Технический прогресс идет быстрыми темпами. Человечеству нужно все больше и больше энергии для развития и поддержания жизни на планете. Но запасов нефти и газа, как основных источников энергии становится все меньше и меньше. Встает вопрос о замене традиционных источников на альтернативные. В наше время разрабатываются перспективные варианты двигателей работающих на постоянном и переменном планете токе, водороде , воздухе, тепловой энергии тория и т.д.
Вложение | Размер |
---|---|
perspektivy_razvitiya_dvigateley_na_alternativnyh_istochnikah_pitaniya.docx | 976.44 КБ |
МИНИСТЕРСТВО ОБРАЗОВАНИЯ САРАТОВСКОЙ ОБЛАСТИ
ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ САРАТОВСКОЙ ОБЛАСТИ
«Вольский технологический колледж»
Перспективы развития двигателей
на альтернативных источниках питания
Исследовательская работа
студента группы Э-21
Моткова Ильи
Руководитель:
Нарватова Валентина Борисовна
Вольск 2017
Содержание:
Введение…………………………………………………………………………...3
Глава 1. Водородный двигатель………………………………………………….4
1.1.1.Двигатель на основе топливных элементов…………………............4
1.1.2. Двигатель внутреннего сгорания на водороде. ……………….5
Глава 2. Электрический двигатель……………………………………………..8
2.1. Принцип действия…………………………………………………………..8
2.2. Классификация электродвигателей………………………………………..9
2.3. История изобретения электродвигателей…………………………………11
Глава 3. Двигатель внутреннего сгорания……………………………………13
Глава 4. Преимущества и недостатки водородного и электродвигателя…..14
4.1. Электродвигателя…………………………………………………………...14
4.2. Водородного двигателя……………………………………………………..18
Заключение……………………………………………………………………….19
Список литературы………………………………………………………………20
Введение
Технический прогресс идет быстрыми темпами. Человечеству нужно все больше и больше энергии для развития и поддержания жизни на планете. Но запасов нефти и газа, как основных источников энергии становится все меньше и меньше. Встает вопрос о замене традиционных источников на альтернативные. В наше время разрабатываются перспективные варианты двигателей работающих на постоянном и переменном планете токе, водороде, воздухе, тепловой энергии тория и т.д. Еще одной причиной замены обычных видов двигателей на новые является плохая экологическая обстановка на планете. В настоящее время разнообразный транспорт несёт ответственность за 23 % техногенных выбросов экологически опасных и парниковых газов в атмосферу Земли. По оценкам экспертов, уже через двадцать лет это число удвоится и продолжит расти по мере того, как в развивающихся странах будет увеличиваться количество личных автомобилей. Кроме углекислого газа в атмосферу выбрасываются оксиды азота ответственные за увеличение заболеваемости астмой, оксиды серы, ответственные за кислотные дожди и т. д.
В наше время существует большое количество видов альтернативных источников энергии:
- Природный газ
- Электричество
- Водород
- Пропан
- Биодизельное топливо
- Метанол
- Этанол
Основным вариантом замены двигателей внутреннего сгорания являются двигатели на водороде и электродвигатели. Подробнее рассмотрим эти типы двигателей.
Глава 1. Водородный двигатель.
Еще в пятидесятые годы прошлого века появилась идея использовать водород, как эффективное, экологичное и недорогое топливо. Стоимость водорода колеблется в диапазоне 2-5$ за кг.
На сегодня разработки водородного двигателя достаточно перспективны, потому что позволяют не беспокоится о запасах нефти и других исчерпаемых ресурсов, применяемых в виде топлива. Еще существенный плюс водородного двигателя, это то, что он не наносит вреда окружающей среде, так как побочными продуктами его работы являются вода и тепло.
В зависимости от принципа работы, водородные двигатели можно подразделить на два типа: двигатель на основе топливных элементов. и двигатель внутреннего сгорания на водороде.
1.1.1.Двигатель на основе топливных элементов.
