Сегодня мир уверенно шагает вперёд, он всё больше и больше погружается в эру высоких технологий и новейших разработок. Для изобретения новых сверхпрочных материалов учёные проводят всё новые и новые химические опыты, а для протекания некоторых процессов требуются катализаторы (ускорители реакций). Зачастую, это некоторые металлы и кристаллические тела. Также кристаллы используются и в жидком состоянии,например, в телевизорах и/или в мониторах компьютеров. Более того они очень широко применяются в ювелирном искусстве. Так зачем же добывать всё это добро из недр нашей планеты, если можно их вырастить искусственно из более недорогих материалов? Например, можно вставить в оправу не настоящий аквамарин, а вырастить поддельный голубой кристалл из медного купороса. Как же это сделать? Об этом мой рассказ.
Вложение | Размер |
---|---|
proekt_kuksa_d.docx | 59.88 КБ |
Муниципальное образовательное учреждение
«Средняя общеобразовательная школа №4» г.Всеволожска
Индивидуальный проект по теме:
«Удивительный мир кристаллов»
Руководитель проекта:Чмутова Людмила Владимировна
Выполнил:Кукса Дмитрий Александрович
ученик 10 «Б» класса
Всеволожск 2018-2019
Содержание:
Введение……………………………………………………………....3
Теоретическая часть………………………………………………….4
Общая характеристика кристаллов……………………………....4
Кристаллические решетки………………………………....4
Сингонии…………………………………………………....4
Монокристалл……………………………………………………..5
Анизотропия………………………………………………..5
Изотропия…………………………………………………..6
Аморфные тела…………………………………………………....7
Поликристалл……………………………………………………..8
Полиморфизм……………………………………………....9
Спекание в технике………………………………………...9
Рекристаллизация…………………………………………10
Жидкие кристаллы………………………………………………10
Термотропные……………………………………………..10
Нематические……………………………………….11
Смектические……………………………………….11
Холестерические…………………………………....11
Лиотропные………………………………………………...10
Ньютоновская жидкость………………………………………....13
История……………………………………………………………….14
Кристаллография…………………………………………………14
Трактат «О шестиугольных снежинках»…………………14
Физика твёрдого тела…………………………………………….16
Практическая часть………………………………………………….18
Применение кристаллов………………………………………….18
Выращивание кристаллов………………………………………..19
Список литературы…………………………………………………..21
Введение
Актуальность проекта:
Сегодня мир уверенно шагает вперёд, он всё больше и больше погружается в эру высоких технологий и новейших разработок. Для изобретения новых сверхпрочных материалов учёные проводят всё новые и новые химические опыты, а для протекания некоторых процессов требуются катализаторы (ускорители реакций). За частую, это некоторые металлы и кристаллические тела. Также кристаллы используются и в жидком состоянии,например, в телевизорах и/или в мониторах компьютеров. Более того они очень широко применяются в ювелирном искусстве. Так зачем же добывать всё это добро из недр нашей планеты, если можно их вырастить искусственно из более недорогих материалов?Например, можно вставить в оправу не настоящий аквамарин, а вырастить поддельный голубой кристалл из медного купороса. Как же это сделать? Об этом мой рассказ.
Цель:
Познакомиться с видами и особенностями кристаллов.
Задачи:
Практическая значимость данного проекта заключается в:
Удешевление ювелирных изделий, уменьшение их добычи.
Объект и предмет исследования:
Кристалл, выращенный в домашних условиях.
Методы исследования:
1.Практический- выращивание кристалла;
2.Физический- определение вида кристалла;
3.Химический- работа с растворами различных веществ.
Теоритическая часть.
Криста́ллы (от греч. κρύσταλλος первоначально «лёд», в дальнейшем «горный хрусталь; кристалл») — твёрдые тела, в которых атомы расположены закономерно, образуя трёхмерно-периодическую пространственную укладку — кристаллическую решётку.
Кристаллы — это твёрдые вещества, имеющие естественную внешнюю форму правильных симметричных многогранников, основанную на их внутренней структуре, то есть на одном из нескольких определённых регулярных расположений составляющих вещество частиц (атомов, молекул, ионов).
Кристаллическая структура — такая совокупность атомов, в которой с каждой точкой кристаллической решётки связана определённая группа атомов, называемая мотивной единицей, причём все такие группы одинаковые по составу, строению и ориентации относительно решётки. Можно считать, что структура возникает в результате синтеза решётки и мотивной единицы, в результате размножения мотивной единицы группой трансляции ((лат. translatio — перенос, передача) — симметричное преобразование, в результате которого узел пространственной решётки совпадает с другим ближайшим идентичным узлом. В этом смысле она является частным случаем параллельного переноса.). Будучи индивидуальной для каждого вещества, кристаллическая структура относится к основным физико-химическим свойствам этого вещества.
Кристаллическая решётка -кристаллическая структура с трёхмерной периодичностью.
Если кристаллические решётки стереометрически (пространственно) одинаковы или сходны (имеют одинаковую симметрию), то геометрическое различие между ними заключается, в частности, в разных расстояниях между частицами, занимающими узлы решётки. Сами расстояния между частицами называются параметрами решётки. Параметры решётки, а также углы геометрических многогранников определяются физическими методами структурного анализа, например, методами рентгеновского структурного анализа.Виды симметрии кристаллических решеток (сингонии -классификация кристаллографических групп симметрии, кристаллов и кристаллических решёток в зависимости от системы координат):Триклинная (,)(параллелепипед) (примитивная-рис.1);Моноклинная (, , (призма с параллелограммом в основании) (примитивная-рис.2;базо-центрированная-рис.3);Ромбическая (, )(прямоугольный параллелепипед) (примитивная-рис.4; базо-центрированная-рис.5; объёмно-центрированная-рис.6; гране-центрированная-рис.7); Тетрагональная (, )(прямоугольный параллелепипед с квадратом в основании) (примитивная-рис.8; объёмно-центрированная-рис.9); Гексагональная(, , )(призма с основанием правильного центрированного шестиугольника) (примитивная-рис.10; дважды объёмно-центрированная, ромбоэдрическая-рис.11); Кубическая(, )(куб) (примитивная-рис.12, объёмно-центрированная-рис.13, гране-центрированная-рис.14).
