Исследовательская работа
Вложение | Размер |
---|---|
конспект | 130.35 КБ |
презентация | 1.62 МБ |
Полное название темы работы | Шаровая молния |
Тип работы | исследовательская работа |
Возрастная номинация | 10-11 класс |
Фамилия имя отчество (полностью) | Подъячева Анастасия Андреевна 04.07.1997 Толстихина Екатерина Дмитриевна 01.06.1997 |
Место учебы: | МАОУ«Средняя общеобразовательная школа № 8 с углубленным изучением отдельных предметов» г.Назарово, Красноярского края. |
Класс | 11 Б |
Место выполнения работы | Школьная лаборатория исследования |
Руководитель | Воросова Ольга Владимировна, МАОУ СОШ № 8 учитель физики, высшая категория |
Год выполнения работы | 2014-2015 |
Оглавление
Введение …………………………….…….…………………………………………………..…3
Показания очевидцев……………………..………………………………………………….….4
Некоторые гипотезы о природе шаровой молнии…………………………………….……….8
Свойства шаровых молний на основе кластерной теории
Попытки лабораторного воспроизведения……………………………………………….….17
Основные правила при встрече с шаровой молнией…………………………………………19
Введение
Актуальность темы работы: На сегодняшний день задокументировано около 10 тысяч случаев наблюдения шаровой молнии. (Их количество растет!) На Земле постоянно существуют от 100 до 1000 шаровых молний, но вероятность увидеть шаровую молнию хотя бы раз в жизни составляет всего 0,01%. Тем не менее шаровые молнии очень опасны для человека, поэтому необходимо быть готовым ко встрече с ними. К тому же, по статистике исследователей, жители небольших городов и деревень встречаются с шаровыми молниями намного чаще, чем жители мегаполисов.
Проблема: противоречивость сведений и нехватка информации о правилах поведения при встрече с шаровой молнией.
Разработанность исследуемой проблемы: Существуют около 400 теорий, объясняющих явление шаровой молнии, но ни одна из них не получила абсолютного признания в академической среде. В лабораторных условиях похожие, но кратковременные явления удалось получить несколькими разными способами, так что вопрос о природе шаровой молнии остаётся открытым.
Цель: изучить информацию о свойства шаровой молнии, разработать правила поведения при встрече с шаровой молнией
Основные задачи:
1) изучить показания очевидцев и наиболее известные теории
2) сделать выводы относительно свойств шаровой молнии
3) разработать памятку по правилам поведения при встрече с шаровой молнией
Методы решения основных задач: сбор информации (исследования), анализ информации, разработка памятки
Показания очевидцев
Случай во Франции: Одно из первых упоминаний о наблюдении шаровой молнии относится к 1718 г., когда в один из апрельских дней во время грозы в Куэньоне (Франция) очевидцы наблюдали три огненных шара диаметром более одного метра. А в 1720 г. опять же во Франции в одном из городов огненный шар во время грозы упал на землю, отскочил от нее, ударился о каменную башню, взорвался и разрушил башню.
Случай на борту «Кэтрин энд Мари»: В декабре 1726 г. некоторые британские газеты напечатали отрывок из письма некоего Джона Хоуэлла, который находился на борту шлюпа «Кэтрин энд Мари». «29 августа мы шли по заливу у берегов Флориды, как вдруг из части корабля вылетел шар. Он разбил нашу мачту на много частей, разнёс бимс в щепки. Также шар вырвал три доски из боковой подводной обшивки и три с палубы; убил одного человека, поранил руку другому, и если бы не обильные дожди, то паруса были бы просто уничтожены огнём».
-
Смерть Георга Рихмана: В 1753 г. физик Георг Рихман, действительный член Петербургской Академии наук, погиб от удара шаровой молнией. Он изобрёл прибор для изучения атмосферного электричества, поэтому когда на очередном заседании услышал, что надвигается гроза, срочно отправился домой вместе с гравёром, чтобы запечатлеть явление. Во время эксперимента из прибора вылетел синевато-оранжевый шар и ударил учёного прямо в лоб. Раздался оглушительный грохот, схожий с выстрелом ружья. Рихман упал замертво, а гравёр был оглушен и сбит с ног. Позже гравер описал то, что произошло. На лбу Рихмана осталось маленькое темно-малиновое пятнышко, его одежда была опалена, башмаки разорваны. Дверные косяки разлетелись в щепки, а саму дверь снесло с петель. Позже осмотр места происшествия совершил лично М.В. Ломоносов.
