Слайд 1
Тема: АЛГЕБРАИЧЕСКИХ И ТРАНСЦЕНДЕНТНЫХ УРАВНЕНИЙ В MICROSOFT EXCEL Выполнил: Мурзин Дмитрий Алексеевич, студент 2 курса Научный руководитель: преподаватель специальных дисциплин Соколова Марина Анатольевна Серпухов 2022г . ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ МОСКОВСКОЙ ОБЛАСТИ «СЕРПУХОВСКИЙ КОЛЛЕДЖ»Слайд 2
Актуальность На практике при решении различных физических и технических задач составляются и решаются уравнения. Уравнения – аналитическая запись задачи о нахождении значений аргументов, при которых значения двух данных функций равны . Аргументы-неизвестные, а значение неизвестных-корни уравнения. В школьном курсе математике рассматриваются различные способы аналитического решения простейших уравнений. Но существуют алгебраические уравнения ,для которых нет общего случая решения в радикалах, их решение можно найти только приближенно. Например, ш ар радиуса r плавает в воде, погрузившись на глубину d .Пусть r =10см, сделан он из сосны, имеющей плотность 0,638 г / .Плотность воды 1 г / . Требуется найти глубину погружения шарика d . В своей работе я буду рассматривать различные методы решения алгебраических и трансцендентных уравнений, с применением электронных таблиц Microsoft Excel .
Слайд 3
Объект исследования: уравнения; Предмет исследования: методы решения алгебраических и трансцендентных уравнений. Цель работы: Выполнить в Microsoft Excel различные методы решения алгебраических и трансцендентных уравнений. Задачи работы: 1. Изучить и провести анализ литературы, интернет-ресурсов теоретической и практической основы методов решения уравнений; 2. Исследовать различные методы решения трансцендентных и алгебраических уравнений; 3. Выполнить в Microsoft Excel различные методы решения алгебраических и трансцендентных уравнений.
Слайд 4
Введение: Возможности электронных таблиц не ограничиваются вычислениями по формулам и построением графиков и диаграмм. В своей работе я рассмотрю практическое применение Microsoft Excel . Остановимся на решении уравнений. Конечно, это не означает, что Microsoft Excel решит уравнение в алгебраическом виде и выдаст все его корни. В Microsoft Excel встроены методы нахождения приближенных значений. Один из них называется методом подбора параметра. Она подберет один из корней уравнения. Электронные таблицы располагают серьезными возможностями по оптимизации решений, то есть нахождению наилучшего результата при заданных условиях. Для этого в Microsoft Excel можно рассмотреть различные методы приближенного решения уравнений.
Слайд 5
Общая постановка задачи Найти действительные корни уравнения f(x) = 0, где f(x) – алгебраическая или трансцендентная функция. Точные методы решения уравнений подходя только для узкого класса уравнений (квадратные, биквадратные и т. д.). Задача численного нахождения корней уравнения состоит из двух этапов: 1. Отделение (локализация) корня; 2. Приближенное вычисление корня до заданной точности (уточнение корней). Уточнение корня может производить разными методами[1][3]: 1. Графический метод; 2.Метод подбора параметра; 3. Метод половинного деления; 4. Метод итераций; 5. Метод хорд (метод секущих); 6. Метод касательных (метод Ньютона); 7. Комбинированный метод. Применяя электронные таблицы Microsoft Excel , я выполнил решение задачи перечисленными методами.
Слайд 6
Пример: Найдите приближенное значение уравнения заданного функцией с точностью е=0,001 . Представьте графически поставленную задачу;
Слайд 7
Графический метод . X= 1,100586 Отрезок [ 0 , 1 ]
Слайд 8
Метод подбора параметра: Подбор параметра - простейший метод нахождения оптимального желаемого решения за счет изменения одного из параметров. Алгоритм для программной реализации : 1.Составить таблицу значений данной функции . 2.Построить график функции . 3.По графику грубо приближенно определить корень уравнения . 4.Выяснить в какой ячейке находится это значение (адрес ячейки будет использоваться далее ) 5.Ввести команду Сервис – Подбор параметра . 6.На панели Подбор параметра в поле Значение ввести требуемое значение функции . 7.В поле Изменяя значение ячейки ввести адрес ячейки, в которой будет производиться подбор значения аргумента (адрес ячейки определенный в пункте 4 ) 8.На панели Результат подбора параметра будет выведена информация о величине подбираемого и подобранного значений. Щелкните кнопку ОК . 9.В ячейке аргумента из пункта 4 появится подобранное значение. Это и есть корень уравнения, найденный с заданной точностью. Точность подбора зависит от заданной точности представления чисел в ячейках таблицы . Однако не все задачи могут быть решены путем подбора параметра. Решение не будет найдено, если изменяемая и целевая ячейки логически связаны. При такой сходимости в окне Результат подбора параметра можно установить Шаг ( Step ) и Паузу ( Pause ) и с их помощью осуществлять процесс подбора параметра.
Слайд 9
Таблица. Расчет уравнения по методу подбора параметра: x= 1,001
Слайд 10
Метод половинного деления: Постановка задачи: Пусть дано уравнение f(x) = 0, (a, b) - интервал, на котором f(x) имеет единственный корень. Нужно приближенно вычислить этот корень с заданной точностью. Примечание: Заметим, что если f(x) имеет k корней, то нужно выделить соответственно k интервалов. Метод половинного деления или дихотомии (дихотомия - сопоставленность или противопоставленность двух частей целого): Метод основан на той идее, что корень лежит либо на середине интервала (a, b) , либо справа от середины, либо - слева, что следует из существования единственного корня на интервале (a, b) . Алгоритм для программной реализации: а:=левая граница b:= правая граница m:= ( a+b )/2 середина определяем f(a) и f(m) если f(a)*f(m)<0 то b:=m иначе a:=m если (a-b)/2>e повторяем , начиная с пункта2 m- искомый корень.
