеть жизни пациентов.
Google Deepmind Health анализирует симптомы и предлагает несколько диагнозов. Результаты поиска основаны на миллионах страниц научной информации, которые содержат даже самые малоизвестные заболевания. Сервис MedClueRx анализирует симптомы и не просто диагностирует болезнь, но и выбирает максимально безопасные и эффективные препараты в зависимости от особенностей пациента.
Диагностика
Системы с искусственным интеллектом позволяют распознавать заболевания даже на ранней стадии. Например, сервисы Zebra Medical Vision и Arterys помогают врачам-диагностам сосредоточиться на общении с пациентами и избавиться от необходимости вглядываться в мельчайшие детали снимков легких и УЗИ сердца.
Такие типы ИИ-программ могут использовать не только врачи, но и пациенты. Сервис 23andMe анализирует генетическую информацию и рассказывает пользователю о его предках. Стартап Sophia Genetics использует генетические данные для выявления предрасположенности к определенным заболеваниям. Так пациенты корректируют свой образ жизни, а врачи выбирают наиболее вероятные диагнозы.
Создание лекарств
Разработка вакцины и последующие клинические исследования – это долгие и дорогостоящие процессы. ИИ может уменьшить время на разработку новых лекарств в несколько раз, анализируя молекулярные структуры существующих препаратов и предлагая новые согласно заданным требованиям. Например, в 2019 году компания Insilico Medicine таким образом создала несколько вариантов лекарств для лечения мышечного фиброза. Для этой задачи алгоритмам понадобился 21 день, после чего ученые отобрали наиболее подходящие варианты препаратов и за 25 дней провели тест на лабораторных животных. Таким образом, понадобилось 46 дней для выбора подходящего лекарства. Однако традиционный процесс разработки лекарств занимает около 8 лет и стоит фармкомпаниям несколько миллионов долларов. Новые технологии дают надежду на то, что с их помощью мы сможем быстрее получить лекарства от болезней, которые сегодня не поддаются лечению: рассеянный склероз, болезнь Альцгеймера и другие.
Автоматизация процессов
Дисбаланс и дефицит медицинских кадров высшего и среднего звена был во всем мире еще до вспышки коронавируса. По данным Всемирной Организации Здравоохранения, чтобы люди во всем мире имели доступ к услугам здравоохранения к 2030 году, странам с низким уровнем дохода нужно еще 18 миллионов медицинских работников. В дальнейшем ситуация, скорее всего, не стабилизируется из-за роста населения, старения общества и изменения клинической картины заболеваний. Эти факторы только повысят спрос на высококвалифицированных медицинских работников и усложнят доступ к медицинской помощи. Поэтому инновационные технологии должны содержать в себе искусственный интеллект и базу знаний в предметной области. Так они освободят врачей от рутинных повседневных задач: внесение информации в медкарту, детальный анализ большого массива данных из истории болезней и т.д. Благодаря этому медработники сконцентрируют время и усилия на решении серьезных диагностических вопросов и выборе лечения. Современные ИИ-технологии могут помочь системе здравоохранения повысить удовлетворенность пациентов и медицинского персонала, снизить стоимость медицинских услуг и улучшить качество медицинской помощи.
Онлайн-консультации
О популярности телемедицины мы уже говорили в статье про медтех тренды 2021. Удаленные консультации расширяют доступ к качественной медицинской помощи, особенно в малонаселенных пунктах, где в ней нуждаются больше всего. Кроме того, онлайн-консультации предоставляет возможность снизить затраты на здравоохранение и получить второе мнение по результатам исследований, чтобы уточнить диагноз и план лечения. ИИ делает телемедицину значительно удобнее. Он применяется для удаленной диагностики, сбора медицинских показателей и работы с информацией о пациентах.
Например, в нашем приложении для докторов Primu.Online планируется внедрить ИИ для анализа симптомов и перевода записей приёмов в текстовый формат. А в Google уже разработали алгоритм, который по фотографии сетчатки глаза выявляет диабетическую ретинопатию. Так врачи могут избежать рутинных задач и сложностей диагностики, чтобы сосредоточиться на лечении.
Например, В Google разработали алгоритм, который по фотографии сетчатки глаза выявляет диабетическую ретинопатию. Так врачи могут избежать рутинных задач и сложностей диагностики, чтобы сосредоточиться на лечении.
Над телемедицинскими приложениями работают многие крупные компании, например, Сбер. Приложение СберЗдоровье использует искусственный интеллект для распознавания симптомов. Перед онлайн-консультацией оно предполагает диагнозы и исходя из этого советует клиенту врача. Это снижает нагрузку на медицинских работников, при этом позволяя пациентам более внимательно отслеживать свое состояние.
Перспективы применения ИИ
На рынок медтеха входят крупные игроки: Google, Apple, Microsoft. Их продукты с использованием ИИ улучшают точность диагнозов, доступность врачей и систематизацию медицинских данных. Преимущество этих больших компаний в наличии средств и квалифицированных сотрудников. Это позволяет им создавать комплексные продукты, которые включают не доступные ранее возможности. Например, Google Health – это сервис, объединяющий разнообразные услуги как для пациентов, так и для врачей. С помощью ИИ он помогает предотвратить слепоту, выявить рак груди на ранней стадии, поддерживать психическое здоровье и т.д.