Случай с кораблём «Уоррен Хастингс»: Британское издание сообщало о том, что в 1809 г. корабль «Уоррен Хастингс» во время шторма «атаковало три огненных шара». Команда видела, как один из них спустился и убил человека на палубе. Того, кто решил забрать тело, ударил второй шар; его сбило с ног, на теле остались лёгкие ожоги. Третий шар убил ещё одного человека. Команда отметила, что после происшествия над палубой стоял отвратительный запах серы.
Ремарка в литературе 1864 г.: В издании «A Guide to the Scientific Knowledge of Things Familiar» Эбенезер Кобэм Брюер рассуждает о «шарообразной молнии». В его описании молния предстаёт как медленно движущийся огненный шар из взрывоопасного газа, который иногда спускается к земле и движется вдоль её поверхности. Также отмечается, что шары могут делиться на шары меньшего размера и взрываться «подобно пушечному выстрелу».
Описание в книге «Молния и свечение» Вильфрида де Фонвьюэля: Книга сообщает примерно о 150 встречах с шарообразной молнией. «Судя по всему, шарообразные молнии сильно притягиваются металлическими предметами, поэтому они часто оказываются у балконных перил, водопроводных и газовых труб. Они не имеют определённой окраски, оттенок их может быть разный, например, в Кётен в герцогстве Ангальт молния была зелёной. M. Колон, заместитель председателя Парижского Геологического Общества, видел, как шар медленно спустился вдоль коры дерева. Коснувшись поверхности земли, он подпрыгнул и исчез без взрыва. 10 сентября 1845 г. в долине Корреце молния влетела в кухню одного из домов деревни Саланьяк. Шар прокатился через всё помещение, не причиня никакого ущерба находящимся там людям. Добравшись до граничащего с кухней хлева, он неожиданно взорвался и убил случайно запертую там свинью.
Случай из жизни Николая II: Последний российский император в присутствии своего деда Александра II наблюдал явление, которое он назвал «огненным шаром». Он вспоминал: «Когда мои родители были в отъезде, мы с дедушкой совершали обряд всенощного бдения в Александрийской церкви. Была сильная гроза; казалось, что молнии, следующие одна за другой, готовы сотрясти церковь и весь мир прямо до основания. Вдруг стало совсем темно, когда порыв ветра распахнул врата церкви и потушил свечи перед иконостасом. Раздался гром сильнее обычного, и я увидел, как в окно влетел огненный шар. Шар (это была молния) покружился на полу, пролетел мимо канделябра и вылетел через дверь в парк. Моё сердце замерло от страха и я взглянул на дедушку – но его лицо было совершенно спокойно. Он перекрестился с таким же спокойствием, как и тогда, когда молния пролетала мимо нас. Тогда я подумал, что испугаться, как я – это неподобающе и немужественно. После того, как шар вылетел, я снова взглянул на дедушку. Он слегка улыбнулся и кивнул мне. Страх мой исчез и я больше никогда не боялся грозы».
Случай из жизни Алистера Кроули: Известный британский оккультист Алистер Кроули говорил о явлении, которое он называл «электричеством в форме шара» и которое он наблюдал в 1916 г. во время грозы на озере Паскони в Нью-Гэмпшире. Он укрылся в небольшом загородном доме, когда «в безмолвном изумлении заметил, что на расстоянии шести дюймов от правого колена остановился ослепительный шар электрического огня трёх-шести дюймов в диаметре. Я смотрел на него, а он вдруг взорвался с резким звуком, который невозможно было спутать с тем, что буйствовало снаружи: шумом грозы, стуком града или потоками воды и треском дерева. Моя рука была ближе всего к шару и она почувствовала лишь слабый удар».
