проект содержит текстовый документ и презентацию по теме "СИСТЕМЫ СЧИСЛЕНИЯ
Вложение | Размер |
---|---|
proekt_sistemy_schisleniya.docx | 156.51 КБ |
МБОУ «Жарынская средняя школа»
Проект на тему:
Системы счисления
Выполнила:
ученица 7 класса
Юлдашева Диана
Руководитель:
Глушкова Г.П.
д. Красная Горка
2017 год
Содержание
Введение
Тема «Системы счисления» имеет прямое отношение к математической теории чисел. Однако в школьном курсе математики она, как правило, не изучается. Необходимость изучения этой темы связана с тем фактом, что в повседневной жизни мы используем числа, которые являются объектами различных систем счисления. Они используются всегда, когда появляется потребность в числовых расчётах, начиная с вычислений младшего школьника, выполняемых карандашом на бумаге, кончая вычислениями, выполняемыми на суперкомпьютерах.
Объект исследования – системы счисления.
Целью исследования является изучение истории возникновения систем счисления и применение систем счисления в жизни.
Задачи исследования:
Методы исследования:
Понятие системы счисления
Понятие «число» является ключевым как для математики, так и для информатики. Люди всегда считали и записывали числа, даже 5 тысяч лет назад. Но записывали их по другим правилам, хотя в любом случае число изображалось с помощью любого или нескольких символов, которые назывались цифрами.
Язык чисел, как и любой другой, имеет свой алфавит. В том языке чисел, которым мы обычно пользуемся, алфавитом служат десять цифр – от 0 до 9. Это десятичная система счисления.
Система счисления - это способ записи чисел с помощью заданного набора специальных знаков (цифр, букв и т. д.), который называют алфавитом.
Системы счисления делятся на различные группы:
- Анатомического происхождения: десятичная, пятеричная, двенадцатеричная, двадцатеричная.
- Алфавитные: древнеармянская, древнегрузинская, древнегреческая, ионическая, славянская.
- Машинные: двоичная, восьмеричная, шестнадцатеричная.
- Прочие: Римская, Вавилонская, Египетская нумерация, Китайская нумерация и другие.
Также различают позиционные и непозиционные системы счисления.
Непозиционные системы счисления. В непозиционных системах счисления значение числа определяется как сумма или разность цифр в числе. В непозиционных системах счисления считать трудно.
Примеры непозиционных систем счисления:
1. У многих народов использовалась система, алфавит которой состоял из одного символа – палочки. Для изображения какого-то числа в этой системе нужно записать определенное множество палочек, равное данному числу: ||||| – число пять.
2. Египтяне применяли для записи чисел иероглифы. Единицу обозначали одной вертикальной чертой, а для обозначения чисел, меньших 10, нужно было поставить соответствующее число вертикальных штрихов. Если штрихов нужно изобразить несколько, то их объединяли в группы из трех или четырех черт и изображали в несколько рядов, причем в нижнем должно быть столько же штрихов сколько и в верхнем, или на одну больше.
Для обозначения числа 10, основания системы, египтяне вместо десяти вертикальных черт ввели новый коллективный символ, напоминающий по своим очертаниям подкову или крокетную дужку.
Если нужно изобразить несколько десятков, то иероглиф повторяли нужное количество раз. Тоже самое относится и к остальным иероглифам.
Множество из десяти подковообразных символов, т.е. число 100, они заменили другим новым символом, напоминающим силки; десять силков, т.е. число 1 000, египтяне обозначили стилизованным изображением лотоса. Продолжая в том же духе, египтяне обозначили десять лотосов согнутым пальцем, десять согнутых пальцев – волнистой линией и десять волнистых линий – фигуркой удивленного человека. В итоге древние египтяне могли представлять числа до миллиона.
10 | 100 | 1 000 | 10 000 | 100 000 | 1 000 000 | 10 000 000 |
Рис 1. Египетская система счисления
Самым распространенным примером непозиционной системы счисления является римская система счисления
Рис 2. Римская система счисления
Позиционные системы счисления. Позиционной называется такая система счисления, в которой величина, обозначаемая цифрой в записи числа, зависит от ее позиции.
Первая известная нам система, основанная на позиционном принципе – шестидесятeричная вавилонская. Например, число 59 в данной системе записывается следующим образом:
, т.е. 59 = 5 · 10 + 9.
Запись чисел в позиционных системах счисления осуществляется следующим образом: множество цифр, используемых для записи чисел в позиционных системах счисления, образует алфавит. Количество используемых цифр называется основанием системы счисления. Место каждой цифры в числе – позиция. Сущность позиционного представления чисел отражается в развернутой форме записи числа.