Часто твёрдые вещества образуют (в зависимости от условий) более чем одну форму кристаллической решётки; такие формы называются полиморфными модификациями. Например, среди простых веществ известны: ромбическая и моноклинная сера; графит и алмаз, которые являются гексагональной и кубической модификациями углерода; среди сложных веществ — кварц, тридимит и кристобалит, которые представляют собой различные модификации диоксида кремния.
Следует разделить монокристалл,поликристалл и жидкие кристаллы:
Монокристалл — отдельный кристалл, имеющий непрерывную кристаллическую решётку (в противоположность поликристаллу — телу из сросшихся кристаллов). Для монокристаллов характерна анизотропия.
Анизотропи́я (от др.-греч. ἄνισος — неравный и τρόπος — направление) — различие свойств среды (например, физических: упругости, электропроводности, теплопроводности, показателя преломления, скорости звука или света и др.) в различных направлениях внутри этой среды; в противоположность изотропии. В отношении одних свойств среда может быть изотропна, а в отношении других — анизотропна; степень анизотропии также может различаться. Частный случай анизотропии — ортотропия (от др.-греч. ὀρθός — прямой и τρόπος — направление) — неодинаковость свойств среды по взаимно перпендикулярным направлениям физических свойств.Анизотропия является характерным свойством кристаллических тел. При этом свойство анизотропии в простейшем виде проявляется только у монокристаллов. У поликристаллов анизотропия тела в целом (макроскопически) может не проявляться вследствие беспорядочной ориентировки микрокристаллов, или даже совсем не проявляется, за исключением случаев специальных условий кристаллизации, специальной обработки и т. п. Причиной анизотропности кристаллов является то, что при упорядоченном расположении атомов, молекул или ионов силы взаимодействия между ними и межатомные расстояния (а также некоторые не связанные с ними прямо величины, например, поляризуемость или электропроводность) оказываются неодинаковыми по различным направлениям. Причиной анизотропии молекулярного кристалла может быть также асимметрия его молекул. Макроскопически эта неодинаковость проявляется, как правило, лишь если кристаллическая структура не слишком симметрична. Помимо кристаллов, естественная анизотропия — характерная особенность многих материалов биологического происхождения, например, деревянных брусков. Во многих случаях анизотропия может быть следствием внешнего воздействия (например, механической деформации, воздействия электрического или магнитного поля и т. д.). В ряде случаев анизотропия среды может в какой-то степени (а в некоторой слабой степени — часто) сохраняться после исчезновения вызвавшего её внешнего воздействия.
Изотропи́я, изотро́пность (из др.-греч. ί̓σος «равный, одинаковый, подобный» + τρόπος «направление, характер») — одинаковость физических свойств во всех направлениях, инвариантность, симметрия по отношению к выбору направления (в противоположность анизотропии; частный случай анизотропии — ортотропия). Изотропная среда — такая область пространства, физические свойства которой (электрические, оптические и др.) не зависят от направления. Например, показатель преломления оптически изотропной среды одинаков во всех направлениях. Реальное пространство само по себе теоретически считается изотропным (хотя в рамках общей теории относительности и многих альтернативных современных теорий гравитации в это утверждение следует внести определённые коррективы, если присутствует гравитационное поле и нельзя ограничиться ньютоновским приближением, а с точки зрения квантовой теории поля, изотропию пространства — в малых областях и временно — могут нарушать квантовые флуктуации). Экспериментально изотропия физического пространства (с упомянутой оговоркой относительно гравитации) установлена с большой точностью, и нарушений её на сегодняшний день неизвестно.
Внешняя форма монокристалла обусловлена его атомно-кристаллической решёткой и условиями (в основном скоростью и однородностью) кристаллизации. Медленно выращенный монокристалл почти всегда приобретает хорошо выраженную естественную огранку, в неравновесных условиях (средняя скорость роста) кристаллизации огранка проявляется слабо. При ещё большей скорости кристаллизации вместо монокристалла образуются однородные поликристаллы и поликристаллические агрегаты, состоящие из множества различно ориентированных мелких монокристаллов. Примерами огранённых природных монокристаллов могут служить монокристаллы кварца, каменной соли, исландского шпата, алмаза, топаза. Большое промышленное значение имеют монокристаллы полупроводниковых и диэлектрических материалов, выращиваемые в специальных условиях. В частности, монокристаллы кремния и искусственных сплавов элементов III (третьей) группы с элементами V (пятой) группы таблицы Менделеева (например, GaAs — арсенид галлия) являются основой современной твердотельной электроники.Монокристаллы металлов и их сплавов могут обладать повышенными прочностными свойствами и применяются в авиадвигателестроении. Монокристаллы сверхчистых веществ обладают одинаковыми свойствами независимо от способа их получения.Кристаллизация происходит вблизи температуры плавления (конденсации) из газообразного (например иней и снежинки), жидкого (наиболее часто) и твёрдого аморфного состояний с выделением тепла.