Случай в Индии: 30 апреля 1877 г. шаровая молния влетела в центральный храм Амристара (Индия) Хармандир Сахиб. Явление наблюдало несколько человек, пока шар не покинул помещение через переднюю дверь. Этот случай запечатлён на воротах Даршани Деоди.
Случай в Австралии: В июле 1907 г. на западном побережье Австралии в маяк на мысе Случай в Швеции: В 1944 г. 6 августа в шведском городе Уппсала шаровая молния прошла сквозь закрытое окно, оставив за собой круглую дырку около 5 см в диаметре. Явление наблюдали не только местные жители – сработала система слежения за разрядами молнии Уппсальского университета, созданная на отделении изучения электричества и молнии.
Случай на Дунае: В 1954 г. физик Тар Домокош наблюдал молнию в сильную грозу. Он описал увиденное достаточно подробно. «Это произошло на острове Маргарет на Дунае. Было где-то 25–27°С, небо быстро затянуло облаками и началась сильная гроза. Поблизости не было ничего, где можно было бы укрыться, рядом находился только одинокий куст, который гнуло ветром к земле. Вдруг приблизительно в 50 метрах от меня в землю ударила молния. Это был очень яркий канал 25–30 см в диаметре, он был точно перпендикулярен поверхности земли. Где-то две секунды было темно, а затем на высоте 1,2 м появился красивый шар диаметром 30–40 см. Он появился на расстоянии в 2,5 м от места удара молнии, так что это место удара было прямо посередине между шаром и кустом. Шар сверкал подобно маленькому солнцу и вращался против часовой стрелки. Ось вращения была параллельна земле и перпендикулярна линии „куст – место удара – шар“. У шара было также один-два красных завитка, но не такие яркие, они исчезли спустя доли секунды (~0,3 с). Сам шар медленно двигался по горизонтали по той же линии от куста. Его цвета были чёткими, а сама яркость – постоянной на всей поверхности. Вращения больше не было, движение происходило на неизменной высоте и с постоянной скоростью. Изменения в размерах я больше не заметил. Прошло ещё примерно три секунды – шар резко исчез, причём совершенно беззвучно, хотя из-за шума грозы я мог и не расслышать».
Из всех этих показаний очевидцев можно сделать вывод о свойствах шаровой молнии:
Некоторые гипотезы о природе шаровой молнии
Даже если считать только предложения, опубликованные в серьёзных научных журналах, то количество теоретических моделей, которые с разной степенью успеха описывают явление и отвечают на эти вопросы, составляет десятки. Перечислим некоторые из них.
Например, гипотеза Петра Леонидовича Капицы: между облаками и землёй возникает стоячая электромагнитная волна, и когда она достигает критической амплитуды, в каком-либо месте (чаще всего, ближе к земле) возникает пробой воздуха, образуется газовый разряд. В этом случае шаровая молния оказывается как бы «нанизана» на силовые линии стоячей волны и будет двигается вдоль проводящих поверхностей. Стоячая волна тогда отвечает за энергетическую подпитку шаровой молнии.
Принципиально другую гипотезу предлагает Б. М. Смирнов, занимающийся проблемой шаровой молнии много лет. В его теории ядро шаровой молнии — это переплетённая ячеистая структура, нечто вроде аэрогеля, которая обеспечивает прочный каркас при малом весе. Только нити каркаса — это нити плазмы, а не твердого тела. И энергетический запас шаровой молнии целиком скрывается в огромной поверхностной энергии такой микропористой структуры. Термодинамические расчеты на основе этой модели, в принципе, не противоречат наблюдаемым данным.
Ещё одна теория, уже из самых новых, объясняет всю совокупность наблюдаемых явлений термохимическими эффектами, происходящими в насыщенном водяном паре в присутствии сильного электрического поля. Энергетика шаровой молнии здесь определяется теплотой химических реакций с участием молекул воды и их ионов. Автор теории уверен, что она дает чёткий ответ на загадку шаровой молнии.
Пермский физик Сергей Федосин представил электрон-ионную модель шаровой молнии. Согласно этой модели, шаровая молния есть сгусток очень горячего ионизированного воздуха с общим положительным зарядом, оболочка которого состоит из быстро вращающихся электронов с суммарным током до 1,4•105 А. Целостность молнии поддерживается балансом электромагнитных сил, действующих между зарядами. Положительные ионы внутри молнии распределены свободно вследствие сферической симметрии, и притягивают к себе электроны оболочки, удерживая их от разлёта.
