Вложение | Размер |
---|---|
ego_velichestvo_chislo.docx | 562.37 КБ |
ego_velichestvo_chislo.rar | 1.49 МБ |
МБОУ Бутурлиновская СОШ
Исследовательская работа
«Его величество ЧИСЛО»
Работу выполнил: ученик5 класса
Тертышный Дмитрий
Руководитель: учитель математики
Кузьмина В.Я.
Бутурлиновка 2017год
Содержание
1. Введение
2. Исследовательская часть
3.1. Появление цифр
3.2. Римская нумерация
3.3. Цифры русского народа
4) Мир больших чисел
3.Заключение
4. Список использованной литературы
ВВЕДЕНИЕ
В современном мире человек постоянно пользуется числами, даже не задумываясь об их происхождении. Без знания прошлого нельзя понять настоящее. Поэтому целью данной работы является исследование истории возникновения чисел, связанной с необходимостью выражения всех чисел знаками. Было решено исследовать историю возникновения чисел на примере натуральных чисел.
Первым этапом работы было определение возникновения слова «математика». После изучения литературы стало известно, что это слово возникло в Древней Греции в V веке до нашей эры.
Вторым этапом данной работы было изучение приемов счета у первобытных людей. Отмечено, что при счете использовались узелки, камешки, палочки. Все эти способы были не удобны, что привело к появлению условных знаков.
На третьем этапе исследования рассмотрены условные знаки – цифры разных народов. Отмечено, что у разных народов были свои изображения, но постепенно шло превращение первоначальных цифр в наши современные цифры. Отдельное место занимает римская нумерация, основанная на принципах сложения и вычитания.
Также рассмотрено появление цифр у русского народа. Отмечено, что наши предки сначала использовали славянскую нумерацию (цифры обозначали буквами) и только с XVIII века стали использовать арабские числа.
При исследовании истории возникновения чисел была установлена зависимость между возникновением чисел и необходимостью выражения всех чисел знаками. Эта зависимость повлияла на появление знаков-цифр, которые заменили другие не совсем удобные способы обозначения чисел.
«История возникновения чисел» актуальна в современном мире, и очень важна для нашего развития, так как в настоящее время наше общество постоянно пользуется числами.
Числа – это выражение определенного количества чего-либо. В течение тысячелетий люди использовали пальцы рук и ног, но это было не очень удобно при обозначении большого количества. Возникла необходимость более удобного способа выражения количества. Таким способом является запись чисел при помощи специальных знаков – цифр.
Материал данной работы можно рекомендовать к использованию на уроках математики или на занятиях школьного математического кружка в качестве дополнительного материала с целью появления заинтересованности к учебному предмету и пробуждения желания к изучению математики у учеников, а также для расширения их кругозора.
ИССЛЕДОВАТЕЛЬСКАЯ ЧАСТЬ
Слово «математика» возникло в Древней Греции примерно в V веке до нашей эры. Происходит оно от слова «матема» - «учение», «знания, полученные через размышления» (3, стр. 10).
Древние греки знали четыре «матемы»:
1. учение о числах (арифметика);
2. теорию музыки (гармонию);
3. учение о фигурах и измерениях (геометрию);
4. астрономию и астрологию.
В древнегреческой науке существовало два направления. Представители первого из них, возглавляемые Пифагором, считали знания предназначенными только для посвященных. Никто не имел права делиться своими открытиями с посторонними. Представители второго направления, напротив, считали, что математика доступна всем, кто способен к продуктивным размышлениям. Они называли себя математиками. Победило второе направление.
Считать люди научились еще в незапамятные времена. Сначала они различали просто один или много предметов. Прошли сотни лет, прежде чем появилось число 2. Счет парами оказался очень удобен, и не случайно у некоторых племен Австралии и Полинезии до последнего времени были только два числительных: один и два, а все числа больше двух получали название в виде сочетания этих двух числительных. Например, три - «один, два»; четыре - «два, два»; пять - «два, два, один». Позже появились особые названия для чисел. Сначала для небольших чисел, а потом для все больших и больших. Число - одно из основных понятий математики, позволяющее выразить результаты счета или измерения. Пальцы всегда при нас, то и считать стали по пальцам. Таким образом, наиболее древней и простой «счетной машиной» издавна являются пальцы рук и ног
Запоминать большие числа было трудно, и поэтому кроме пальцев рук и ног «задействовались» другие «приспособления». Например, перуанцы использовали для этого разноцветные шнурки с завязанными на них узлами. Веревочные счеты с узелками были в ходу в России, а также во многих странах Европы. До сих пор иногда завязывают узелки на носовых платках на память.