Амо́рфные вещества́ (тела́) (от др.-греч. ἀ «не-» + μορφή «вид, форма») — конденсированное состояние веществ, атомная структура которых имеет ближний порядок и не имеет дальнего порядка, характерного для кристаллических структур. В отличие от кристаллов, стабильно-аморфные вещества не затвердевают с образованием кристаллических граней, и, (если не были под сильнейшим анизотропным воздействием — сжатием или электрическим полем, например) обладают изотропией свойств, то есть не обнаруживают различия свойств в разных направлениях. Аморфные вещества не имеют определённой точки плавления: при повышении температуры стабильно-аморфные вещества постепенно размягчаются и выше температуры стеклования (Tg) переходят в жидкое состояние. Вещества, обычно имеющие (поли-)кристаллическую структуру, но сильно переохлаждённые при затвердевании, могут затвердевать в аморфном состоянии, которое при последующем нагреве или с течением времени кристаллизуется (в твёрдом состоянии с небольшим выделением тепла).Аморфное состояние многих веществ получается при высокой скорости затвердевания (остывания) жидкого расплава, или при конденсации паров на охлаждённую заметно ниже температуры плавления поверхность-подложку. Соотношение реальной скорости охлаждения (dT/dt) и характеристической скорости кристаллизации определяет долю поликристаллов в аморфном объёме. Скорость кристаллизации — параметр вещества, слабо зависящий от давления и от температуры (около точки плавления) и сильно зависящий от сложности состава. У металлов и сплавов аморфное состояние формируется, как правило, если расплав охлаждается за время порядка сотни и тысячи лет; для стёкол достаточно намного меньшей скорости охлаждения — долей-десятков миллисекунд. Кварц (SiO2) также имеет низкую скорость кристаллизации, поэтому отлитые из него изделия получаются аморфными. Однако природный кварц, имевший сотни и тысячи лет для кристаллизации при остывании земной коры или глубинных слоёв вулканов, имеет крупнокристаллическое строение, в отличие от вулканического стекла, застывшего на поверхности и поэтому аморфного.
Из обычных полимеров (пластмасс) только самый простой (полиэтилен) имеет заметную скорость кристаллизации при комнатной температуре — порядка двух лет для мягкого и нескольких лет (даже с добавками-замедлителями) для твёрдого — уже примерно наполовину кристаллизованного вида. Это одна из причин недолговечности изделий из полиэтилена.К стабильно-аморфным веществам принадлежат стекла (искусственные и вулканические), естественные и искусственные смолы, клеи, парафин, воск и др. Аморфные вещества могут находиться либо в стеклообразном состоянии (при низких температурах), либо в состоянии расплава (при высоких температурах). Аморфные вещества переходят в стеклообразное состояние при температурах заметно ниже температуры стеклования Tg. При температурах намного выше Tg аморфные вещества ведут себя как расплавы, то есть находятся в расплавленном состоянии. Вязкость аморфных материалов — непрерывная функция температуры: чем выше температура, тем ниже вязкость аморфного вещества.
Исследования показали, что структуры жидкостей и аморфных тел имеют много общего. В аморфных и жидких телах наблюдается ближний порядок в упаковке частиц (атомов или молекул).
Все физические свойства аморфного и поликристаллического состояний одного и того же вещества заметно (иногда сильно) отличаются (кроме плотности). Электрические и механические свойства аморфных веществ ближе к таковым для монокристаллов, чем для поликристаллов из-за отсутствия резких и сильно загрязнённых примесями межкристаллических границ с зачастую абсолютно другим химическим составом. Немеханические свойства полуаморфных состояний обычно являются промежуточными между аморфными и кристаллическими и изотропны. При внешних воздействиях аморфные вещества обнаруживают одновременно упругие свойства, подобно кристаллическим твёрдым веществам, и текучесть, подобно жидкости, поэтому моделируются в механике сплошных сред как вязкоупругие среды. Так, при кратковременных воздействиях (ударах) они ведут себя как твёрдые вещества и при сильном ударе раскалываются на куски. Но при очень продолжительном воздействии (например растяжении) аморфные вещества текут. Например, аморфным веществом также является смола (или гудрон, битум). Если раздробить её на мелкие части и получившейся массой заполнить сосуд, то через некоторое время смола сольётся в единое целое и примет форму сосуда. В зависимости от электрических свойств, разделяют аморфные металлы, аморфные неметаллы и аморфные полупроводники.
Кристаллизация из газа или жидкости обладает мощным очищающим механизмом: химический состав медленно выращенных монокристаллов практически идеален. Почти все загрязнения остаются (накапливаются) в жидкости или газе. Это происходит потому, что при росте кристаллической решётки происходит самопроизвольный подбор нужных атомов (молекул в случае молекулярных кристаллов) не только по их химическим свойствам (валентности), но и по размеру. Современной технике уже не хватает небогатого набора свойств естественных кристаллов (особенно для создания полупроводниковых лазеров), и учёные придумали метод создания кристаллоподобных веществ с промежуточными свойствами путём выращивания чередующихся сверхтонких (единицы — десятки нанометров) слоёв кристаллов с похожими параметрами кристаллических решёток.
Поликристалл — агрегат кристаллов какого-либо вещества (в противоположность монокристаллу — отдельному кристаллу). Составляющие поликристалл кристаллы из-за неправильной формы называют кристаллическими зёрнами или кристаллитами. Поликристаллами являются многие естественные и искусственные материалы (минералы, металлы, сплавы, керамики и др.).