Внутреннее строение шаровой молнии.
Предлагаемая модель шаровой молнии. Обозначения: 1 – горловина внешнего магнитного поля; 2 – водяная плёнка; 3 – двойной электрический слой; 4 – оболочка неизотермической плазмы; 5 – переходной токовый слой; 6 – сепаратриса; 7 – область бессилового магнитного поля. (Источник рисунка)
Свойства шаровых молний на основе кластерной теории.
Появление
Шаровая молния всегда появляется в грозовую, штормовую погоду; зачастую, но не обязательно, наряду с обычными молниями. Чаще всего она как бы «выходит» из проводников или порождается обычными молниями, иногда спускается из облаков, в редких случаях — неожиданно появляется в воздухе или, как сообщают очевидцы, может выйти из какого-либо предмета (дерево, столб).
Поведение
Шаровые молнии стремятся проникнуть в закрытые помещения, залетая туда через форточки, просачиваясь через щели, дырки в стекле и т.д. При этом шаровая молния временно принимает форму сосиски, лепешки или тонкой нити, а затем, пройдя дырку, снова превращается в шар. Форма шара для шаровой молнии энергетически более выгодна. В закрытых помещениях электрическое поле Земли экранируется, и с шаровой молнии частично снимается гнет мощного электрического поля Земли. Именно поэтому неслучайно, влетая через форточку, молния часто опускается до пола.
Шаровые молнии часто притягиваются к металлическим предметам. Это можно объяснить действием закона электромагнитной индукции. Являясь заряженным телом, шаровая молния при приближении к металлическим предметам наводит в них заряд противоположного знака, а затем притягивается к ним, как к противоположно заряженным телам. Шаровая молния может также двигаться вдоль электрических проводов. Поверхность проводника с током несет электрический заряд отрицательного знака. Поэтому шаровая молния, заряженная положительно, притягивается к проводам с током.
Шаровые молнии могут быть причиной пожаров и поражения людей электрическим током. Часто прямым ударам молний подвергаются сооружения, возвышающиеся над окружающими строениями, например, неметаллические дымовые трубы, телевизионные и иные башни, пожарные депо, строения, отдельно стоящие в открытой местности. Попадание молний в самолёт может привести к разрушениям элементов конструкции, нарушению работы радиоаппаратуры и навигационных приборов, ослеплению и даже непосредственному поражению экипажа. При ударе такой молнии в дерево разряд может поразить находящихся около него людей; опасно также напряжение, возникающее вблизи дерева при стекании с него тока молнии на землю.
Шаровая молния находится под влиянием как гравитационного, так и электрического поля Земли, которое сильно возрастает перед грозой и во время грозы. Вокруг поверхности Земли существуют так называемые эквипотенциальные, невидимые для нас поверхности, характеризующиеся постоянным значением электрического потенциала. Эти поверхности повторяют рельеф местности. Они огибают строения и верхушки деревьев. Являясь легким свободно блуждающим зарядом, шаровая молния может «сесть» на какую-либо эквипотенциальную поверхность и скользить по ней без затрат энергии. Со стороны же кажется, что она парит над поверхностью Земли и двигается вдоль нее, повторяя рельеф местности.
Исчезновение
Шаровая молния живёт от 10 до 100 секунд, после чего обычно взрывается. Изредка она медленно гаснет или распадается на отдельные части. Если в спокойном состоянии от шаровой молнии исходит необычно мало тепла, то во время взрыва высвободившаяся энергия иногда разрушает или оплавляет предметы, испаряет воду. Взрыв шаровой молнии сопровождается генерацией мощного электромагнитного импульса. При взрыве шаровая молния является источником интенсивного рентгеновского излучения. «Умирает» крупная молния в связи с нарушением устойчивости ее границы. При рекомбинации пары кластеров образуется десяток легких частиц, что приводит при той же температуре к уменьшению плотности «грозового вещества» и нарушению условий существования молнии задолго до того, как исчерпается ее энергия.
