Ученый исследовательский проект "Способы быстрого счета". Усный счет без ошибок и калькулятора.
Вложение | Размер |
---|---|
Ученый исследовательский проект "Способы быстрого счета". | 31.73 КБ |
Муниципальное автономное общеобразовательное учреждение
МАОУ «СОШ № 19 им Л.А. Попугаевой»
Быстрый счет без калькулятора
Автор: Макеева Александра Рожкова Валерия 8 класс
Удачный 2021 год
Содержание:
Введение____________________________________________ 3
Основная часть:
Теоретическая часть___________________________________ 4
Практическая часть____________________________________ 5
Заключение__________________________________________ 12
Список источников информации_________________________ 13
I. Введение.
Актуальность.
Зачем нужен устный счет, если на дворе 21 век, и всевозможные гаджеты способны едва ли не молниеносно производить любые арифметические операции? Можно даже не тыкать в смартфон пальцем, а дать голосовую команду – и немедленно получить правильный ответ. Сейчас это успешно проделывают даже школьники младших классов, которым лень самостоятельно делить, умножать, складывать и вычитать. Но у этой медали есть и обратная сторона: ученые предупреждают, что если мозг не тренировать, не нагружать работой и облегчать ему задачи, он начинает лениться, его мыслительные способности снижаются. Точно так же без физических тренировок слабеют и наши мышцы.
О пользе математики говорил еще Михаил Васильевич Ломоносов, называющий ее прекраснейшей из наук: «Математику уже за то любить надо, что она ум в порядок приводит».
Устный счет развивает внимание, память, быстроту реакции. Недаром появляются все новые и новые методики быстрого устного счета, предназначенные и для детей, и для взрослых.
Гипотеза: Предположим, что существуют специальные способы счета, которые позволяют свести расчеты к устным с быстрым нахождением результата.
Цель:
Найти и освоить методы быстрого счета
Методы исследования - анализ научной литературы, анализ и обработка данных
Практическая значимость: Познакомить сверстников с приемами быстрого счета, которые могут помочь им в улучшении показателей по математике.
II. Основная часть.
Теоретическая часть.
Уметь считать правильно и быстро – замечательная способность человеческого ума. Но далеко не все умеют ею пользоваться. Вместе с тем, счет в уме дает огромные преимущества. Это уверенность во многих житейских ситуациях, не только связанных непосредственно с вычислениями, что само по себе очень полезно, но и психологическая уверенность.
Быстрый счет часто означает не интеллектуальную способность мозга, а умение применять на практике методики счета в уме, разработанные и описанные учеными — математиками. Для их освоения вовсе необязательно иметь выдающиеся математические способности, достаточно изучить эти методики по их книгам и активно применить в жизни.
Яков Перельман (1882-1942) был выдающейся личностью. Наше поколение благодарно ему за то, что именно Перельман стал родоначальником жанра научно — занимательной литературы. Перельман написал более ста книг, которые и сегодня любимы взрослыми и детьми. Эти книги содержат по-настоящему ценные знания в разных областях, они способствуют развитию творческого подхода к точным наукам и раскрывают прекрасный мир математики, физики, астрономии. Это великолепные книги «Занимательная астрономия», «Занимательная алгебра», «Занимательная геометрия», «Занимательная физика» и другие. Книга Я. Перельмана «Быстрый счет. Тридцать простых приемов устного счета» содержит полезные и эффективные способы быстрого счета в уме. Они рассчитаны на способности обычного человека. Но если вы успешно освоите эти методы, вряд ли вас будут продолжать считать обычным человеком.
Хотите с удивительной скоростью не только складывать и умножать числа, но и извлекать корни и возводить в квадрат? Тогда вам нужно освоить систему замечательного цюрихского профессора, уроженца Одессы Якова Трахтенберга (1888-1953). Система Я. Трахтенберга направлена на тренировку скорости вычислений. Если вы сможете уделить системе значительное количество времени для выполнения упражнений, то скорость счета возрастет во много раз! Это удивительный метод, в корне отличающийся от стандартного изучения устного счета в школе.
Методика счета в уме Якова Трахтенберга описана в книге Энн Катлер и Рудольфа Мак-Шейна «Система быстрого счета по Трахтенбергу».
Профессор ботаники МГУ Сергей Александрович Рачинский (1833-1902) предпочел должность сельского учителя в Смоленской губернии. За время своей педагогической деятельности, Рачинский накопил огромный опыт, нашедший отражение в труде «1001 задача для умственных вычислений». Это задачник по математическим вычислениям, впервые увидевший свет в Санкт- Петербурге в 1891 году. Прочитать о жизни С. А. Рачинского, о его системе счета подробнее можно в книге «Сельский учитель С.А. Рачинский и его задачи для умственных вычислений» И.И. Баврина.
