Постоянное применение современной вычислительной техники приводит к тому, что учащиеся затрудняются производить какие-либо расчеты, не имея в своем распоряжении таблиц или счетной машины. Актуальность темы исследования состоит в том, что знание упрощенных приемов вычислений дает возможность не только быстро производить простые расчеты в уме, но и контролировать, оценивать, находить и исправлять ошибки в результате механизированных вычислений. Кроме того, освоение вычислительных навыков развивает память, повышает уровень математической культуры мышления, помогает полноценно усваивать предметы физико-математического цикла.
Вложение | Размер |
---|---|
obyk_chudo-mincheva_a.doc | 407 КБ |
МАОУ «Средняя общеобразовательная школа №37»
Научно-практическая конференция «Обыкновенное чудо»
Секция: Арифметика
«Различные способы умножения: от древности до нашего времени»
Выполнила:
Минчева Анна,
ученица 6«бкласса
Руководитель:
Конева Галина Михайловна,
учитель математики,
«Отличник просвещения РФ»,
Победитель Конкурса лучших учителей России(2009 г)
Улан-Удэ
2017
Рецензия.
Я считаю, что ученица проделала большую работу, и этот доклад будет интересен учащимся, увлекающимся математикой, будущим экономистам.
Учитель высшей категории: Конева Г.М.
План.
1.Введение
2.Основная часть. Способы умножения натуральных чисел
2.1. Прием перекрестного умножения при действии с двузначными числами
2.2. Умножение способом «Ревность, или решётчатое умножение»
2.3. Умножение способом «Маленький замок»
2.4. Крестьянский способ умножения
2.5. Индийский способ умножения
2.6.Геометрический способ умножения
2.7.Оригинальный способ умножения на 9 на пальцах
2.8.Способ Оконешникова
3.Заключение
«Предмет математики настолько серьезен,
что полезно не упускать случаев делать
его немного занимательным». Б. Паскаль
Человеку в повседневной жизни невозможно обойтись без вычислений. Поэтому на уроках математики нас учат выполнять действия над числами, то есть считать. Умножаем, делим, складываем и вычитаем мы привычными для всех способами, которые изучаются в школе.
На одном из уроков учитель математики показала, как можно умножить, например число 23 на 11. Для этого нужно мысленно раздвинуть цифры 2 и 3, а на это место поставить цифру 5, то есть сумму цифр 2 и 3. Получилось число 253. Мне стало интересно, а есть ли еще какие-нибудь способы вычислений. Ведь способность быстро производить вычисления вызывает откровенное удивление.
Постоянное применение современной вычислительной техники приводит к тому, что учащиеся затрудняются производить какие-либо расчеты, не имея в своем распоряжении таблиц или счетной машины. Актуальность темы исследования состоит в том, что знание упрощенных приемов вычислений дает возможность не только быстро производить простые расчеты в уме, но и контролировать, оценивать, находить и исправлять ошибки в результате механизированных вычислений. Кроме того, освоение вычислительных навыков развивает память, повышает уровень математической культуры мышления, помогает полноценно усваивать предметы физико-математического цикла.
Цель работы:
Исследовать и изучить необычные способы умножения.
Задачи исследования:
1.Найти как можно больше необычных способов вычислений.
2.Научиться их применять.
3.Выбрать для себя самые интересные или более легкие, чем те которые предлагаются в школе, и использовать их при счете.
4.Обучить своих одноклассников различным методам умножения, организовать соревнование – математический бой на занятиях внеурочной деятельности.
Методы исследования:
- поисковый метод с использованием научной и учебной литературы, интернета;
- исследовательский метод при определении способов умножения;
- практический метод при решении примеров.
II. Из истории вычислительной практики
Те способы вычислений, которыми мы пользуемся сейчас, не всегда были так просты и удобны. В старину пользовались более громоздкими и медленными приемами. И если бы школьник 21 века мог перенестись на пять веков назад, он поразил бы наших предков быстротой и безошибочностью своих вычислений.
Особенно трудны в старину были действия умножения и деления. Тогда не существовало одного выработанного практикой приема для каждого действия. Напротив, в ходу была одновременно чуть не дюжина различных способов умножения и деления — приемы один другого запутаннее, запомнить которые не в силах был человек средних способностей. Каждый учитель счетного дела держался своего излюбленного приема, каждый «магистр деления» восхвалял собственный способ выполнения этого действия.
В книге В. Беллюстина «Как постепенно дошли люди до настоящей арифметики» изложено 27 способов умножения, причем автор замечает: «весьма возможно, что есть и еще способы, скрытые в тайниках книгохранилищ, разбросанные в многочисленных, главным образом, рукописных сборниках».
И все эти приемы умножения — «шахматный или органчиком», «загибанием», «крестиком», «решеткой», «задом наперед», «алмазом» и прочие соперничали друг с другом и усваивались с большим трудом.
Я начала изучать и исследовать некоторые из указанных способов и выбрала наиболее интересные.