Когда утрачивается поверхностная устойчивость, шаровая молния выбрасывает куски своего вещества и как бы прыгает из стороны в сторону. Выброшенные куски почти мгновенно остывают, подобно маленьким молниям, и раздробленная большая молния заканчивает свое существование. Но возможен и другой механизм ее распада. Если в силу каких-либо причин ухудшается отвод тепла, то молния начнет разогреваться. При этом увеличится число кластеров с малым количеством молекул воды в оболочке, они будут быстрее рекомбинировать, произойдет дальнейшее повышение температуры. В итоге – взрыв.
Размер и форма
Размер (диаметр) шаровых молний варьирует от нескольких сантиметров до метра. Форма в подавляющем большинстве случаев сферическая, однако, были сообщения о наблюдении вытянутых, дискообразных, грушевидных шаровых молний.
Почему молния имеет форму шара? Должна существовать сила, способная удержать вместе частицы «грозового вещества». Почему капля воды шарообразна? Такую форму придает ей поверхностное натяжение, которое возникает из-за того, что ее частицы сильно взаимодействуют между собой, гораздо сильнее, чем с молекулами окружающего газа. Если частица оказывается вблизи границы раздела, то на нее начинает действовать сила, стремящаяся вернуть молекулу в глубину жидкости.
В газах кинетическая энергия частиц настолько превышает потенциальную энергию их взаимодействия, что частицы оказываются практически свободными и о поверхностном натяжении в порциях газа говорить не приходится. Но шаровая молния – это газоподобное тело, а поверхностное натяжение у «грозового вещества», тем не менее, есть, оно-то и обеспечивает у плазмоида форму шара, которую чаще всего имеет шаровая молния. Единственное вещество, которое может иметь такие свойства, это плазма – ионизированный газ.
Плазма состоит из положительных и отрицательных ионов. Энергия взаимодействия между ними гораздо больше, чем между атомами нейтрального газа, больше в этом случае и поверхностное натяжение у сгустка плазмы, чем у порции нейтрального газа. Однако при температурах ниже 1000 градусов Кельвина и при нормальном атмосферном давлении шаровая молния из плазмы могла бы существовать только тысячные доли секунды, так как ионы при таких условиях быстро превращаются в нейтральные атомы и молекулы.
Тем не менее, шаровая молния порой живет несколько минут. При температурах 10–15 тысяч градусов Кельвина кинетическая энергия частиц плазмы становится слишком большой, гораздо больше силы их электрического взаимодействия, и шаровая молния при таком разогреве должна просто развалиться. Поэтому П.Л. Капица и ввел в свою модель мощную электромагнитную волну, способную постоянно порождать новую низкотемпературную плазму. Другим же исследователям, предполагающим, что молниевая плазма более горячая, пришлось придумывать механизм удержания в форме шара слишком горячей плазмы.
Попробуем использовать для стабилизации шаровой молнии воду, которая является полярным растворителем. Ее молекулу можно грубо представить себе как диполь, один конец которой заряжен положительно, а другой – отрицательно. К положительным ионам вода присоединяется отрицательным концом, а к отрицательным – положительным, образуя защитную прослойку вокруг ионов – так называемую сольватную оболочку. Вода может резко замедлить рекомбинацию плазмы.
Шаровая молния может возникать в грозовых облаках. Здесь видна ее внутренняя неоднородность.
Тепловой поток пропорционален площади поверхности шаровой молнии, а запас энергии пропорционален объему. Поэтому маленькие молнии быстро теряют свои сравнительно небольшие запасы энергии, и поэтому маленькие молнии слишком мало живут.
Свечение и цвет
Типичная суммарная мощность излучения — порядка 100 Вт; свечение иногда тусклее, иногда ярче. Цвет — начиная от белого и жёлтого, заканчивая зелёным. Часто отмечалась пятнистость свечения Но если температура шаровой молнии невелика (около 1000°К), то почему же она столь ярко светится? При рекомбинации кластеров выделившееся тепло быстро распределяется между более холодными молекулами. Но на какой-то момент температура вблизи рекомбинировавших частиц может превышать среднюю температуру вещества молнии более чем в 10 раз. Вот этот газ, нагретый до 10–15 тысяч градусов, и светится так ярко. Таких «горячих точек» в шаре немного, поэтому шаровая молния остается полупрозрачной.