Практическая часть.
СЛОЖЕНИЕ
Рассмотрим простейшие способы быстрого счета при сложении.
Основное правило для выполнения сложения в уме звучит так:
Чтобы прибавить к числу 9, прибавьте к нему 10 и отнимите 1;чтобы прибавить 8, прибавьте 10 и отнимите 2; чтобы прибавить 7, прибавьте10 и отнимите 3 и т.д.
Например:
56+8=56+10-2=64;
65+9=65+10-1=74.
СЛОЖЕНИЕ ДВУЗНАЧНЫХ ЧИСЕЛ
Если цифра единиц в прибавляемом числе больше5, то число необходимо округлить в сторону увеличения, а затем вычесть ошибку округления из полученной суммы. Если же цифра единиц меньше, то прибавляем сначала десятки, а потом единицы.
Например:
34+48=34+50-2=82;
27+31=27+30+1=58.
СЛОЖЕНИЕ ТРЕХЗНАЧНЫХ ЧИСЕЛ
Складываем слева на право, то есть сначала сотни, потом десятки, а затем единицы. Например:
359+523= 300+500+50+20+9+3=882;
456+298=400+200+50+90+6+8=754.
Общие приёмы устного счёта могут быть применимы к любым числам. Они основываются на свойствах десятичного числа и применении законов и свойств арифметических действий.
При сложении двух и более чисел часто используется такой прием, включающий три этапа:
1) Разложение каждого слагаемого на разряды – единицы, десятки, сотни, тысячи, сотни тысяч и т.д.
2) Использование сочетательного и переместительного свойств.
3) Выполнить сложение каждой из получившихся групп.
Пример:
Требуется сложить 28, 47, 32 и 13.
28=20+8 32=30+2
47=40+7 13=10+3
20+30+8+2+40+10+7+3 – (переместительный закон)
(20+30)+(8+2)+(40+10)+(7+3) – (сочетательный закон)
50+10+50+10
50+50+10+10 (переместительный закон)
100+10+10=120 выполняем сложение
ВЫЧИТАНИЕ
Чтобы вычесть два числа в уме, нужно округлить вычитаемое, а затем подкорректируйте полученный ответ.
56-9=56-10+1=47;
436-87=436-100+13=349.
УМНОЖЕНИЕ И ДЕЛЕНИЕ
Умножение многозначных чисел на 9
1. Число десятков увеличим на 1 и вычтем из множимого
2. К результату приписываем дополнение цифры единиц множимого до 10
Умножение на 99
1. Из числа вычитаем число его сотен, увеличенное на 1
2. Находим дополнение числа, образованного двумя последними цифрами до 100
3. Приписываем дополнение к предшествующему результату
Пример:
27 · 99 = 2673 (сотен – 0) 134 · 99 = 13266
27 – 1 = 26 134 – 2 = 132 (сотня – 1 + 1)
100 – 27 = 73
Умножение на 999 любого числа
1. Из умножаемого вычитаем число тысяч, увеличенное на 1
2. Находим дополнение до 1000
23 · 999 = 22977 ( тысяч – 0 + 1 = 1)
23 – 1 = 22
1000 – 23 = 977
124 · 999 = 123876 ( тысяч – 0 + 1 = 1)
124 – 1 = 123
1000 – 124 = 876
1324 · 999 = 1322676 (тысяча – 1 + 1 = 2)
1324 – 2 = 1322
1000 – 324 = 676
Умножение на 11, 22, 33, …99
Чтобы двузначное число, сумма цифр которого не превышает 10, умножить на 11, надо цифры этого числа раздвинуть и поставить между ними сумму этих цифр:
72 ×11= 7 (7+2) 2 = 792;
35 ×11 = 3 (3+5) 5 = 385.
Чтобы умножить 11 на двузначное число, сумма цифр которого 10 или больше 10, надо мысленно раздвинуть цифры этого числа, поставить между ними сумму этих цифр, а затем к первой цифре прибавить единицу, а вторую и последнюю (третью) оставить без изменения:
94 ×11 = 9 (9+4) 4 = 9 (13) 4 = (9+1) 34 = 1034;
59×11 = 5 (5+9) 9 = 5 (14) 9 = (5+1) 49 = 649.