Топливные элементы - это устройства, генерирующие электроэнергию непосредственно на борту транспортного средства. В процессе реакции водорода и кислорода образуются вода и электрический ток. В качестве топлива содержащего водород, как правило, используется либо сжатый водород, либо метанол. Они осуществляют превращение химической энергии топлива в электричество, минуя малоэффективные, идущие с большими потерями, процессы горения. Это электрохимическое устройство в результате высокоэффективного «холодного» горения топлива непосредственно вырабатывает электроэнергию.
Принцип работы водородного топливного элемента.
КПД, определённый по теплоте химической реакции, может быть и выше 100 % из-за того, что в работу может превращаться и теплота окружающей среды. Здесь тем не менее нет никакого противоречия с ограничениями на КПД тепловых машин, поскольку топливные элементы не работают по замкнутому циклу и реагирующие вещества не возвращаются в начальное состояние. При химической реакции в топливном элементе в электрическую энергию превращается в конечном счёте не теплота реагентов, а их внутренняя энергия и, возможно, некоторое количество теплоты из окружающей среды. Водородные двигатели этого типа имеют очень большую стоимость по причине содержания в их конструкции таких дорогих и редких металлов, как палладий и платина. Принцип работы этой технологии, что в процессе физико-химических реакций в топливном элементе происходит расщепление водорода и вырабатывается электроэнергия.
Если рассматривать двигатель на водородных топливных элементах, то он, по сути, является обычным электромотором, который получает энергию от водородной батареи. Такие элементы не засоряют окружающую среду, поскольку выбрасывают в атмосферу только водяной пар. Электричество вырабатывается в результате отрыва электронов от атомов водорода, проходящих через мембрану топливного элемента. Возникающий электрический ток совершает необходимую работу, затем протоны атомов водорода соединяются с кислородом и электронами, в результате чего возникает водяной пар.
1.1.2. Двигатель внутреннего сгорания на водороде.
Водород может использоваться в качестве топлива в обычном двигателе внутреннего сгорания. В этом случае снижается мощность двигателя до 82 % - 65 % в сравнении с бензиновым вариантом. Но если внести небольшие изменения в систему зажигания, мощность двигателя увеличивается до 117 % в сравнении с бензиновым вариантом, но тогда увеличится выход окислов азота из-за более высокой температуры в камере сгорания и возрастает вероятность подгорания клапанов и поршней при длительной работе на большой мощности. Кроме того, водород при температурах и давлениях, которые создаются в двигателе, способен вступать в реакцию с конструкционными материалами двигателя и смазкой, приводя к быстрому износу. Также водород очень летуч, из-за чего при использовании обычной карбюраторной системы питания может проникать в выпускной коллектор, где также воспламеняется из-за высокой температуры. Традиционные поршневые ДВС плохо приспособлены к работе на водороде. Обычно для работы на водороде используется роторный ДВС, так как в нём выпускной коллектор значительно удалён от впускного. Двигатели этого типа сильно похожи на широко применяемые в данный момент двигатели на пропане. Так как у них очень похожие принципы работы, то для перехода с пропана на водород достаточно просто перенастроить двигатель. И уже существует достаточно большое количество научных образцов подобных двигателей на водороде. Но КПД этого метода ниже, чем у топливных элементов.
К сожалению, пока преодолены не все трудности. Одна из важнейших задач - разработка безопасного и эффективного способа хранения такого количества водорода, чтобы одной заправки хватало на 500 км. Топливная система должна работать в диапазоне температур от -40 до +45 °С и обладать ресурсом не менее 250 000 км, при этом заправка должна занимать несколько минут. Существуют разные подходы к хранению водорода. Оно возможно в трех формах: в виде сжатого газа, в сжиженном состоянии и в твердотельной системе. Все подходы перспективны, но у каждого из них свои технические трудности.
Вероятнее всего, сначала будут использоваться баллоны со сжатым газом, но высокое давление, естественно, представляет собой опасность. Сегодня системы сжатого водорода позволяют использовать давление примерно до 350 бар, но для увеличения пробега автомобиля на одной заправке желательно довести рабочее давление до 700 бар. Для обеспечения безопасности нужно, чтобы баллон выдерживал ударное давление, по крайней мере вдвое превышающее рабочее давление газа. Сегодня баллоны делаются из материалов либо очень дорогих, вроде углепластика, либо очень тяжелых. Кроме того, они довольно велики, что затрудняет их размещение в автомобиле.