Засечки на палочках применяли в торговых сделках. Палочки после окончания расчетов разламывали пополам, одну половинку брал кредитор, а другую - должник. Половинка играла роль «квитанции». В деревнях использовали счеты в виде зарубок на палках.
На более высокой стадии развития люди при счете стали применять разные предметы: использовали камешки, зерна, веревку с бирками. Это были первые счетные приборы, которые, в конце концов, привели к образованию разных систем счисления и к созданию современных быстродействующих электронных вычислительных машин.
Мысль выражать все числа знаками
настолько проста, что именно из-за
этой простоты сложно осознать,
сколь она удивительна.
Пьер Симон Лаплас (1749-1827), франц. астроном, математик, физик.
Цифры - условные знаки для обозначения чисел. Первыми записями чисел можно считать зарубки на деревянных бирках или костях, а позднее - черточки. Но большие числа изображать, таким образом, неудобно, поэтому стали применять особые знаки (цифры).
Ещё недавно существовали племена, в языке которых были названия только двух чисел: «один» и «два». Туземцы островов, расположенных в Торресовом проливе, знали два числа: «урапун» - один, «окоза» - два и умели считать до шести. Островитяне считали так: «окоза-урапун» - три, «окоза-окоза» - четыре, «окоза-окоза-урапун» - пять, «окоза-окоза-окоза» - шесть. О числах, начиная с 7, туземцы говорили «много», «множество». Наши предки, наверняка, тоже начинали с этого. В старинных пословицах и поговорках как, например, «Семеро одного не ждут», «Семь бед – один ответ», «У семи нянек дитя без глазу», «Один с сошкой, семеро с ложкой» 7 тоже означало «много».
В древние времена, когда человек хотел показать, сколькими животными он владел, он клал в большой мешок столько камешков, сколько у него было животных. Чем больше животных, тем больше камешков. Отсюда и произошло слово «калькулятор», «калькулюс» на латинском языке означает «камень»
Сначала считали на пальцах. Когда пальцы на одной руке кончались, переходили на другую, а если на двух руках не хватало, переходили на ноги. Поэтому, если в те времена кто-то хвалился, что у него «две руки и одна нога кур», это означало, что у него пятнадцать кур, а если это называлось «весь человек», то есть две руки и две ноги, то это означало двадцать.
Перуанские инки вели счет животных и урожая, завязывая узелки на ремешках или шнурках разной длины и цвета (Рис. 1). Эти узелки назывались кипу. У некоторых богатеев скапливалось по несколько метров этой веревочной «счетной книги», попробуй, вспомни через год, что означают 4 узелочка на шнурочке! Поэтому того, кто завязывал узелки, называли вспоминателем.
Рис. 1.
Первыми придумали запись чисел древние шумеры. Они пользовались всего двумя цифрами. Вертикальная чёрточка обозначала одну единицу, а угол из двух лежачих чёрточек – десять. Эти чёрточки у них получались в виде клиньев, потому что они писали острой палочкой на сырых глиняных дощечках, которые потом сушили и обжигали. Вот так выглядели эти дощечки (Рис. 2).
Рис.2.
После счета по зарубкам люди изобрели особые символы, названные цифрами. Они стали применяться для обозначения различных количеств каких-либо предметов. Разные цивилизации создавали свои собственные цифры
Так, например, в древней египетской нумерации, зародившейся более 5000 лет назад, существовали особые знаки (иероглифы) для записи чисел 1, 10, 100, 1000, …: (Рис. 3).
Рис. 3.
Для того чтобы изобразить, например, целое число 23145, достаточно записать в ряд два иероглифа, изображающие десять тысяч, затем три иероглифа для тысячи, один – для ста, четыре – для десяти и пять иероглифов для единицы: (Рис.4).
Рис. 4.
Этого одного примера достаточно, чтобы научиться записывать числа так, как их изображали древние египтяне. Это система очень проста и примитивна.
Похожим образом обозначали числа на острове Крит, расположенном в Средиземном море. В критской письменности единицы обозначались вертикальной чёрточкой |, десятки – горизонтальной - , сотни – кружком ◦, тысячи – знаком ¤.