Чтобы двузначное число умножить на 22, 33. …99, надо последнее число представить в виде произведения однозначного числа (от 1 до 9) на 11, т.е.
44= 4 × 11; 55 = 5×11 и т. д.
Затем произведение первых чисел умножить на 11.
48 × 22 =48 × 2 × (22 : 2) = 96 × 11 =1056;
24 × 22 = 24 × 2 × 11 = 48 × 11 = 528;
23 ×33 = 23 × 3× 11 = 69 × 11 = 759;
18 × 44 = 18 × 4 × 11 = 72 × 11 = 792;
16 × 55 = 16 × 5 × 11 = 80 × 11 = 880;
16 × 66 = 16 × 6 × 11 = 96 × 11 = 1056;
14 × 77 = 14 × 7 × 11 = 98 × 11 = 1078;
12 × 88 = 12 × 8 × 11 = 96 × 11 = 1056;
8 × 99 = 8 × 9 × 11 = 72 × 11 = 792.
Кроме того, можно применить закон об одновременном увеличении в равное число раз одного сомножителя и уменьшении другого.
Умножение на число, оканчивающееся на 5
Чтобы четное двузначное число умножить на число, оканчивающееся на 5, следует применить правило: если один из сомножителей увеличить в несколько раз, а другой – уменьшить во столько же раз, произведение не изменится.
44 × 5 = (44 : 2) × 5 × 2 = 22 × 10 = 220;
28 × 15 = (28 : 2) × 15 × 2 = 14 × 30 = 420;
32 × 25 = (32 : 2) × 25 × 2 = 16 × 50 = 800;
26 × 35 = (26 : 2) × 35 × 2 = 13 × 70 = 910;
36 × 45 = (36 : 2) × 45 × 2 = 18 × 90 = 1625;
34 × 55 = (34 : 2) × 55 × 2 = 17 × 110 = 1870;
18 × 65 = (18 : 2) × 65 × 2 = 9 × 130 = 1170;
12 × 75 = (12 : 2) × 75 × 2 = 6 × 150 = 900;
14 × 85 = (14 : 2) × 85 × 2 = 7 × 170 = 1190;
12 × 95 = (12 : 2) × 95 × 2 = 6 × 190 = 1140.
Умножение и деление на 4, 8, 16…
Чтобы число умножить на 4, его дважды удваивают.
Пример:
213 · 4 = (213 · 2) · 2 = 426 · 2 = 852
Чтобы число разделить на 4, его дважды делят на 2.
Пример:
124 : 4 = (124 : 2) : 2 = 62 : 2 = 31
Чтобы умножить число на 8 его трижды удваивают.
Чтобы умножить число на 16 его четырежды удваивают и т.д.
При делении числа на 8 необходимо его трижды поделить на 2.
При делении числа на 16 необходимо его четыре раза поделить на 2.
Умножение и деление на 25, 50, 75, 125, 250, 500
Для того, чтобы устно научиться умножать и делить на 25 и 75, надо хорошо знать признак делимости и таблицу умножения на 4.
На 4 делятся те, и только те числа, у которых две последние цифры числа выражают число, делящееся на 4.
Например:
124 делится на 4, так как 24 делится на 4;
1716 делится на 4, так как 16 делится на 4;
1800 делится на 4, так как 00 делится на 4
Правило. Чтобы число умножить на 25, надо это число разделить на 4 и умножить на 100.
Примеры:
484 × 25 = (484 : 4) × 25 × 4 = 121 × 100 = 12100
124 × 25 = 124 : 4 × 100 = 3100
Правило. Чтобы число разделить на 25, надо это число разделить на 100 и умножить на 4.
Примеры:
12100 : 25 = 12100 : 100 × 4 = 484
31100 : 25 = 31100 :100 × 4 = 1244
Правило. Чтобы число умножить на 75, надо это число разделить на 4 и умножить на 300.
Примеры:
32 × 75 = (32 :4) × 75 × 4 = 8 × 300 = 2400
48 × 75 = 48 : 4 × 300 = 3600
Правило. Чтобы число разделить на 75, надо это число разделить на 300 и умножить на 4.
Примеры:
2400 : 75 = 2400 : 300 × 4 = 32
3600 : 75 = 3600 : 300 × 4 = 48
Правило. Чтобы число умножить на 50, надо это число разделить на 2 и умножить на 100.
Примеры:
432× 50 = 432 :2 × 50 × 2 = 216 × 100 = 21600
848 × 50 = 848 : 2 × 100 = 42400
Правило. Чтобы число разделить на 50, надо это число разделить на 100 и умножить на 2.