Свойства поликристаллов обусловлены свойствами составляющих его кристаллических зёрен, их средним размером (который колеблется от 1—2 мкм до нескольких мм, а в некоторых случаях до нескольких метров), кристаллографической ориентацией зёрен и строением межзёренных границ. Если зёрна ориентированы хаотически, а их размеры малы по сравнению с размером поликристалла, то в поликристалле не проявляется анизотропия физических свойств, характерная для монокристаллов. Если в поликристалле есть преимущественная кристаллографическая ориентация зёрен, то поликристалл является текстурированным и обладает анизотропией свойств. Наличие границ зёрен существенно сказывается на физических, особенно механических, свойствах поликристаллов, так как на границах происходит рассеяние электронов проводимости, фононов, торможение дислокаций и др.
Поликристаллы образуются при кристаллизации, полиморфных превращенияхи в результате спекания кристаллических порошков.
Полиморфи́змкриста́ллов (от др.-греч. πολύμορφος «многообразный») - способность вещества существовать в различных кристаллических структурах, называемых полиморфными модификациями (их принято обозначать греческими буквами α, β, γ и т. д.). Характерен для различных классов веществ. Полиморфизм для простых веществ называют аллотропией, но понятие полиморфизма не относят к некристаллическим аллотропным формам (таким, как газообразные O2 и O3). Частный случай полиморфизма, характерный для соединений со слоистой структурой - политипи́зм (политипи́я). Такие модификации, политипы, отличаются между собой лишь порядком чередования атомных слоёв.
Полиморфизм объясняется тем, что одни и те же атомы вещества могут образовывать различные устойчивые кристаллические решётки, соответствующие минимумам на поверхности энергии Гиббса. Стабильной модификации отвечает глобальный минимум, метастабильным - локальные минимумы. При повышении температуры более прочная кристаллическая решётка низкотемпературной модификации может характеризоваться меньшей энтропией за счёт того, что она менее восприимчива к возбуждению тепловых колебаний, поэтому другая модификация, характеризующаяся более крутой зависимостью энергии Гиббса от температуры, становится более выгодной.
Спекание в технике — процесс получения твёрдых и пористых материалов (изделий) из мелких порошкообразных или пылевидных материалов при повышенных температурах и/или высоком давлении; часто при спекании меняются также физико-химические свойства и структура материала.
Поликристалл менее стабилен, чем монокристалл, поэтому при длительном отжиге поликристалла происходит рекристаллизация (преимущественный рост отдельных зёрен за счёт других), приводящая к образованию крупных кристаллических блоков.
Рекристаллиза́ция — процесс образования и роста (или только роста) одних кристаллических зёрен (кристаллитов) поликристалла за счёт других. Скорость рекристаллизации резко (экспоненциально) возрастает с повышением температуры. Рекристаллизация протекает особенно интенсивно в пластически деформированных материалах. При этом различают три стадии рекристаллизации:
Жи́дкиекриста́ллы (сокращённо ЖК; англ. liquidcrystals, LC) — это фазовое состояние, в которое переходят некоторые вещества при определённых условиях (температура, давление, концентрация в растворе). Жидкие кристаллы обладают одновременно свойствами как жидкостей (текучесть), так и кристаллов (анизотропия). По структуре ЖК представляют собой вязкие жидкости, состоящие из молекул вытянутой или дискообразной формы, определённым образом упорядоченных во всём объёме этой жидкости. Наиболее характерным свойством ЖК является их способность изменять ориентацию молекул под воздействием электрических полей, что открывает широкие возможности для применения их в промышленности. По типу ЖК обычно разделяют на две большие группы: нематики и смектики. В свою очередь нематики подразделяются на собственно нематические и холестерические жидкие кристаллы.
По своим общим свойствам ЖК можно разделить на две большие группы:
1.Термотропные ЖК, образующиеся в результате нагревания твёрдого вещества и существующие в определённом интервале температур и давлений.
2.Лиотропные ЖК, которые представляют собой двух- или более компонентные системы, образующиеся в стержневидных молекул данного вещества и воды (или других полярных растворителей). Эти стержневидные молекулы имеют на одном конце полярную группу, а большая часть стержня собой гибкую гидрофобную углеводородную цепь. Такие вещества называются амфифилами (амфи — по-гречески означает «с двух концов», филос — «любящий», «благорасположенный»). Примером амфифилов могут служить фосфолипиды.
Амфифильные молекулы, как правило, плохо растворяются в воде, склонны образовывать агрегаты таким образом, что их полярные группы на границе раздела фаз направлены к жидкой фазе. При низких температурах смешивание жидкого амфифила с водой приводит к расслоению системы на две фазы. Одним из вариантов амфифилов со сложной структурой может служить система мыло-вода. Здесь имеется алифатический анион и положительный ион и др. Полярная группа стремится к тесному контакту с молекулами воды, тогда как неполярная группа (алифатическая цепь) избегает контакта с водой. Это явление типично для амфифилов.
Термотропные ЖК подразделяются на три больших класса:
1.Нематические жидкие кристаллы. В этих кристаллах отсутствует дальний порядок в расположении центров тяжести молекул, у них нет слоистой структуры, их молекулы скользят непрерывно в направлении своих длинных осей, вращаясь вокруг них, но при этом сохраняют ориентационный порядок: длинные оси направлены вдоль одного преимущественного направления. Они ведут себя подобно обычным жидкостям. Нематические фазы встречаются только в таких веществах, у молекул которых нет различия между правой и левой формами, их молекулы тождественны своему зеркальному изображению (ахиральны). Примером вещества, образующего нематический ЖК, может служить N-(пара-метоксибензилиден)-пара-бутиланилин.