Основание (n) | Название | Алфавит |
n=2 | двоичная | 0, 1 |
n=3 | троичная | 0, 1, 2 |
n=5 | пятеричная | 0, 1, 2, 3, 4 |
n=8 | восьмеричная | 0, 1, 2, 3, 4, 5, 6, 7 |
n=10 | десятичная | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 |
n=16 | шестнадцатеричная | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F |
Основные достоинства любой позиционной системы счисления – простота выполнения арифметических операций и ограниченное количество символов, необходимых для записи любого числа.
Из истории возникновения систем счисления.
Считать человек начал задолго до того, как он научился писать, поэтому не сохранилось никаких письменных документов, свидетельствовавших о тех словах, которыми в древности обозначали числа. Для кочевых племен характерны устные названия чисел, что же касается письменных, то необходимость в них появилась лишь с переходом к оседлому образу жизни, образованием земледельческих сообществ. Возникла и необходимость в системе записи чисел, и именно тогда было заложено основание для развития математики.
В этих папирусах более древнее иероглифическое письмо уступило место скорописному иератическому письму, и это изменение сопровождалось использованием нового принципа обозначения чисел. Группа одинаковых символов заменялись более простой по начертанию пометой или знаком. В этой записи число 6789 имело вид, причем знаки более высокого порядка располагались справа, а не слева. Иероглифическая запись чисел использовалась преимущественно в официальных документах и текстах. Еще позднее иератическая система обозначения чисел уступила место демотическим системам записи.
Введение египтянами цифровых обозначений ознаменовало один из важных этапов в развитии систем счисления, так как дало возможность существенно сократить записи.
Письменность шумеров является столь же древней, как и письменность египтян. Развитие способов представления чисел в Месопотамской долине вначале шло так же, как и в долине Нила, но затем жители Междуречья ввели совершенно новый принцип. Вавилоняне делали записи острой палочкой на мягких глиняных табличках, которые затем обжигались на солнце или в печи. Эти записи оказались исключительно долговечными, а потому, в отличие от египетских папирусов, дошедших до нас в весьма малом числе экземпляров, в музеях мира хранятся десятки тысяч клинописных табличек. Однако жесткость материала, на котором жители Месопотамии делали записи, оказала глубокое влияние на развитие числовых обозначений. Через некоторое время система счисления в Месопотамии стала шестидесятеричной, хотя сохранилось также и основание 10. Принято считать, что шестидесятеричная система была выбрана из метрологических соображений: число 60 имеет много делителей.
Для малых чисел вавилонская система счисления в основных чертах напоминала египетскую. Одна вертикальная клинообразная черта (в раннешумерских табличках – небольшой полукруг) означала единицу; повторенный нужное число, раз этот знак служил для записи чисел меньше десяти; для обозначения числа 10 вавилоняне, как и египтяне, ввели новый коллективный символ – более широкий клиновидный знак с острием, направленным влево, напоминающий по форме угловую скобку.
Для записи чисел больше 59 древние вавилоняне впервые использовали новый принцип – одно из самых выдающихся достижений в развитии систем обозначений чисел – принцип позиционности, т.е. зависимости значения символа от его местоположения в записи числа. При таком способе записи для обозначения сколь угодно больших чисел уже не нужно было других символов, кроме тех которые уже известны.
Как в десятичной позиционной системе, в древневавилонской системе подразумевалось, что на первом месте справа от единиц стоят величины, кратные 1/60, на втором месте – величины кратные 1/602 и т.д. Привычное нам деление часа и углового или дугового градуса на 60 минут, а одной минуты – на 60 секунд берет начало от вавилонской системы счисления.
В Древней Греции имели хождение две основных системы счисления – аттическая (или геродианова) и ионическая (она же александрийская или алфавитная). Аттическая система счисления использовалась греками, по-видимому, уже к 5 в. до н.э. По существу это была десятичная система (хотя в ней также было выделено и число пять), а аттические обозначения чисел использовали повторы коллективных символов. Черта, обозначавшая единицу, повторенная нужное число раз, означала числа до четырех. После четырех черт греки вместо пяти черт ввели новый символ Г, первую букву слова «пента» (пять) (буква Г употреблялась для обозначения звука «п», а не «г»). Дойдя до десяти, они ввели еще один новый символ , первую букву слова «дека» (десять). Так как система была десятичной, грекам потребовались новые символы для каждой новой степени числа 10: символ H означал 100 (гекатон), X – 1000 (хилион), символ M – 10000 (мирион или мириада).