Слайд 11
Таблица. Расчет уравнения по методу половинного деления: x= 1,00586
Слайд 12
Метод простой итерации: Смысл метода простой итерации состоит в том, что мы представляем уравнение f(x) в виде ) и по формуле будем строить итерации, которые сходятся к искомому корню с интересующей степенью точности, но тут есть проблемы: возможно f(x) очень сложно представить в таком виде, да и не факт, что любая будет строить сходящиеся итерации, поэтому алгорим сводится к тому, чтобы оптимально найти . Подготовка: Ищем числа m и M такие, что на (a, b) ; Представляем , где ; Алгоритм: 1. Выбираем х0 из (a, b) ; 2.Вычисляем ; 3.Проверяем условие , где q=(M-m)/( M+m ) ; 4.Если оно ложно, то переходим к пункту 7; 5. х0=х1; 6.Переходим к пункту 2; 7. х1–искомый корень.
Слайд 13
Таблица. Расчет уравнения по методу простой итерации: x^3-10x+1=0,
Слайд 14
Метод хорд Метод хорд заключается в замене кривой у = f ( x ) отрезком прямой, проходящей через точки ( а , f ( a )) и ( b , f ( b )) . Абсцисса точки пересечения прямой с осью ОХ принимается за очередное приближение. Чтобы получить расчетную формулу метода хорд, запишем уравнение прямой, проходящей через точки ( a , f ( a )) и ( b , f ( b )) и, приравнивая у к нулю, найдем х : Алгоритм метода хорд : 1) П усть k = 0; 2) В ычислим следующий номер итерации: k = k + 1. Найдем очередное k -e приближение по формуле: x k = a - f ( a )( b - a )/( f ( b ) - f ( a )). Вычислим f ( x k ); 3) Е сли f ( x k )= 0 (корень найден), то переходим к п. 5. Если f ( x k ) × f ( b )>0, то b = x k , иначе a = x k ; 4) Е сли |x k – x k -1 | > ε , то переходим к п. 2; 5) В ыводим значение корня x k ; 6) К онец.
Слайд 15
Таблица. Расчет уравнения по методу хорд: x= 0,1001
Слайд 16
Метод касательных В точке пересечения касательной с осью Оx переменная у = 0. Приравнивая у к нулю, выразим х и получим формулу метода касательных: Теорема. Пусть на отрезке [а, b]выполняются условия: 1) функция f(x)и ее производные f '(х)и f ''(x)непрерывны; 2) производные f '(x)и f ''(x)отличны от нуля и сохраняют определенные постоянные знаки; 3) f(a)× f(b) < 0 (функция f(x)меняет знак на отрезке). Тогда существует отрезок [α, β], содержащий искомый корень уравнения f(x) = 0, на котором итерационная последовательность сходится. Если в качестве нулевого приближения х0 выбрать ту граничную точку [α, β], в которой знак функции совпадает со знаком второй производной, т.е. f(x0)× f"(x0)>0, то итерационная последовательность сходится монотонно
Слайд 17
Таблица. Расчетное уравнение по методу касательных: x= 0,1001
Слайд 18
Результаты: Исследование методов показало различные методы решения алгебраических и трансцендентных уравнений с помощью электронной таблицы Microsoft Excel . Следующие методы были изучены: • Графический метод; • Подбор параметра; • Метод половинного деления; • Метод итераций; • Метод хорд (метод секущих); • Метод касательных (метод Ньютона); • Комбинированный метод.
Слайд 19
Вывод: Я изучил методы решения алгебраических и трансцендентных уравнений на примере задачи с физическим содержанием с помощью Microsoft Excel . В данной работе я показал методы решение алгебраических и трансцендентных уравнений в среде Microsoft Excel : 1)методом бисекции;2)методом итераций;3)методом секущих;4)методом Ньютона;5)метод подбора параметра;
Слайд 20
Список использованных источников : 1. Lectures on Numerical Analysis /Dennis Deturck , Herbert S. Wilf. — 1- е издание . — Philadelphia: Department of Mathematics University of Pennsylvania, 2002. — 125 с . 2. Numerical analysis [ Электронный ресурс ] / Wikipedia contributors. — Электрон . текстовые дан . — San Francisco: Wikipedia, The Free Encyclopedia, 2019. — Режим доступа : https://en.wikipedia.org/w/index.php?title=Numerical_analysis&oldid=895278527, свободный . — Online encyclopedia ( Дата обращения : 13.05.2019); 3. Numerical methods /John D. Fenton. — 1- е издание . — Vienna: Institute of Hydraulic Engineering and Water Resources Management. Vienna University of Technology, 2019. — 33 с .; 4. Numerical Methods for Physicists [ Электронный ресурс ] / Anthony O’Hare. — Электрон . текстовые дан . — Belton: MMHB. Department of Computer Science and Engineering, 2005. — Режим доступа : http://mars.umhb.edu/~wgt/engr2311/NMfP.pdf, свободный ( Дата обращения : 12.05.2019)
Новогодние гирлянды
Самый богатый воробей на свете
Весёлые польки для детей
Снежный всадник
Фильм "Золушка"