Еще не ясно, какой из этих двух вариантов водородных двигателей окажется наиболее экономически и технически перспективных, на основе топливных элементов или двигатель внутреннего сгорания на водороде, но время покажет, исследования в данной области не прекращаются.
Первый двигатель внутреннего сгорания, работающий на водороде создал Франсуа Исаак де Риваз (1752—1828) в 1806 году. Водород изобретатель производил электролизом воды.
В блокадном Ленинграде бензин был в дефиците, но водород имелся в большом количестве. Военный техник Борис Шелищ предложил использовать воздушно-водородную смесь для работы заградительных аэростатов. На водород перевели двигатели внутреннего сгорания лебёдок аэростатов. Во время блокады в городе на водороде работало около 600 автомобилей.
Первое транспортное средство на топливных элементах создала в 1959 году компания Allis-Chalmers Manufacturing Company (США). Щелочные топливные элементы (AFC) были установлены на трактор. В 1962 году — на автомобиль для гольфа. В 1967 году компания Union Carbide (США) установила топливные элементы на мотоцикл.
В начале 1980-х годов в конструкторском бюро Н. Кузнецова (Самара) были разработаны авиационные двигатели, предназначенные для пассажирских самолётов Туполева. Эти двигатели, работающие на водороде, прошли стендовые и лётные испытания. События в России в конце 1980-х — начале 1990-х годов не позволили довести работы по водородным авиадвигателям Н. Кузнецова до широкого их применения в транспортной и пассажирской авиации. К настоящему времени сохранились несколько законсервированных работоспособных авиационных двигателей Н. Кузнецова на складах КБ в Самаре.
Водородные топливные элементы устанавливаются даже на велосипеды, мотоциклы, скутеры, подводные лодки и др.
Глава 2. Электрический двигатель
Электрический двигатель — электрическая машина (электромеханический преобразователь), в которой электрическая энергия преобразуется в механическую, побочным эффектом при этом является выделение тепла.
2.1. Принцип действия
В основу работы любой электрической машины положен принцип электромагнитной индукции. Электрическая машина состоит из неподвижной части — статора (для асинхронных и синхронных машин переменного тока) или индуктора (для машин постоянного тока) и подвижной части — ротора (для асинхронных и синхронных машин переменного тока) или якоря (для машин постоянного тока). В роли индуктора на маломощных двигателях постоянного тока очень часто используются постоянные магниты.
Ротор может быть:
уменьшить пусковой ток и регулировать частоту вращения асинхронного электродвигателя. В большинстве случаев это крановые электродвигатели серии МТКН которые повсеместно используются в крановых установках.
Якорь — это подвижная часть машин постоянного тока (двигателя или генератора) или же работающего по этому же принципу так называемого универсального двигателя (который используется в электроинструменте). По сути универсальный двигатель — это тот же двигатель постоянного тока (ДПТ) с последовательным возбуждением (обмотки якоря и индуктора включены последовательно). Отличие только в расчётах обмоток. На постоянном токе отсутствует реактивное (индуктивное или ёмкостное) сопротивление. Поэтому любая болгарка, если выкинуть электронный блок, будет вполне работоспособна и на постоянном токе, но при меньшем напряжении сети.
2.2. Классификация электродвигателей
По принципу возникновения вращающего момента электродвигатели можно разделить на гистерезисные и магнитоэлектрические. У двигателей первой группы вращающий момент создается вследствие гистерезиса при перемагничивании ротора. Данные двигатели не являются традиционными и не широко распространены в промышленности.
Наиболее распространены магнитоэлектрические двигатели, которые по типу потребляемой энергии подразделяется на две большие группы — на двигатели постоянного тока и двигатели переменного тока (также существуют универсальные двигатели, которые могут питаться обоими видами тока).
Двигатель постоянного тока — электрический двигатель, питание которого осуществляется постоянным током. Данная группа двигателей в свою очередь по наличию щёточно-коллекторного узла подразделяется на:
Щёточно-коллекторный узел обеспечивает электрическое соединение цепей вращающейся и неподвижной части машины и является наиболее ненадежным и сложным в обслуживании конструктивным элементом.