Для образования молнии диаметром в 20 см нужно всего несколько граммов воды, а ее во время грозы обычно предостаточно. Вода чаще всего распылена в воздухе, ну а в крайнем случае шаровая молния может «найти» ее для себя на поверхности земли. При образовании молнии часть электронов может «потеряться», поэтому шаровая молния в целом окажется заряженной положительно, и ее движение будет определяться электрическим полем. Электрический заряд позволяет шаровой молнии двигаться против ветра, притягиваться к предметам и висеть над высокими местами.
Цвет шаровой молнии определяется не только энергией сольватных оболочек и температурой горячих «объемчиков», но и химическим составом ее вещества. При попадании линейной молнии в медные провода появляется шаровая молния, окрашенная в голубой или зеленый цвет – обычные «цвета» ионов меди. Вполне возможно, что и возбужденные атомы металлов тоже могут образовывать кластеры. Появлением таких «металлических» кластеров можно было бы объяснить некоторые эксперименты с электрическими разрядами, в результате которых появлялись светящиеся шары, похожие на шаровую молнию.
Вывод
Кластерная теория объясняет многое, но не все. Так, в своем рассказе В.К. Арсеньев упоминает о тоненьком хвостике, протянувшемся от шаровой молнии. Пока причина его возникновения необъяснима. Есть мнение, что шаровая молния якобы способна инициировать микродозовую термоядерную реакцию, которая может служить внутренним источником энергии шаровой молнии. Наряду с повышением плотности в центре шаровой молнии предсказывается и повышение температуры вещества в центральной области до величины, когда возможен термоядерный синтез. Этим, в частности, можно объяснить возникновение микроскопических отверстий с оплавленными краями при прохождении шаровой молнии сквозь стекло.
Попытки лабораторного воспроизведения
Получение светящегося сгустка плазмы при разряде в воде
Надо признать, что речь идёт пока только о попытках — нет ни одного случая искусственного получения шаровой молнии подобной природной в лабораторных условиях.
Прежде всего, поскольку в появлении шаровых молний прослеживается явная связь с другими проявлениями атмосферного электричества (например, обычной молнией), то большинство опытов проводилось по следующей схеме: создавался газовый разряд (а свечение газового разряда — вещь известная), и затем искались условия, когда светящийся разряд мог бы существовать в виде сферического тела.
Первыми такими попытками можно считать опыты Теслы [1] в конце XIX века. В своей краткой заметке он сообщает, что, при определённых условиях, зажигая газовый разряд, он, после выключения напряжения, наблюдал сферический светящийся разряд диаметром 2-6 см. Однако Тесла не сообщает подробности своего эксперимента, так что его воспроизведение крайне затруднительно.
Первые детальные исследования светящегося безэлектродного разряда были проведены только в 1942 году советским электротехником Г.И.Бабатом: ему удалось на несколько секунд получить сферический газовый разряд внутри камеры с низким давлением.
Затем были опыты Петра Леонидовича Капицы: он смог получить сферический газовый разряд при атмосферном давлении в гелиевой среде. Добавки различных органических соединений меняли яркость и цвет свечения.
С тех пор ситуация принципиально не изменилась. Исследователи могли получать кратковременные газовые разряды сферической формы, жившие максимум несколько секунд. Однако остаётся открытым вопрос о связи этих разрядов с той шаровой молнией, которая встречается в природе.
Например, в недавней работе описана схема установки, на которой авторы воспроизводимо получали некие плазмоиды со временем жизни до 1 секунды, похожие на «природную» шаровую молнию. Впрочем, для окончательных выводов требуются независимые проверки других исследовательских групп.