2.Смектические жидкие кристаллы имеют слоистую структуру, слои могут перемещаться относительно друг друга. Толщина смектического слоя определяется длиной молекул (преимущественно, длиной парафинового «хвоста»), однако вязкость смектиков значительно выше, чем у нематиков, и плотность по нормали к поверхности слоя может сильно меняться. Типичным является терефтал-бис (пара-бутиланилин).
3.Холестерические жидкие кристаллы — образуются, в основном, соединениями холестерина и других стероидов. Это нематические ЖК, но их длинные оси повёрнуты друг относительно друга так, что они образуют спирали, очень чувствительные к изменению температуры вследствие чрезвычайно малой энергии образования этой структуры (порядка 0,01 Дж/моль). В качестве типичного холестерика можно назвать амил-пара-(4-цианобензилиденамино) -циннамат.
Холестерики ярко окрашены, и малейшее изменение температуры (до тысячных долей градуса) приводит к изменению шага спирали и, соответственно, к изменению окраски ЖК. Во всех приведённых типах ЖК характерным является ориентация дипольных молекул в определённом направлении, которое определяется единичным вектором — называемым «директором».
У ЖК необычные оптические свойства. Нематики и смектики — оптически одноосные кристаллы. Холестерики, вследствие периодического строения, сильно отражают свет в видимой области спектра. Поскольку в нематиках и холестериках носителями свойств является жидкая фаза, то она легко деформируется под влиянием внешнего воздействия, а так как шаг спирали в холестериках очень чувствителен к температуре, то, следовательно, и отражение света резко меняется с температурой, приводя к изменению цвета вещества. Эти явления широко используются в различных приложениях, например, для нахождения горячих точек в микроцепях, локализации переломов и опухолей у человека, визуализации изображения в инфракрасных лучах и др.
На феноменологическом уровне деформации жидкого кристалла, как правило, описываются при помощи плотности свободной энергии Франка — Озеена. (Плотность свободной энергии Франка — Озеена (свободной энергии деформации жидкого кристалла) — величина, описывающая увеличение плотности свободной энергии жидкого кристалла, вызванное деформацией кристалла из конфигурации с однородным распределением поля директора.)
Характеристики многих электрооптических устройств, работающих на лиотропных ЖК, определяются анизотропией их электропроводности, которая, в свою очередь, связана с анизотропией электронной поляризуемости. Для некоторых веществ вследствие анизотропии свойств ЖК удельная электропроводность изменяет свой знак. Например, для н-октилоксибензойной кислоты она проходит через ноль при температуре 146 °C, и связывают это со структурными особенностями мезофазы и с поляризуемостью молекул. Ориентация молекул нематической фазы, как правило, совпадает с направлением наибольшей проводимости.
Все формы жизни так или иначе связаны с деятельностью живой клетки, многие структурные звенья которой похожи на структуру жидких кристаллов. Обладая замечательными диэлектрическими свойствами, ЖК образуют внутриклеточные гетерогенные поверхности, они регулируют взаимоотношения между клеткой и внешней средой, а также между отдельными клетками и тканями, сообщают необходимую инертность составным частям клетки, защищая её от ферментативного влияния. Таким образом, установление закономерностей поведения ЖК открывает новые перспективы в развитии молекулярной биологии.
Анизотропия свойственна жидким кристаллам, движущимся жидкостям (неньютоновским — особенно).
Одно из важных направлений использования жидких кристаллов — термография. Подбирая состав жидкокристаллического вещества, создают индикаторы для разных диапазонов температуры и для различных конструкций. Например, жидкие кристаллы в виде плёнки наносят на транзисторы, интегральные схемы и печатные платы электронных схем. Неисправные элементы — сильно нагретые или холодные, неработающие — сразу заметны по ярким цветовым пятнам. Новые возможности получили врачи: жидкокристаллический индикатор на коже больного быстро диагностирует скрытое воспаление и даже опухоль.
С помощью жидких кристаллов обнаруживают пары́ вредных химических соединений и опасные для здоровья человека гамма- и ультрафиолетовое излучения. На основе жидких кристаллов созданы измерители давления, детекторы ультразвука. Но самая многообещающая область применения жидкокристаллических веществ — информационная техника: от первых индикаторов, знакомых всем по электронным часам, до цветных телевизоров с жидкокристаллическим экраном размером с почтовую открытку. Такие телевизоры дают изображение весьма высокого качества, потребляя меньшее количество энергии. В жидкокристаллических дисплеях используется переход Фредерикса, открытый в 1927 году.
М. Г. Томилин предложил использовать жидкие кристаллы в двухступенчатых фотографических технологиях, для сохранения изображений, регистрация внешних воздействий при этом происходит в мезофазе, а хранение — в твердокристаллическом состоянии.
Нью́тоновскаяжи́дкость (названная так в честь Исаака Ньютона) — вязкая жидкость, подчиняющаяся в своём течении закону вязкого трения Ньютона, то есть касательное напряжение и градиент скорости в такой жидкости линейно зависимы. Коэффициент пропорциональности между этими величинами известен как вязкость.
Простое уравнение, описывающее силы вязкости в ньютоновской жидкости, во многом определяющие её поведение, основано на сдвиговом течении:
где:- касательное напряжение, вызываемое жидкостью, Па;
- динамический коэффициент вязкости — коэффициент пропорциональности, Па·с;
- производная скорости в направлении, перпендикулярном направлению сдвига, .
Это уравнение обычно используют при течении жидкости в одном направлении, когда вектор скорости течения можно считать сонаправленным (параллельным) во всех точках рассматриваемого объёма жидкости.