(4, стр. 17).θθτττθ, например число 92 записывали так: θ Число 60 снова обозначалось знаком θθθ τ τ (10). Эти народы использовали шестидесятеричную систему счисления, например число 23 изображали так: τ (1) и лежащий клин θНароды (вавилоняне, ассирийцы, шумеры), жившие в Междуречье Тигра и Евфрата в период от II тысячелетия до н.э. до начала нашей эры, сначала обозначали числа с помощью кругов и полукругов различной величины, но затем стали использовать только два клинописных знака – прямой клин
В начале нашей эры индейцы племени майя, которые жили на полуострове Юкатан в Центральной Америке, пользовались другой системой счисления – двадцатеричной. Они обозначали 1 точкой, а 5 – горизонтальной чертой. В системе счисления майя был и знак для нуля. По своей форме он напоминал полузакрытый глаз.
Г (35) и т.д. Позднее числа 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 20000 стали обозначать буквами греческого алфавита, к которому пришлось добавить еще три устаревшие буквы. Чтобы отличить цифры от букв, над буквами ставили черточку.ρ ρ ρВ Древней Греции сначала числа 5, 10, 100, 1000, 10000 обозначали буквами Г, Н, Х, М, а число 1 – черточкой /. Из этих знаков составляли обозначения
Древние индийцы изобрели для каждой цифры свой знак. Вот как они выглядели (Рис.5)
Рис. 5.
Однако Индия была оторвана от других стран, - на пути лежали тысячи километров расстояния и высокие горы. Арабы были первыми «чужими», которые заимствовали цифры у индийцев и привезли их в Европу. Чуть позже арабы упростили эти значки, они стали выглядеть вот так (Рис.6).
Рис. 6.
Они похожи на многие наши цифры. Слово «цифра» тоже досталось нам от арабов по наследству. Арабы нуль, или «пусто», называли «сифра». С тех пор и появилось слово «цифра». Правда, сейчас цифрами называются все десять значков для записи чисел, которыми мы пользуемся: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Постепенное превращение первоначальных цифр в наши современные цифры.
В основе римской нумерации использованы принципы сложения (например, VI = V + I) и вычитания (например, IX = X -1). Римская система нумерации десятичная, но непозиционная. Римские цифры произошли не от букв. Первоначально они обозначались, как и у многих народов, «палочками» (I - один, X - 10 - перечеркнутая палочка, V - 5 - половина от десяти, сто - кружочек с черточкой внутри, пятьдесят — половина этого знака и т. д.).
Со временем некоторые знаки изменились: С - сто, L - пятьдесят, М - тысяча, D - пятьсот. Например: XL - 40, LXXX - 80, ХС - 90, CDLIX - 459, CCCLXXXII - 382, CMXCI - 991, MCMXCVIII - 1998, MMI – 2001 (4, стр. 13).
Арабские числа в России стали применять, в основном, с XVIII века. До того наши предки использовали славянскую нумерацию. Над буквами ставились титлы (черточки), и тогда буквы обозначали числа
В одной из русских рукописей XVIII века написано: «... Знай же то, что есть сто и что есть тысяча, и что есть тьма, и что есть легион, и что есть леодр...; ... сто есть десятью десять, а тысяча есть десять сот, а тьма десять тысяч, а легион есть десять тем, а леодр есть десять легионов...»
Первые девять чисел записывались так:
Сотни миллионов назывались «колодами».
«Колода» имела специальное обозначение: над буквой и под буквой ставили квадратные скобки. Например, число 108 записывалось в виде
Числа от 11 до 19 обозначались так:
Остальные числа записывались буквами слева направо, например, числа 5044 или 1135 имели соответственно обозначение
В приведенной системе обозначения чисел не шли дальше тысяч миллионов. Такой счет назывался «малый счет». В некоторых рукописях авторами рассматривался и «великий счет», доходивший до числа 1050. Далее говорилось: «И более сего несть человеческому уму разумети»
Сколько километров проходит человек за свою жизнь, сколько товаров производится и приходит в негодность ежечасно в пределах города, страны? Сколько времени заняло бы выполнение самым быстрым расчетчиком миллиона вычислительных операций, которые современная вычислительная машина выполняет за...секунду? Во сколько раз скорость пассажирского реактивного самолета превосходит скорость тренированного спортсмена-пешехода? Ответы на эти и тысячи подобных вопросов выражаются числами, занимающими зачастую по числу своих десятичных разрядов целую строку и даже больше.
Для сокращения записи больших чисел давно используется система величин, в которой каждая из последующих в тысячу раз больше предыдущей:
1000 единиц - просто тысяча (1000 или 1 тыс.)