Однако новейшим технологиям сейчас противопоставлены их дороговизна и недоверие людей к машинам. Кроме того, многим развивающимся странам для внедрения искусственного интеллекта в медицину не хватает оборудования и средств. Следовательно, чтобы удовлетворить аудиторию, нужно создавать оптимальные продукты. Например, более простые и дешевые ИИ-системы сделают медицину доступнее, а качественный маркетинг и положительные отзывы убедят клиентов в пользе искусственного интеллекта. Это отличный шанс нащупать правильный подход к аудитории и занять прибыльную нишу. Кроме того, согласно исследованиям, рынок ИИ в медицине будет стремительно расти в ближайшие несколько лет.
С целью решить поставленные задачи были проведены следующие исследования: я нашла приложения, которые основаны с помощью искусственного интеллекта. Подробно о них:
Первым приложением является ПроРодинки.
ПроРодинки — это комплекс программ с мобильным приложением, которое по фотографии «родинки» и присланным данным формирует рекомендацию о выборе врача.
Анализ и формирование рекомендации выполняется нейросетью, построенной и обученной на нескольких тысячах диагностированных случаев и работающей под непрерывным контролем врачей-экспертов.
Функционал приложения бесплатен для пользователей.
Именно в этом приложении искусственный интеллект выявил, что мое новообразование ничем не помешает моей жизни, но для окончательного результата я все же рекомендую обратиться к квалифицированным врачам.
Сайт для использования: https://www.prorodinki.ru/
Вторым приложением является Check Melanoma
Программисты из Новосибирска обучили нейросеть определять меланому (а в будущем — и другие онкологические заболевания) по снимку, а также пневмонию — по рентгену легких. О разработке сообщил один из ее создателей Роман Давыдов. Давыдов рассказал, что идея написать программу, которая смогла бы помочь диагностировать рак, пришла к ним на одной из секций «бизнес-ускорителя» инновационных стартапов «А:Старт».
Команда российских программистов создала приложение Check Melanoma, которое уже доступно для пользователей Android. Фотобанк, с помощью которого и происходит распознавание заболевания, молодые специалисты собирали буквально по крупицам.
Сам процесс диагностики прост: нужно зарегистрироваться на сайте или скачать программу, затем авторизоваться и создать личный кабинет, в котором можно уже непосредственно подгружать фотографии подозрительных родинок либо рентген легких и отправлять их на исследование. Однако авторы приложения рекомендуют закачивать только качественные макроснимки, сделанные на расстоянии 15 сантиметров с четким фокусом на участке кожи, который нужно проверить.
«Программа уже стабильно работает, дает первые результаты. Мы даже посчитали статистику: порядка 65-70 процентов верных «диагнозов». Сейчас наша задача — найти больше фотографий, чтобы составить еще больший результат, возможно, даже самый большой в мире».
По словам Давыдова, за год он с коллегой планирует собрать более 200 тысяч изображений опухолей, совершенствовать нейросеть, чтобы впоследствии она могла определять не только меланому, но также рак груди и легких на ранних стадиях, а точность прогноза составляла 80-85 процентов.
Однако программисты предупреждают, что предназначение программы не в том, чтобы заниматься лечением на дому и ставить диагноз самому себе — за этим следует обращаться непосредственно к квалифицированным медикам.
Сайт для использования: https://naked-science.ru/article/medicine/sozdano-prilozhenie-s-pomoshchyu
Рекомендации: поддерживать работу для подготовки многообещающих результатов применения ИИ с целью проведения тщательных процедур одобрения, необходимых для принятия в клиническую практику. Создать методику тестирования и проверки правильности для алгоритмов ИИ для оценки эффективности работы алгоритмов в условиях, отличных от обучающего набора.
Вывод: Процесс развития новых технологий как принятый стандарт услуг использует устойчивую практику научно-исследовательских и опытно-конструкторских разработок, прошедших экспертную оценку и может обеспечить защиту от использования вводящих в заблуждение или плохо проверенных алгоритмов ИИ. Использование диагностики ИИ как замены принятым этапам в медицинских стандартах предоставления услуг потребует намного большей проверки и оценки, чем использование такой диагностики для предоставления подтверждающей информации, помогающей принимать решения.
В заключении я пришла к таким выводам:
Информация об искусственном интеллекте в медицине найдена и изучена не в полном объёме. Тема искусственного интеллекта является одной из популярных и используемых для защиты проектов, найденная информация дала мне больше знаний о нём, и больше заинтересованности, я думаю, что в дальнейшем, я свяжу свою жизнь с искусственным интеллектом. Мне понравилось экспериментировать с разными сайтами, для выявления диагноза, но я не стану полностью доверять этим приложениям. В наше время искусственный интеллект только начинает набирать обороты, и я не стану рекомендовать эти сайты без полной уверенности, но ради интереса можно опробовать данные приложения.
СПИСОК ИСПОЛЗОВАННОЙ ЛИТЕРАТУРЫ
На горке
Рисуем "Осенний дождь"
Павел Петрович Бажов. Хрупкая веточка
Петушок из русских сказок
Две снежинки