III. Различные способы умножения.
3.1.Способ перекрестного умножения при действии с двузначными числами
Древние греки и индусы в старину называли прием перекрестного умножения «способом молнии» или «умножение крестиком».
Пример: 52 х 23 = 1173 5 1
X
2 3
Последовательно производим следующие действия:
1. 1 х 3 = 3 – это последняя цифра результата.
2. 5 х 3 = 15; 1х 2 = 2; 15 + 2 = 17.
7 – предпоследняя цифра в ответе, единицу запоминаем.
3. 5 х 2 = 10, 10 + 1 = 11 – это первые цифры в ответе.
Ответ: 1173.
3.2. Древний способ Луки Пачоли: «Ревность, или решётчатое умножение»
За тысячелетия развития математики было придумано много способов умножения. Кроме таблицы умножения, все они громоздкие, сложные и трудно запоминаются. Считалось, что для овладения искусством быстрого умножения нужно особое природное дарование. Простым людям, не обладающим особым математическим даром, это искусство недоступно.
Умножим число 987 на число 1998.
Рисуем прямоугольник, делим его на квадраты, квадраты делим по диагонали. Получается картинка, похожая на решетчатые ставни венецианских домов. От этого и произошло название метода.
Вверху таблицы запишем число 987, а слева снизу вверх – 1998 (рис. 1).
В каждый квадрат впишем произведение цифр, расположенных в одной строке и одном столбце с этим квадратом. Десятки располагаются в нижнем треугольнике, а единицы – в верхнем. Цифры складываются вдоль каждой диагонали. Результаты записываются справа и слева от таблицы[1].
Рис. 1 «Ревность, или решётчатое умножение».
Ответ: 1972026.
3.3.Еще один способ Луки Пачоли: «Маленький замок»
Одно число записывается под другим как при умножении столбиком (рис. 2). Затем цифры верхнего числа поочередно умножаются на нижнее число, причем начинают с цифры старшего разряда и каждый раз добавляют нужное число нулей.
Полученные числа складывают между собой.
Рис. 2 «Маленький замок»
Ответ:1972026.
Вывод:
Сравним результаты, полученные при умножении чисел 987 и 1998 этими двумя способами. Ответы равны 1972026.
Очевидно, что данные старинные способы умножения действительно очень сложны и требуют обязательного знания таблицы умножения.
3.4. Русский крестьянский способ умножения
В России среди крестьян был распространен способ, который не требовал знания всей таблицы умножения. Здесь необходимо лишь умение умножать и делить числа на 2.
Напишем одно число слева, а другое справа на одной строке (рис. 3). Левое число будем делить на 2, а правое – умножать на 2 и результаты записывать в столбик.
Если при делении возник остаток, то его отбрасывают. Умножение и деление на 2 продолжают до тех пор, пока слева не останется 1.
Затем вычеркиваем те строчки из столбика, в которых слева стоят четные числа. Теперь сложим оставшиеся числа в правом столбце.
Рис. 3 «Русский крестьянским способом»
Ответ: 1972026.
Вывод: Этот способ умножения гораздо проще рассмотренных ранее способов умножения Луки Пачоли. Но он также очень громоздкий.
3.5. Индийский способ умножения
Самый ценный вклад в сокровищницу математических знаний был совершен в Индии. Индусы предложили употребляемый нами способ записи чисел при помощи десяти знаков: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0.
Основа этого способа заключается в идее, что одна и та же цифра обозначает единицы, десятки, сотни или тысячи, в зависимости от того, какое место эта цифра занимает. Занимаемое место, в случае отсутствия каких – нибудь разрядов, определяется нулями, приписываемыми к цифрам.
Индусы отлично считали. Они придумали очень простой способ умножения. Они умножение выполняли, начиная со старшего разряда, и записывали неполные произведения как раз над множимым, поразрядно. При этом сразу был виден старший разряд полного произведения и, кроме того, исключался пропуск какой-либо цифры. Знак умножения еще не был известен, поэтому между множителями они оставляли небольшое расстояние. Например, умножим их способом 537 на 6:
537 6
(5 ∙ 6 =30) 30
537 6
(300 + 3 ∙ 6 = 318) 318
537 6
(3180 +7 ∙ 6 = 3222) 3222. Ответ: 3222
3.6. Геометрический способ умножения
В данном способе используется геометрическая фигура – круг.
Сначала рассмотрим этот способ на примере. Умножим, например, число 13 на 24.
1)Чертим круги. Так как первый множитель двузначное число, то две строки; второй множитель тоже двузначное число, то и два столбца. Так число десятков в первом множителе равно 1, то в первой строке чертим по одному кругу, то есть ничего не меняем. Так как число единиц первого множителя равно 3, то во второй строке чертим по три круга. (рис. 4).
Рис. 4
2)Второй множитель число 24, то круги, которые в первом столбце делим на две части, а круги, которые во втором столбце делим на четыре части
(рис. 5).
Рис. 5
3)Проводим прямые и считаем точки (рис. 6).