1000 тысяч - 1 миллион (1 млн.)
1000 миллионов - 1 биллион (или миллиард, 1 млрд.)
1000 биллионов - 1 триллион
1000 триллионов - 1 квадриллион
1000 квадриллионов - 1 квинтиллион
1000 квинтиллионов - 1 секстиллион
1000 секстиллионов- 1 септиллион
1000 септиллионов - 1 октиллион
1000 октиллионов - 1 нониллион
1000 нониллионов- 1 дециллион
и т. д.
Таким образом, 1 дециллион запишется в десятичной системе единицей с 3 х 11=33 нулями:
1 000 000 000 000 000 000 000 000 000 000 000.
Как писал Самуил Яковлевич Маршак: «Напрасно думают, что ноль играет маленькую роль».
При записи больших чисел часто используют степень числа 10.
3. Заключение
По окончанию работы можно сделать следующие выводы:
Список литературы:
1. Большая математическая энциклопедия / Якушева Г.М. и др. – М.: Филол. О-во «СЛОВО»: ОЛМА-ПРЕСС, 2005. – 639 с.: ил.
2. Возникновение и развитие математической науки: Кн. Для учителя. – М.: Просвещение, 1987. – 159 с.: ил.
3. Шейнина О. С., Соловьева Г. М. Математика/О. С. Шейнина, Г. М. Соловьева – М.: Изд-во НЦ ЭНАС, 2007. – 208с.
4.Энциклопедия для детей. Т.11.Математика / Глав. ред, М.Д.Аксёнова. – М.: Аванта+,1998. – 688 с.: ил.
5. Энциклопедия. Мудрость тысячелетий. – М.: ОЛМА-ПРЕСС, 2004. –
Автор-составитель В. Балязин. – 848 с.
Слайд 1
Тема проекта : Его величество число. Проект подготовил Дмитрий Тертышный .Слайд 2
Цель : Показать историю развития чисел, обосновать важную роль числа жизни человека Проблема : незнание истории развития числа приводит к поверхностному восприятию и неумению видеть числа в системе. Гипотеза решения проблемы : изучение истории развития числа, четкое усвоение и систематизация чисел влияют на скорость и правильность усвоения учебного материала , связанного с понятием числа
Слайд 3
Задачи : 1 . Обобщить литературу по теме «Число» 2. Изучить историю развития числа 3. Показать широту применения 4. Создать презентацию для уроков математики, всязанных с понятием числа
Слайд 7
Раньше арабские цифры писали так : если цифра 1 то в её записи был один угол, у цифры 2 два угла, у цифры 3 три угла и так до девяти. Всего арабских цифр было 9.
Слайд 9
Римские цифры.
Слайд 10
Раньше римские цифры писали так : I – 1 V - 5 X – 10 L – 50 C – 100 D – 500 M – 1000
Слайд 11
Арабские цифры. Их придумал арабский учёный Мухаммед ибн Муса аль – Хорезми .
Слайд 12
Кто и когда изобрёл первые цифры . Изобретение цифр – явление относительно позднее! Сегодня весь мир пользуется изобретением, сделанным в одном месте –В Индии. Индийцы изобрели современные цифры, изобрели ноль, позволивший экономно и точно записывать любые числа. От Индийцев эти цифры распространились через Иран к Арабам, и затем уже арабы занесли их в Европу. Мы называем их Арабскими цифрами, тогда как в действительности эти цифры Индийские.
Слайд 17
Леонард Эйлер. Родился он в Швейцарии в 1707 году 15 апреля .
Слайд 18
С точки зрения математики , XVIII век — это век Эйлера [ Если до него достижения в области математики были разрознены и не всегда согласованы, то Эйлер впервые увязал анализ, алгебру, геометрию, тригонометрию, теорию чисел и другие дисциплины в единую систему, добавив при этом немало собственных открытий . Значительная часть математики преподаётся с тех пор «по Эйлеру» почти без изменений.
Слайд 19
Эйлером было положено начало всех изысканий, составляющих общую теорию чисел. Большинство математиков XVIII века занимались развитием анализа, но Эйлер пронёс увлечение древней арифметикой через всю свою жизнь. Благодаря его трудам интерес к теории чисел к концу века возродился
Слайд 20
Жизнь привела человека к тому что стало просто необходимо использовать числа.
Ласточка. Корейская народная сказка
Человек несгибаем. В.А. Сухомлинский
Заколдованная буква
Три загадки Солнца
Пейзаж