По типу возбуждения коллекторные двигатели можно разделить на:
1. Двигатели с независимым возбуждением от электромагнитов и постоянных магнитов;
2. Двигатели с самовозбуждением.
Двигатели с самовозбуждением делятся на:
3. Двигатели с параллельным возбуждением (обмотка якоря включается параллельно обмотке возбуждения);
4. Двигатели последовательного возбуждения (обмотка якоря включается последовательно обмотке возбуждения);
Двигатели смешанного возбуждения (обмотка возбуждения включается частично последовательно частично параллельно обмотке якоря).
Двигатель переменного тока — электрический двигатель, питание которого осуществляется переменным током. По принципу работы эти двигатели разделяются на синхронные и асинхронные двигатели. Принципиальное различие состоит в том, что в синхронных машинах первая гармоника магнитодвижущей силы статора движется со скоростью вращения ротора (благодаря чему сам ротор вращается со скоростью вращения магнитного поля в статоре), а у асинхронных — всегда есть разница между скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле вращается быстрее ротора).
Синхронный электродвигатель — электродвигатель переменного тока, ротор которого вращается синхронно с магнитным полем питающего напряжения. Данные двигатели обычно используются при больших мощностях (от сотен киловатт и выше).
Существуют синхронные двигатели с дискретным угловым перемещением ротора — шаговые двигатели. У них заданное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение осуществляется путём снятия напряжения питания с одних обмоток и передачи его на другие. Ещё один вид синхронных двигателей — вентильный реактивный электродвигатель, питание обмоток которого формируется при помощи полупроводниковых элементов.
Асинхронный электродвигатель — электродвигатель переменного тока, в котором частота вращения ротора отличается от частоты вращающего магнитного поля, создаваемого питающим напряжением. Эти двигатели наиболее распространены в настоящее время.
По количеству фаз двигатели переменного тока подразделяются на:
- однофазные — запускаются вручную, или имеют пусковую обмотку, или имеют фазосдвигающую цепь;
- двухфазные — в том числе конденсаторные;
- трёхфазные;
- многофазные.
2.3. История изобретения электродвигателей
Принцип преобразования электрической энергии в механическую энергию электромагнитным полем был продемонстрирован британским учёным Майклом Фарадеем в 1821 и состоял из свободно висящего провода, окунающегося в ртуть. Постоянный магнит был установлен в середине ванны со ртутью. Когда через провод пропускался ток, провод вращался вокруг магнита, показывая, что ток вызывал циклическое магнитное поле вокруг провода. Этот двигатель часто демонстрируется в школьных классах физики, вместо токсичной ртути используют рассол. Это — самый простой вид из класса электрических двигателей. Последующим усовершенствованием является Колесо Барлоу. Оно было демонстрационным устройством, непригодным в практических применениях из-за ограниченной мощности.
Изобретатели стремились создать электродвигатель для производственных нужд. Они пытались заставить железный сердечник двигаться в поле электромагнита возвратно-поступательно, то есть так, как движется поршень в цилиндре паровой машины. Русский ученый Б. С. Якоби пошел иным путем. В 1834 г. он создал первый в мире практически пригодный электродвигатель с вращающимся якорем и опубликовал теоретическую работу «О применении электромагнетизма для приведения в движение машины». Б. С. Якоби писал, что его двигатель несложен и «дает непосредственно круговое движение, которого гораздо легче преобразовать в другие виды движения, чем возвратно-поступательное».
Вращательное движение якоря в двигателе Якоби происходило вследствие попеременного притяжения и отталкивания электромагнитов. Неподвижная группа U-образных электромагнитов питалась током непосредственно от гальванической батареи, причем направление тока в этих электромагнитах оставалось неизменным. Подвижная группа электромагнитов была подключена к батарее через коммутатор, с помощью которого направление тока в каждом электромагните изменялось раз за один оборот диска. Полярность электромагнитов при этом соответственно изменялась, а каждый из подвижных электромагнитов попеременного притягивался и отталкивался соответствующим неподвижным электромагнитом: вал двигателя начинал вращаться. Мощность такого двигателя составляла всего 15 Вт. Впоследствии Якоби довел мощность электродвигателя до 550 Вт. Этот двигатель был установлен сначала на лодке, а позже на железнодорожной платформе.