Из определения, в частности, следует, что ньютоновская жидкость продолжает течь, даже если внешние силы очень малы, лишь бы они не были строго нулевыми. Для ньютоновской жидкости вязкость, по определению, зависит только от температуры и давления (а также от химического состава, если жидкость не является беспримесной), и не зависит от сил, действующих на неё. Типичная ньютоновская жидкость — вода.
Если жидкость несжимаема и вязкость постоянна во всем объёме жидкости, то касательное напряжение в прямоугольной системе координат выражается уравнением:
C сопутствующим тензором напряжения(также часто обозначается ):
где, согласно традиционным обозначениям тензора:
-касательное напряжение на i-й грани элемента жидкости вj-м направлении;
-скорость в i-м направлении;
-j-я координата направления.
Те́нзор (от лат. tensus, «напряженный») — объект линейной алгебры, линейно преобразующий элементы одного линейного пространства в элементы другого. Частными случаями тензоров являются скаляры, векторы, билинейные формы и т. п.
История.
Кристаллогра́фия — наука о кристаллах, их структуре, возникновении свойствах. Она тесно связана с минералогией, физикой твёрдого тела и химией. Исторически кристаллография возникла в рамках минералогии, как наука, описывающая идеальные кристаллы.
Истоки кристаллографии можно усмотреть ещё в античности, когда греки предприняли первые попытки описания кристаллов. При этом большое значение придавалось их форме. Греками же была создана геометрия, выведены пять платоновых тел и сконструировано множество многогранников, позволяющих описывать форму кристаллов.
1611 —трактат «О шестиугольных снежинках» немецкого астронома и математика И. Кеплера. Кеплера иногда называют ранним предшественником структурной кристаллографии.
О шестиугольных снежинках (лат. Strena, seudenivesexangula) — небольшой трактат Иоганна Кеплера, посвящённый попытке ответить на вопрос о причине шестиугольной формы снежинок. Несмотря на то, что окончательного ответа на поставленный вопрос автор не даёт, данный труд оказал значительное влияние на развитие науки и считается исходной точкой в развитии кристаллографии.
Автор формулирует тему своего сочинения так: «поскольку … снежинки имеют форму шестиугольной звезды, то на то должна быть определённая причина. Ибо если это случайность, то почему не бывает пятиугольных или семиугольных снежинок»? Сразу установив, что причина этого явления не может происходить из свойств вещества, а является следствием действующих на него «начал», Кеплер переходит к анализу некоторых известных ему регулярных пространственных структур, встречающихся в природе, — пчелиные соты, зёрна граната и горошины в стручке, после чего он формулирует утверждение, известное в настоящее время как гипотеза Кеплера. Эта гипотеза призвана объяснить плотное расположение зёрен в плоде граната, причиной же шестиугольной формы основания пчелиных сот является, по мнению Кеплера, то, что среди фигур, которыми можно замостить плоскость без зазора, у шестиугольника наибольшая площадь. Помимо геометрических, Кеплер находит и чисто природные причины для такой формы сот.
Продолжая свой анализ числовых закономерностей в природе, Кеплер указывает, что у числа 5, последовательности Фибоначчи и золотого сечения также есть природные аналоги. Во всех этих случаях Кеплер предполагает наличие некоторых причин, которые упорядочивают природные объекты наиболее экономным образом. В качестве такой причины для образования формы снежинок он определяет холод. Однако такое объяснение не позволяет ответить на вопрос, почему лучей снежинок именно шесть, и почему они расположены в одной плоскости, а не распределены равномерно по поверхности сферы, что было бы естественно, учитывая, что тепло распространяется по всем направлениям. Учитывая изотропность пространства и высказанные выше соображения об упаковке шаров, Кеплер делает предположение, что в момент своего образования частицы снега расположены в кубическом порядке.
Тем не менее, почему лучей именно шесть, и как это связано с наличием шести направлений в телах животных, остаётся не ясным. Завершает свой труд Кеплер различными метафизическими соображениями о духе Земли, которые также не дают ответа, эмпирической классификацией снежинок и различными наблюдениями из области ботаники и минералогии, которые могли бы оказать помощь следующим поколениям учёных.
По мнению В. И. Вернадского, это небольшое произведение Кеплера является «первой научной работой в кристаллографии». Эту точку зрения разделял И. И. Шафрановский, по словам которого, это произведение является «первым собственно кристаллографическим трактатом, свидетельствующим о приоритете Кеплера в области теоретической кристаллографии».
1669 — Стенсен, Нильс выдвинул закон (Закон Стено) или «закон постоянства углов кристаллов», который утверждает, что углы между соответствующими гранями кристаллов одинаковы для всех экземпляров одного минерала при одинаковых условиях (температура и давление).
Закон гласит: двугранные углы между соответственными гранями кристаллов одного и того же вещества при постоянных температуре и давлении являются постоянными.
Как самостоятельная дисциплина кристаллография была изложена французским минералогом Жаном Батистом Луи Роме-де-Лилем в 1772 году в сочинении «Опыт кристаллографии». Позднее Жан Батист Луи Роме-де-Лиль переработав и расширив это сочинение, опубликовал его в 1783 году под названием «Кристаллография, или описание форм, присущих всем телам минерального царства».
Ренэ-ЖюстГаюи нашёл весьма важный закон о рациональности разрезов по осям (Закон утверждает, что если в качестве трёх координатных осей выбрать рёбра кристалла, то взаимные наклоны граней кристалла таковы, что отрезки, отсекаемые ими на осях координат, относятся как целые числа. Согласно этому закону, числа, по которым вторичные формы выводятся из основной формы, всегда рациональные и простые), который имеет значение для всего строения кристалла. Независимо друг от друга он и шведский химик Торберн Бергман выяснили, что из всех кристаллов известковых шпатов можно вырубить кристалл основной формы, тем самым открыли существование плоскостей спайности.