Вторая принятая в Древней Греции ионическая система счисления – алфавитная – получила широкое распространение в начале Александрийской эпохи, хотя возникнуть она могла несколькими столетиями раньше, по всей видимости, уже у пифагорейцев. Эта более тонкая система счисления была чисто десятичной, и числа в ней обозначались примерно так же, как в древнеегипетской иератической системе. Используя двадцать четыре буквы греческого алфавита и, кроме того, еще три архаических знака, ионическая система сопоставила девять букв первым девяти числам; другие девять букв – первым девяти целым кратным числа десять; и последние девять символов – первым девяти целым кратным числа 100. Для обозначения первых девяти целых кратных числа 1000 греки частично воспользовались древневавилонским принципом позиционности, снова используя первые девять букв греческого алфавита, снабдив их штрихами слева. Чтобы отличить числа от слов, греки над соответствующей буквой ставили горизонтальную черту. Первоначально числа обозначались прописными буквами, но позднее сменились на строчные.
Переход к ионической системе счисления произошел в золотой век древнегреческой математики и, в частности, при жизни двух величайших математиков античности Архимеда и Апполония. Именно тогда Архимед и Апполоний работали над усовершенствованием системы обозначения больших чисел.
Римские обозначения чисел известны ныне лучше, чем любая другая древняя система счисления. Объясняется это не столько какими-то особыми достоинствами римской системы, сколько тем огромным влиянием, которым пользовалась римская империя в сравнительно недавнем прошлом.
Согласно одной из распространенных теорий, римская цифра V изображает раскрытую руку с четырьмя прижатыми друг к другу пальцами и отставленным большим пальцем; символ X, согласно той же теории, изображает две скрещенные руки или сдвоенную цифру V. Неизвестно, произошли ли более поздние обозначения C и M от старых римских символов или они акрофонически связаны с начальными буквами латинских слов, означавших 100 (центум) и 1000 (милле). Римляне часто использовали принцип вычитания, поэтому иногда вместо VIIII использовали IX и XC вместо LXXXX; сравнительно позднее символ IV вместо IIII. Дробей римляне избегали так же упорно, как и больших чисел. В практических задачах, связанных с измерениями, они не использовали дроби, подразделяя единицу измерения обычно на 12 частей, с тем, чтобы результат измерения представить в виде составного числа, суммы кратных различных единиц, как это делается сегодня, когда длину выражают в ярдах, футах и дюймах. Английские слова «ounce» (унция) и «inch» (дюйм) происходят от латинского слова uncia (унция), обозначавшего одну двенадцатую основной единицы длины.
Одна из древнейших систем счисления была создана в Китае, а также в Японии. Эта система возникла как результат оперирования с палочками, выкладываемыми для счета на стол или доску. Числа от единицы до пяти обозначались, соответственно, одной, двумя и т.д. палочками, выкладываемыми вертикально. Одна, две, три или четыре вертикальные палочки, над которыми помещалась одна поперечная палочка, означали числа шесть, семь, восемь и девять. Первые пять кратных числа 10 обозначались одной, двумя, , пятью горизонтальными палочками, а одна, две, три и четыре горизонтальные палочки, к которым сверху приставлялась вертикальная палочка, означали числа 60, 70, 80 и 90. Для обозначения чисел больше 99 использовался позиционный принцип. Число 6789 китайцы записали бы так: . Обозначения чисел с помощью палочек тесно связано со счетом на пальцах и счетной доске, но применялось оно также и в письменных вычислениях.
В китайской системе счисления для обозначения первых девяти целых чисел или символов используют девять различных знаков и одиннадцать дополнительных символов для обозначения первых одиннадцати степеней числа 10. В сочетании с умножением и вычитанием это позволяло записывать любое число меньше триллиона. Если один из символов, обозначающих первые девять целых чисел, стоит перед (при чтении слева направо) символом, означающим степень числа 10, то первое нужно умножить на второе, если же символ одного из девяти первых целых чисел стоит на последнем месте, то это число надлежит прибавить к обозначенному предыдущими символами.