Электромобиль появился раньше, чем двигатель внутреннего сгорания. Первый электромобиль в виде тележки с электромотором был создан в 1841 году.
В 1899 году в Санкт-Петербурге русский дворянин и инженер-изобретатель Ипполит Романов создал первый русский электрический омнибус на 17 пассажиров.
Энциклопедия Брокгауза Ф. А. и Ефрона И. А. описывает электромобили следующим образом:
Самым многообещающим типом автомобиля в будущем можно считать электрический, но пока он ещё недостаточно усовершенствован. Электрические двигатели не дают ни шума, ни копоти, они, бесспорно, удобнее и совершеннее всех других, но А. должен вести свой источник энергии: аккумуляторную батарею, которая пока ещё слишком тяжела и непрочна. Поэтому невозможно возить с собою запас энергии на длинный путь, а вновь заряжать аккумуляторы и заменять истощённые другими возможно лишь при езде в городах или от одной специально устроенной станции до другой.
Возрождение интереса к электромобилям произошло в 1960-е годы из-за экологических проблем автотранспорта, а в 1970-е годы и из-за резкого роста стоимости топлива в результате энергетических кризисов.
Однако после 1982 года интерес к электромобилям снова спал. Это было вызвано резким изменением конъюнктуры на нефтяном рынке и слабыми эксплуатационными показателями опытных партий из-за недостатков химических источников энергии.
В начале 90-х годов штат Калифорния был одним из самых загазованных регионов США. Компания General Motors отреагировала одной из первых и с 1996 года начала серийный выпуск модели EV1 с электрическим приводом. Всего с 1997 года в Калифорнии было продано около 5500 электромобилей разных производителей.
Затем требование нулевой эмиссии было заменено на требование низкой эмиссии. Почти все произведённые электромобили в 2002 году были изъяты у пользователей и уничтожены В качестве причины называлось окончание срока службы аккумуляторов.
В последние годы в связи с непрерывным ростом цен на нефть электромобили вновь стали набирать популярность. По распоряжению мэра Москвы в 2007 г. в городе началась опытная эксплуатация электромобилей. 30 марта 2007 года впервые в России электромобиль, переоборудованный Игорем Корховым из обычного автомобиля, получил заключение по допуску к участию в дорожном движении и был зарегистрирован в органах ГИБДД благодаря помощи научного работника и общественного деятеля Юрия Юрьевича Шулипы.
Глава 3. Двигатель внутреннего сгорания
В настоящее время двигатель внутреннего сгорания является основным видом автомобильного двигателя. Двигателем внутреннего сгорания (сокращенное наименование – ДВС) называется тепловая машина, преобразующая химическую энергию топлива в механическую работу. Его устанавливают на автомобили, корабли, тракторы, моторные и т.д., во всём мире насчитывается сотни миллионы таких двигателей. Существует два вида двигателей внутреннего сгорания – бензиновые и дизельные.
Бензиновые ДВС работают на жидком горючем (бензине, керосине и т.п.) или на горючем газе (сохраняемом в сжатом виде в стальных баллонах). Проектируют двигатели где горючим будет водород.
Основная часть ДВС – один или несколько цилиндров, внутри которых происходит сжигание топлива. Отсюда и название двигателя.
Внутри цилиндра движется поршень – металлический стакан, опоясанный пружинящими кольцами (поршневые кольца), вложенными в канавки на поршне. Поршневые кольца не пропускают газов, образующихся при сгорании топлива, в промежутке между поршнем и стенками цилиндра. Поршень снабжен металлическим стержнем – пальцем, он соединяет поршень с шатуном. Шатун передаёт движения поршня коленчатому валу.
Верхняя часть цилиндра сообщается с двумя каналами, закрытыми клапанами. Через один из каналов – впускной, подаётся горючая смесь, через другой – выпускной, удаляются продукты сгорания. В верхней части цилиндра помещается свеча – приспособление для зажигания горючей смеси посредством электрической искры.
Наибольшее распространение получил четырёхтактный двигатель.