Основные правила при встрече с шаровой молнией:
Страница
Слайд 1
Выполнили: Дороцких Кристина и Гололобова Кристина, ученицы 11 «Б» класса Руководитель: Воросова Ольга Владимировна Исследовательская работа по теме: « Условия безопасного проживания » Назарово 2015Слайд 2
Введение Актуальность проблемы По итогам исследовательской работы, проводиводимой нами в 2014 году, результаты нас удивили. Оказалось,что наш город является экологически не безопасным. Вследтвие чего, мы решили более подробно углубиться и провести исследование в жилых домах нашего города. И выявить, какое же жильё является экологически безопасным для проживания нас и наших горожан.
Слайд 3
Цель Изучить радиационную обстановку жилых домов города Назарово и решить эту проблему с помощью общедоступных ресурсов.
Слайд 4
Оборудование Дозиметр
Слайд 5
Задачи исследования Задачи исследования 1) показать влияние радиации людям 2) измерить уровень радиационного фона в домах города Назарово 3) выявить наиболее опасные и безопасные материалы для строительства дома 5)провести сравнение между предельно допустимой концентрацией(пдк) и получившимися показаниями 6)дать рекомендации людям при покупке квартир 7)найти пути решения этой проблемы с помощью продуктов питания и медицины
Слайд 6
Влияние радиации на человека
Слайд 7
Рак - наиболее серьезное из всех последствий облучения человека.
Слайд 9
Источниками радона служат: 1. фундаменты зданий, строительные материалы 2. вода 3.природный газ и почва.
Слайд 10
Практическая часть Допустимый уровень радиации, установленный экологическими нормами-20 мкр/ч. Мы измерили уровень радиации в жилых домах нашего города, состоящих из разного материала. Показания мы снимали в летнее и зимнее время. Откуда мы пришли к выводу, что они отличаются.
Слайд 12
Дома разного материала Местность Средние показатели Радиационного фона, ед. измерения мкР/ч(зимнее время) Средние показатели Радиационного фона, ед. измерения мкР/ч(летнее время ) Кирпичный 8 мкр-он, дом 11, 30 лет ВЛКСМ 81а, Арбузова 89,дом 89 (14 мкР/час) (12,6мкР/час) Панельный 30лет ВЛКСМ,дом 102а, 8 мкр-он дом 9, 8 мкр-он,дом 10 13,3 мкР /ч (12,0мкР/час) Деревянный Чехова,дом 11,30 лет ВЛКСМ,дом 32 (12 мкР/час) (10,8мкР/час)
Слайд 13
Методы решения проблемы Народная медицина считает, что наиболее действенным и эффективным средством очищения организма от последствий облучений является лечебное голодание . В качестве основной пищи людей, получивших какую-то дозу облучения, рекомендуются продукты, содержащие клетчатку (рожь, бобы, чернослив,изюм , миндаль, тыква, капуста)
Слайд 14
Всасыванию радионуклидов препятствует употребление продуктов, содержащих большое количество калия (свекла, курага, урюк, орехи, неочищенный картофель)
Слайд 15
Рекомендуется пить отвары чернослива, крапивы, красное натуральное вино. При радиоактивном заражении рекомендуется -приём раствора йода 5 мл на 200 г воды. -раствор марганцовки 5 мл на 1,5 л воды (этот метод способствует очищению кишечника, вызывая диарею)
Слайд 16
Так же мы предлагаем посадить вокруг домов и дворах :тополя ,которые будут способствовать снижению уровня радиации
Слайд 17
Заключение Из проделанной нами работой, мы сделали вывод, что для кирпичных и панельных домов радиационный фон выше, чем для деревянных, так как при их строительстве используют песок, цемент, кирпичи, гравий. Они, в свою очередь, очень радиоактивны. М ы рекомендуем Вам принимать продукты, снижающие уровень радиации и почаще выезжать на отдых и за пределы города. Увеличить посадку деревьев и растений во дворах жилых домов(если это возможно).
Слайд 18
Для наблюдения и выявления опасных участков различных городов нашего края, мы предлагаем сайт , на котором размещена информация об опасных и вредных экологических факторах, включая радиационный фон. Этот сайт поможет людям выбрать наиболее безопасные места для своего отдыха http://krasecology.ru
Фильм "Золушка"
Для чего нужна астрономия?
Простые новогодние шары из бумаги
Почта
Зимний лес в вашем доме