Примеры:
21600 : 50 = 21600 : 100 × 2 = 432
42400 : 50 = 42400 : 100 × 2 = 848
Правило. Чтобы число умножить на 500, надо это число разделить на 2 и умножить на 1000.
Примеры:
428 × 500 = (428 :2) × 500 × 2 = 214 × 1000 = 214000
2436 × 500 = 2436 : 2 × 1000 = 1218000
Правило. Чтобы число разделить на 500, надо это число разделить на 1000 и умножить на 2.
Примеры:
214000 : 500 = 214000 : 1000 × 2 = 428
1218000 : 500 = 1218000 : 1000 × 2 = 2436
Умножение пары чисел, у которых цифры десятков одинаковые, а сумма цифр единиц составляет 10
Пример:
24 × 26 = (24 – 4) × (26 + 4) + 4 × 6 = 20 × 30 + 24 = 624.
Числа 24 и 26 округляем до десятков, чтобы получить число сотен, и к числу сотен прибавляем произведение единиц.
18 × 12 = 2 × 1 сот. + 8 × 2 = 200 + 16 = 216;
16 × 14 = 2 × 1 × 100 + 6 × 4 = 200 + 24 = 224;
23 × 27 = 2 × 3 × 100 + 3 × 7 = 621;
34 × 36 = 3 × 4 сот. + 4 × 6 = 1224;
71 × 79 = 7 × 8 сот. + 1 × 9 = 5609;
82 × 88 = 8 × 9 сот. + 2 × 8 = 7216.
Можно решать устно и более сложные примеры:
108 × 102 = 10 × 11 сот. + 8 × 2 = 11016;
204 × 206 = 20 × 21 сот. +4 × 6 = 42024;
Правило. При умножении двузначных чисел. у которых сумма цифр десятков равна 10, а цифры единиц одинаковые, надо перемножить цифры десятков. и прибавить цифру единиц, получим число сотен и к числу сотен прибавим произведение единиц.
Примеры:
72 × 32 = (7 × 3 + 2)сот. + 2 × 2 = 2304;
64 × 44 = (6 × 4 + 4) × 100 + 4 × 4 = 2816;
53 × 53 = (5 × 5 +3) × 100 + 3 × 3 = 2809;
18 × 98 = (1 × 9 + 8) × 100 + 8 × 8 = 1764
Прием округления
Очень эффективный и часто употребляемый приём устного счёта. Этот приём можно использовать во всех четырёх арифметических действиях.
Прием заключается в следующем:
1) К одному из слагаемых (уменьшаемому, вычитаемому, множителю, делимому, делителю) добавляем столько единиц, сколько не хватает до нужного нам «круглого» числа.
2) Затем из результата вычитаем столько же единиц, сколько прибавляли.
Примеры:
1) 399+473=400+473=873–1=872 (399 округляем до 400, т.е. прибавляем 1, а затем из результата вычитаем 1)
399+473=(399+1)+(473–1)=400+472=872
2) 56–38=(56+4–38) – 4=(60–38) – 4=22–4=18 (если уменьшаемое увеличить на несколько единиц, то остаток или разность необходимо увеличить на соответствующее количество единиц)
3) 72–15=((72–2) – 15)+2=(70–15)+2=57 (если уменьшаемое уменьшить на несколько единиц, то остаток или разность уменьшается на соответствующее количество единиц. Следовательно, это количество необходимо прибавить)
4) 752–298=(752 – (298+2))+2=(752–300)+2=452+2=454 (если вычитаемое увеличить на несколько единиц, то остаток или разность уменьшаются на соответствующее количество единиц. Чтобы этого не произошло к полученному результату необходимо прибавить вычтенное число.)
93–22=(93 – (22–2)) – 2=(93–20) – 2=73–2=71
приписать это же число.
Заключение
Приемы устных рациональных вычислений, способствуют повышению общего уровня математического развития; развивают у учеников навык быстро выделять из известных им законов, формул, теорем те, которые следует применить для решения предложенных задач, расчетов и вычислений; содействуют развитию памяти, развивают способность зрительного восприятия математических фактов, совершенствуют пространственное воображение.
Помимо этого, рациональный счет играет немаловажную роль в повышении у детей познавательного интереса к урокам математики, как одного из важнейших мотивов учебно-познавательной деятельности, развития личностных качеств ребенка.
Список источников информации
«Течет река Волга»
У меня в портфеле
Без сердца что поймём?
Композитор Алексей Рыбников
Андрей Усачев. Пятно (из книги "Умная собачка Соня")