Рис. 6 Рис. 7
Ответ записывается следующим образом (рис. 7), смотрим снизу вверх количество точек 12, 2 – последняя цифра результата, один в уме, количество точек во второй области 10 и +1, того 11, 1 пишем и один в уме, количество точек в третьей области 2 и +1, итого 3. Ответ: 312.
Этим способом я решила много примеров. Затем обобщила частные примеры и сделала вывод-правило:
1.Чертим круги. Количество цифр в первом множителе означает количество строк, а количество цифр второго множителя означает количество столбцов.
Если число содержит 0, круг, обозначающий ноль, чертим пунктирной линией. Это воображаемая линия, точек на ней не существует.
2.Первая цифра первого множителя означает количество концентрических кругов в первой строке, вторая цифра первого множителя означает количество кругов во второй строке
3.Цифры второго множителя означают, на сколько частей нужно делить круги: первая цифра – для первого столбца, вторая цифра – для второго, и т.д.
4.Получим круги, поделенные на части. В каждой части ставим точку.
5.Далее чертим косые прямые и считаем количество точек (частей) в каждой косой полосе. Записываем полученное число.
6.Записываем ответ по принципу, рассмотренному в примере.
3.6. Оригинальный способ умножения на 9 на пальцах
Умножение для числа 9 — 9·1, 9·2 … 9·10 — легче выветривается из памяти и труднее пересчитывается вручную методом сложения, однако именно для числа 9 умножение легко воспроизводится «на пальцах». Растопырьте пальцы на обеих руках и поверните руки ладонями от себя. Мысленно присвойте пальцам последовательно числа от 1 до 10, начиная с мизинца левой руки и заканчивая мизинцем правой руки (это изображено на рисунке).
Допустим, хотим умножить 9 на 6. Загибаем палец с номером, равным числу, на которое мы будем умножать девятку. В нашем примере нужно загнуть палец с номером 6. Количество пальцев слева от загнутого пальца показывает нам количество десятков в ответе, количество пальцев справа — количество единиц. Слева у нас 5 пальцев не загнуто, справа — 4 пальца. Таким образом, 9·6=54. Ниже на рисунке детально показан весь принцип «вычисления».
3.7.Современный способ Оконешникова
Интересен новый способ умножения, о котором недавно появились сообщения. Изобретатель новой системы устного счёта кандидат философских наук Василий Оконешников утверждает, что человек способен запоминать огромный запас информации, главное – как эту информацию расположить. По мнению самого учёного, наиболее выигрышной в этом отношении является девятеричная система – все данные просто располагают в девяти ячейках, расположенных, как кнопочки на калькуляторе.
Считать по такой таблице очень просто. К примеру, умножим число 15647 на 5. В части таблицы, соответствующей пятёрке, выбираем числа, соответствующие цифрам числа по порядку: единице, пятёрке, шестёрке, четвёрке и семёрке. Получаем: 05 25 30 20 35
Левую цифру (в нашем примере — ноль) оставляем без изменений, а следующие цифры складываем попарно: пятёрку с двойкой, пятёрку с тройкой, ноль с двойкой, ноль с тройкой. Последняя цифра также без изменений.
В итоге получаем: 078235. Число 78235 и есть результат умножения.
Если же при сложении двух цифр получается число, превосходящее девять, то его первая цифра прибавляется к предыдущей цифре результата, а вторая пишется на «своё» место.
III. Заключение.
Научившись считать всеми представленными способами, я пришел к выводу: что самые простые способы это те, которые мы изучаем в школе, может быть они для нас более привычны.
Из всех найденных мною необычных способов счета более интересным показался способ «решетчатого умножения или ревность». Я показал его своим одноклассникам, и он им тоже очень понравился.
Самым простым мне показался метод «удвоения и раздвоения», который использовали русские крестьяне. Я его использую при умножении не слишком больших чисел (очень удобно его использовать при умножении двузначных чисел).
Заинтересовал меня новый способ умножения, потому что он позволяет в уме «ворочать» огромными числами.
Я думаю, что и наш способ умножения в столбик не является совершенным и можно придумать еще более быстрые и более надежные способы.
Литература.
Литература.
Депман И. «Рассказы о математике». – Ленинград.: Просвещение, 1954. – 140 с.
Корнеев А.А. Феномен русского умножения. История. http://numbernautics.ru/
Олехник С. Н., Нестеренко Ю. В., Потапов М. К. «Старинные занимательные задачи». – М.: Наука. Главная редакция физико-математической литературы, 1985. – 160 с.
Перельман Я.И. Быстрый счет. Тридцать простых приемов устного счета. Л., 1941 — 12 с.
Перельман Я.И. Занимательная арифметика. М.Русанова,1994—205с.
Энциклопедия «Я познаю мир. Математика». – М.: Астрель Ермак, 2004.
Энциклопедия для детей. «Математика». – М.: Аванта +, 2003. – 688 с.
Сказки пластилинового ослика
Волшебная фортепианная музыка
Хитрый коврик
«Течет река Волга»
Ель