Письменных памятников древнеиндийской цивилизации сохранилось очень немного, но, судя по всему, индийские системы счисления проходили в своем развитии те же этапы, что и во всех прочих цивилизациях. На древних надписях из Мохенджо-Даро вертикальная черточка в записи чисел повторяется до тринадцати раз, а группировка символов напоминает ту, которая знакома нам по египетским иероглифическим надписям. В течение некоторого времени имела хождение система счисления, очень напоминающая аттическую, в которой для обозначения чисел 4, 10, 20 и 100 использовались повторения коллективных символов. Эта система, которая называется кхарошти, постепенно уступила место другой, известной под названием брахми, где буквами алфавита обозначались единицы (начиная с четырех), десятки, сотни и тысячи. Переход от кхарошти к брахми происходил в те годы, когда в Греции, вскоре после вторжения в Индию Александра Македонского, ионическая система счисления вытеснила аттическую. Вполне возможно, что переход от кхарошти к брахми происходил под влиянием греков, но сейчас вряд ли возможно хоть как-то проследить или восстановить этот переход от древних индийских форм к системе, от которой произошли наши системы счисления. Надписи, найденные в Нана-Гат и Насике, относящиеся к первым векам до нашей эры и первым векам нашей эры содержат обозначения чисел, которые были прямыми предшественниками тех, которые получили теперь название индо-арабской системы. Первоначально в этой системе не было ни позиционного принципа, ни символа нуля. Современную систему обозначения чисел часто называют арабской, хотя ясно, что она берет начало не из Аравии. До хиджры арабы записывали числа словами, но затем, как это делали ранее греки, они стали обозначать числа буквами своего алфавита. В 772 индийский трактат «Сидданта» был привезен в Багдад и переведен на арабский, после чего стали использоваться две системы записи чисел: (1) в астрономии по-прежнему употребляли алфавитную систему, (2) в торговых расчетах купцы стали применять систему, заимствованную из Индии. Но даже среди тех, кто пользовался индийской системой, начертания цифр, как и в Индии, сильно варьировали. Эти две системы счисления были широко распространены и после распада арабского халифата. В его восточной части пользовались системой, аналогичной той, которая и сейчас встречается в арабском мире.
Западная Европа. Первым европейским ученым, о котором достоверно известно, что он ввел в употребление в Европе арабские цифры, был Герберт, работавший в Испании и позднее (в 999-м) ставший папой Сильвестром II.
В 12 в. Хуан из Севильи перевел на латынь трактат De numero indorum (Об индийских числах) арабского математика Аль-Хорезми. Когда в следующем веке индийские обозначения стали широко известными, новая система получила название алгоритм – от искаженного Аль-Хорезми. Через пару столетий европейские алгоритмики одержали верх над теми, кто пользовался римскими цифрами в вычислениях с целыми числами, но лишь с 1585 индо-арабская система обозначений, систематически расширяясь, стала использоваться и применительно к дробям.
Двоичная система по существу была известна в Древнем Китае. В классической книге «И цзин» («Книга перемен») приведены так называемые «гексаграммы Фу-си», первая из которых имеет вид , а последняя (64-я) – вид , причем они расположены по кругу и занумерованы в точном соответствии с двоичной системой (нулями и единицами соответствуют сплошные и прерывистые линии). Китайцы не поленились придумать для этих диаграмм специальные иероглифы и названия.
Двоичная система счисления удобна в использовании, что доказывают разнообразные сферы ее применения.
Применение систем счисления.
Слайды 18 – 23.
Азбука Морзе
Сэмюель Морзе – изобретатель азбуки, но его самое главное достижение – изобретение телеграфа (а азбука Морзе понадобилась ему для использования телеграфа). Точка и тире оказались самыми элементарными символами, которые мог передавать его телеграф. Они соответствовали коротким и длинным импульсам электрического тока, передаваемым по телеграфным проводам. Длина импульса определялась нажатием руки телеграфиста на ключ телеграфа. Прием сигнала осуществляло реле, которое после появления в нем импульса тока включало электромагнит, который либо заставлял стучать молоточек, либо прижимал колесико с красящей лентой к бумажной ленте, на которой отпечатывались либо точка, либо тире в зависимости от длины импульса.
Азбука Морзе сопоставляет каждой букве алфавита последовательность из точек и тире. Естественней всего использовать такие последовательности длины 6, их всего 64 и хватит даже на русский алфавит. Но Морзе понимал, что длину сообщения желательно уменьшить, насколько возможно, поэтому он решил использовать последовательности длины не более 4, их всего 2 + 4 + 8 + 16 = 30. в русском алфавите пришлось не использовать буквы «э» и «ё» и отождествить мягкий и твердый знаки. Кроме того, наиболее часто используемых буквами он предложил давать самые короткие коды, чтобы уменьшить среднюю длину передаваемого сообщения.
Штрих-коды
Примером применения двоичного кодирования в современной технике служат штрих-коды. В супермаркетах на упаковках товаров можно увидеть штрих-код. Для чего он нужен, и как его прочитать?