В 1830-е Иоганн Гессель и независимо в 1869 Аксель Гадолин доказали, что возможны лишь 32 вида симметрии, подразделённые в 6 сингоний.
Первым в России предпринял точные кристаллографические исследования Н.И.Кокшаров, а получил полную классификацию кристаллографической группы Е.С.Фёдоров.
В 1947 году основан Международный союз кристаллографов.
Фи́зика твёрдого те́ла — раздел физики конденсированного состояния, задачей которого является описание физических свойств твёрдых тел с точки зрения их атомного строения. Интенсивно развивалась в XX веке после открытия квантовой механики. Развитие стимулировалось широким спектром важных задач прикладного характера, в частности, развитием полупроводниковой техники.
Кристаллы многих минералов и драгоценных камней были известны и описаны ещё несколько тысячелетий назад. Одна из наиболее ранних зарисовок кристаллов содержится в китайской фармакопее XI века нашей эры. Кристаллы кварца из императорской короны, сохранившиеся с 768 года нашей эры, находятся в Сёсоине, сокровищнице японских императоров в Нара. Кристаллом называли вначале только лёд, а затем и кварц, считавшийся окаменевшим льдом. В конце эпохи средневековья слово «кристалл» стало употребляться в более общем смысле.
Геометрически правильная внешняя форма кристаллов, образующихся в природных или лабораторных условиях, натолкнула учёных ещё в XVII веке на мысль, что кристаллы образуются посредством регулярного повторения в пространстве одного и того же структурного элемента. При росте кристалла в идеальных условиях форма его в течение всего роста остается неизменной, как если бы к растущему кристаллу непрерывно присоединялись бы элементарные кирпичики. В XVIII веке минералогами было сделано важное открытие: оказалось, что индексы, определяющие положение в пространстве любой грани кристалла, суть целые числа. Гаюи показал, что это можно объяснить расположением идентичных частичек в ряды, периодически повторяющиеся в пространстве. В 1824 году Зибер из Фрайбурга предположил, что элементарные составляющие кристаллов являются маленькими сферами. Он предложил эмпирический закон межатомной силы с учётом как сил притяжения, так и сил отталкивания между атомами, что было необходимо для того, чтобы кристаллическая решетка была стабильным равновесным состоянием системы идентичных атомов.
Пожалуй, наиболее важной датой в истории физики твёрдого тела является 8 июня 1912 года. В этот день в Баварской Академии наук в Мюнхене слушался доклад «Интерференция рентгеновских лучей». В первой части доклада Лауэ выступил с изложением элементарной теории дифракции рентгеновских лучей на периодическом атомном ряду. Во второй части доклада Фридрих и Книппинг сообщили о первых экспериментальных наблюдениях дифракции рентгеновских лучей в кристаллах. Этой работой было показано, что рентгеновские лучи являются волнами, так как они способны дифрагировать. Работа неопровержимо доказала также, что кристаллы состоят из периодических рядов атомов. С этого дня началась та физика твёрдого тела, какой мы знаем её сегодня. В годы, непосредственно следующие за 1912 годом, в физике твёрдого тела было сделано много важных пионерских работ. Первыми кристаллическими структурами, определенными У. Л. Брэггом в 1913 году с помощью рентгеновского дифракционного анализа, были структуры кристаллов KCl, NaCl, KBr и KI.
После открытия дифракции рентгеновских лучей и публикации серии простых и весьма успешных работ с расчётами и предсказаниями свойств кристаллических веществ началось фундаментальное изучение атомной структуры кристаллов.
В 1930-е годы работами В. Гейзенберга, Паули, М. Борна были созданы основы квантово-механической теории твёрдого тела, что позволило объяснить и прогнозировать интересные физические эффекты в твёрдых телах. Ускоряли формирование физики твёрдого тела потребности нарождающейся твердотельной электроники в новых сверхчистых материалах. Здесь можно указать важнейшее событие — открытие в 1948 г. У. Шокли, У. Браттейном и Дж. Бардином усилительных свойств транзистора.
В настоящее время методы и теория твёрдого тела, развитые для описания свойств и структуры монокристаллов, широко применяются для получения и исследования новых материалов: композитов и наноструктур, квазикристаллов (Квазикриста́лл (от лат. quasi «наподобие», «нечто вроде») — твёрдое тело, характеризующееся симметрией, запрещённой в классической кристаллографии, и наличием дальнего порядка. Обладает наряду с кристаллами дискретной картиной дифракции.) и аморфных тел. Физика твёрдого тела служит основой для изучения явлений высокотемпературной сверхпроводимости, гигантского магнетосопротивления и многих других перспективных современных наукоёмких технологий.
Практическая часть.
Применение кристаллов.
Применение кристаллов в науке и технике так многочисленны и разнообразны, что их трудно перечислить. Поэтому ограничимся несколькими примерами.
Самый твердый и самый редкий из природных минералов - алмаз. Сегодня алмаз в первую очередь камень-работник, а не камень-украшение.
Благодаря своей исключительной твердости алмаз играет громадную роль в технике. Алмазными пилами распиливают камни. Алмазная пила – это большой (до 2-х метров а диаметре) вращающийся стальной диск, на краях которого сделаны надрезы или зарубки. Мелкий порошок алмаза, смешанный с каким-нибудь клейким веществом, втирают в эти надрезы. Такой диск, вращаясь с большой скоростью, быстро распиливает любой камень.
Колоссальное значение имеет алмаз при бурении горных пород, в горных работах.
В граверных инструментах, делительных машинах, аппаратах для испытания твердости, сверлах для камня и металла вставлены алмазные острия.