Отметим, что одноцилиндровые двигатели устанавливают главным образом на мотоциклах. На автомобилях, тракторах для более равномерной работы ставят 4, 6, 8 и более цилиндров на общем валу. Двигатели с цилиндрами, установленными в виде звезды вокруг одного вала, получили название звездообразных. Мощность звездообразных двигателей достигает 4 МВт. Используют их главным образом в авиации.
Глава 4. Преимущества и недостатки водородного и электродвигателя.
4.1. Электродвигателя.
Электромобили отличаются низкими транспортными расходами. В России стоимость электроэнергии —3,8 руб за кВт·ч по дневному тарифу и около 0,95 руб за кВт·ч ночью. Таким образом, транспортные расходы электромобиля в России будут несколько ниже, поскольку заряжаться он будет, скорее всего, ночью.
КПД тягового электродвигателя составляет 88—95 %.
Существует мнение, что низкий уровень шума электромобилей может создавать проблемы — пешеходы, переходя дорогу, зачастую ориентируются на звук автомобиля. Разумеется, резкий шум работающего мощного электродвигателя трудно с чем-то спутать, шум электроприводов троллейбуса (в основном, воздушных компрессоров и вентиляторов в старых моделях), механических передач (дифференциал и карданная передача), электрокара, поезда метро широко известен, так что электромобилю необходимо обычное для транспорта шумоподавление. Да и шум современного автомобиля на небольшой скорости очень мал, в основном, это шум трения колёс об асфальт, гравий или другое покрытие. Однако при использовании маломощных двигателей, как, например, в трамваях, шум действительно практически отсутствует и на некоторых выпускаемых электромобилях искусственно повышают уровень шума при скоростях до 30 км/ч.
Преимущества электрического двигателя перед ДВС
Суммируя всё выше перечисленное, можно посчитать что транспортное средство использующее электрический двигатель в 3-4 раза эффективнее анологичного ТС с двигателем внутреннего сгорания!
Но эти недостатки стремительно уменьшаются. И уже сегодня существуют серийные средства транспорта, обладающие всеми перечисленными преимуществами.
4.2. Водородного двигателя
Преимущества
Двигатель с рабочим объемом один литр сможет развивать мощность в 136 л.с. Это считается отличным показателем. Происходит это потому что впрыск топлива происходит под давлением 300 бар. В итоге, удельная мощность водородного двигателя составляет 100 кВт на один литр объема.
Недостатки:
Поэтому в разработанных на сегодняшний день автомобилях замена топлива на водород приводит к значительному уменьшению объёма багажника. Возможно в будущем эта проблема будет преодолена, но скорее всего за счёт некоторого увеличения габаритов легковых авто. (Для других классов автомобилей (автобусов, грузовых автомобилей, разнообразных специальных автомашин) проблема увеличения габаритов транспортного средства не столь остра. В частности на автобусах топливные элементы могут размещаться на крыше кузова, подобно тому как это делается например с троллейбусным электрооборудованием).
Заключение
Список литературы
1. Пинский А.А., Граковский Г.Ю/ Физика - М.: ФОРУМ, 2012. – 560с.
2. Ремизов А.Н., Потапенко А.Я. Курс физики– М.: Дрофа, 2002. – 720с.
5. http://doc-suvorov.narod.ru/
7. http://greenvolt.ru/energiya-vody/vodorodnyj-dvigatel/
8. Энциклопедия. Брокгауза Ф. А. и Ефрона И. А.
9. Энциклопедический словарь юного техника 1988.
Приложение 1.
Водородный транспорт.
Рис.1. Автобус Mercedes-Benz Citaro на водородных топливных элементах
Рис.2. BMW Hydrogen 7 с водородным двигателем внутреннего сгорания
Рис.3. Самолёт Boeing с силовой установкой на топливных элементах.
Рис. 4. Велосипед с водородными топливными элементами производства китайской компании Shanghai Pearl.
Приложение 2.
Электродвигатели
Рис.5. Двигатель постоянного тока в разрезе. Справа расположен коллектор с щётками
Рис.6. Трехфазные асинхронные двигатели
Приложение 3.
Модели электромобилей
Приложение 4.
Сравнительная таблица преимуществ и недостатков двигателей
Рукавичка
Хризантема и Луковица
Усатый нянь
Сказка про Серого Зайку
Флейта и Ветер