Нужен он только для автоматического занесения информации в кассовый аппарат. Сам штрих-код состоит из тридцати черных полос переменой толщины, разделенной промежутками тоже переменой толщины. Толщина полос может принимать четыре значения – от самой тонкой до самой толстой. Такую же толщину могут иметь и промежутки. Когда по сканеру проводят штрих-кодом, он воспринимает каждую черную полоску как последовательность единиц длины от одной до четырех и также воспринимает промежутки между полосами, но при этом вместо единиц сканер видит нули. Полностью весь штрих-код сканер воспринимает как последовательность из 95 цифр 0 или 1 (их давно уже принято называть битами). Что же содержит этот код? Он кодирует 13-разрядное десятичное число, совершенно открыто написанное под самим штрих-кодом. Если сканер не смог распознать штрих-код, то это число кассир вводит в аппарат вручную. Штрих-код нужен лишь для облегчения распознавания сканером изображения. Распознавать цифры, к тому же повернутые боком, может только сложная программа распознавания на универсальном компьютере, да и то не очень надежно, а не кассовый аппарат.
Рис 5. Расшифровка штрих-кода
Какую же информацию содержит это 13-значное число? Этот вопрос к математике никакого отношения не имеет. Первые две цифры задают страну – производителя товара. Следующие пять цифр – это код производитель, а следующие пять цифр – код самого продукта в принятой этим производителем кодировке. Последняя цифра – это код проверки. Он однозначно вычисляется по предыдущим 12 цифрам, следующим образом. Нужно сложить все цифры с нечетными номерами, утроить сумму, к ней прибавить сумму оставшихся цифр, а полученный результат вычесть из ближайшего кратного 10 числа.
Компьютерная техника и информационные технологии
Столь привычная для нас десятичная система оказалась неудобной для ЭВМ. Если в механических вычислительных устройствах, использующих десятичную систему, достаточно просто применить элемент с множеством состояний (колесо с девятью зубьями), то в электронных машинах надо было бы иметь 10 различных потенциалов в цепях. Наиболее просто реализуется элементы с двумя состояниями - триггеры. Поэтому естественным был переход на двоичную систему. В этой системе всего две цифры - 0 и 1 . Каждая цифра называется двоичной (от английского binary digit - двоичная цифра). Сокращение от этого выражения привело к появлению термина бит, ставшего названием разряда двоичного числа.
Бит - это минимальная единица измерения информации. За битом следует байт, состоящий из восьми битов, затем килобайт, мегабайт, гигабайт.
В компьютере для представления информации используется двоичное кодирование, так как удалось создать надежные работающие технические устройства, которые могут со стопроцентной надежностью сохранять и распознавать не более двух различных состояний (цифр). Все виды информации в компьютере кодируются на машинном языке, в виде логических последовательностей нулей и единиц.
Двоичная система счисления удобна в использовании, что доказывают разнообразные сферы ее применения. В данной работе рассмотрены не все сферы применения двоичной системы счисления и работа в данной области может быть продолжена.
Широкое применение в ЭВМ нашли также восьмеричная и шестнадцатеричная системы счисления. Обмен информацией между устройствами большинства ЭВМ осуществляется путем передачи двоичных слов. Пользоваться такими словами из-за их большой длины и зрительной однородности человеку неудобно. Поэтому специалисты (программисты, инженеры) как на этапах составления несложных программ для микроЭВМ, их отладки, ручного ввода-вывода данных, так и на этапах их разработки, создания, настройки вычислительных систем заменяют коды машинных команд, адреса и операнды на эквивалентные им величины в восьмеричной или шестнадцатеричной системе счисления. В результате длина исходного слова сокращается в 3 или 4 раза соответственно. Это делает информацию более удобной для рассмотрения и анализа. Таким образом, восьмеричная и шестнадцатеричная системы счисления выступают в качестве простейшего языка общения человека с ЭВМ, достаточно близкого, как к привычной для человека десятичной системе счисления, так и к двоичному "языку" машины.
Заключение
В данной работе:
Изучив литературу по теме «Системы счисления», я узнала, что в древности люди пользовались различными системами счисления, позиционными и непозиционными. Многие системы счисления имеют анатомическое происхождение. Элементы некоторых систем счисления имеют практическое применение в наши дни. Общеупотребительной системой счисления стала десятичная система счисления. Но и другие системы счисления имеют практическое применение, например системы счисления с основаниями 2, 8, 16. Правила, связанные с системами счисления помогают в практической деятельности человека. А ученикам системы счисления помогают показать математику с другой стороны – математика может быть еще и средством развлечения.
Системы счисления вошли в нашу жизнь из-за практической жизненной потребности, теперь можно сказать что, человек может отметить своё 1000 в некоторых системах счисления, и 2+2 не всегда равно 4.
Рисуем домики зимой
Фокус-покус! Раз, два,три!
Сторож
Астрономический календарь. Январь, 2019 год
Волшебная фортепианная музыка