Алмазным порошком шлифуют и полируют твердые камни, закаленную сталь, твердые и сверхтвердые сплавы. Сам алмаз можно резать, шлифовать и гравировать тоже только алмазом. Наиболее ответственные детали двигателей в автомобильном и авиационном производстве обрабатывают алмазными резцами и сверлами.
Рубин и сапфир относятся к самым красивым и самым дорогим из драгоценных камней. У всех этих камней есть и другие качества, более скромные, но полезные. Кроваво-красный рубин и синий сапфир – это родные братья, это вообще один и тот же минерал – корунд, окись алюминия. Корунд со всеми его разновидностями – это один из самых твердых камней на Земле, самый твердый после алмаза. Корундом можно сверлить, шлифовать, полировать, точить камень и металл. Из корунда и наждака делают точильные круги и бруски, шлифовальные порошки.
Вся часовая промышленность работает на искусственных рубинах. На полупроводниковых заводах тончайшие схемы рисуют рубиновыми иглами.
В текстильной и химической промышленности рубиновые нитеводители вытягивают нити из искусственных волокон, из капрона, из нейлона.
Новая жизнь рубина – это лазер или, как его называют в науке, оптический квантовый генератор. В 1960 г. был создан первый лазер на рубине. Оказалось, что кристалл рубина усиливает свет. Лазер светит ярче тысячи солнц.
Мощный луч лазера обладает громадной мощностью. Он легко прожигает листовой металл, сваривает металлические провода, прожигает стальные трубы, сверлит тончайшие отверстия в твердых сплавах, алмазе. В глазной хирургии также применяются лазеры. Появились и новые лазерные кристаллы: флюорит, гранаты, арсенид галлия и др.
Сапфир прозрачен, поэтому из него делают пластины для оптических приборов.Основная масса кристаллов сапфира идет в полупроводниковую промышленность.
Кремень, аметист, яшма, опал, халцедон – все это разновидности кварца. Мелкие зернышки кварца образуют песок. А самая красивая, самая чудесная разновидность кварца – это и есть горный хрусталь, т.е. прозрачные кристаллы кварца. Поэтому из прозрачного кварца делают линзы, призмы и др. детали оптических приборов.
Особенно удивительны электрические свойства кварца. Если сжимать или растягивать кристалл кварца, на его гранях возникают электрические заряды. Это – пьезоэлектрический эффект в кристаллах.
В наши дни в качестве пьезоэлектриков используют не только кварц, но и многие другие, в основном искусственно синтезированные вещества.
Пьезоэлектрические кристаллы широко применяются для воспроизведения, записи и передачи звука.
Существуют и пьезоэлектрические методы измерения давления крови в кровеносных сосудах человека и давления соков в стеблях и стволах растений.В технике также нашел свое применение поликристаллический материал – поляроид.
Поляроид – это тонкая прозрачная пленка, сплошь заполненная крохотными прозрачными игольчатыми кристалликами вещества. Поляроидные пленки применяются в поляроидных очках. Поляроиды гасят блики отраженного света, пропуская весь остальной свет. Они незаменимы для полярников, которым постоянно приходится смотреть на ослепительное отражение солнечных лучей от заледеневшего снежного поля.
Поляроидные стекла помогут предотвратить столкновения встречных автомобилей, которые очень часто случаются из-за того, что огни встречной машины ослепляют водителя, и он не видит этой машины.
Кристаллы сыграли важную роль во многих технических новинках ХХ века.
Полупроводниковые приборы, революционизировавшие электронику, изготавливаются из кристаллических веществ, главным образом кремния и германия. Полупроводниковые диоды используются в компьютерах и системах связи, транзисторы заменили электронные лампы в радиотехнике, а солнечные батареи, помещаемые на наружной поверхности космических летательных аппаратов, преобразуют солнечную энергию в электрическую.
Выращивание кристаллов в домашних условиях.
Выращивание кристаллов – процесс занимательный, но требующий бережного и осторожного отношения к своей работе. Теоретически размер кристалла, который можно вырастить в домашних условиях, неограничен. Цель настоящей работы – выращивание кристаллов из медного купороса, алюмокалиевых квасцов и хромокалиевых квасцов в домашних условиях.
Этап 1: Растворяем вещество, из которого будет расти кристалл, в нагретой до кипения воде. Помешиваем раствор до тех пор, пока порошок не перестанет больше растворяться, что означает, раствор насыщен.
Этап 2:Насыщенный раствор процеживаем через фильтр в другую ёмкость, где можно производить выращивание кристаллов. Привязываем один конец нитки к затравочному кристаллу, а другой закрепляем на палочке таким образом, чтобы при погружении в емкость груз находился на середине раствора. Закрываем салфеткой, предохраняющей от попадания пыли и мусора и оставляем на несколько месяцев в темном месте.
Этап 3: Еженедельно производим оценку размеров кристалла и исследуем изменения его геометрии. За первый месяц кристалл увеличился в размерах в три раза. Увеличение кристалла произошло за счет наращивания граней затравочного материала. В последующеевремя рост кристалла замедлился, в связи с обеднением вещества в растворе. Чтобы тело продолжало расти, я периодически увеличивал концентрацию раствора. Под конец рост кристалла прекратился, по причине значительного снижения вещества в растворе. По окончании опыта, система «кристалл-раствор» пришла в равновесное состояние, когда кристалл не растет, но и не разрушается.
Валентин Берестов. Аист и соловей
Сочини стихи, Машина
В какой день недели родился Юрий Гагарин?
Нечаянная победа. Айзек Азимов
Зимняя сказка