Этот материал выполнен моими учениками и представлен на конкурс "Великие математические открытия"
Вложение | Размер |
---|---|
Великие математические открытия-Теорема Эйлера | 851.4 КБ |
Великие математические открытия - Евклид | 413.05 КБ |
Великие математические открытия (логарифмы) | 1.42 МБ |
Слайд 1
Великие открытия математики : Теорема Эйлера Ученика 10 ” Б ” класса Бекболотов Эльдар МБОУ Барвихинской СОШ Учитель Остренко Ольга ВасильевнаСлайд 2
Теорема Эйлера - математическое утверждение, связывающее между собой число ребер, граней и вершин многогранников. Эта теорема была открыта французским ученым Рене Декартом еще в 1640 году, затем забыта более чем на сто лет и лишь в 1752 году переоткрыта российским математиком Леонардом Эйлером, имя которого она носит.
Слайд 3
Рене Декарт Рене Декарт (1596 — 1650) – математик (основатель аналитической геометрии), физик, философ. Родился Рене Декарт 31 марта 1596 года в французском городе Лаэ в семье с дворянскими корнями. В своей биографии Рене Декарт после смерти матери воспитывался бабушкой. Учился в колледже Ла Флеш , где получал религиозное образование. В 1618 году начал изучать юридические вопросы, также занимаясь математикой. В 1617 году поступил в голландскую армию. Вместе с немецкой армией выступал в битве за Прагу. После возвращения во Францию, Декарт снова переезжает. Из-за обвинений в ереси он решил обосноваться в Голландии. В те времена много времени уделяет науке. В 1637 году был напечатан труд Декарта «Рассуждение о методе». Вслед за ним вышли: «Размышления о первой философии», «Начала философии». Многие годы биографии математика Декарта его труды не признавались. Вскоре после переезда в 1649 году в Стокгольм Декарт скончался.
Слайд 4
Яркий представитель и основатель фундаментальных учений в математике 18-го столетия. Родился он 15 апреля 1707 года в Базеле, Швейцария, в семье пастора. Первое образование получал с отцовских рук, который готовил своего сына к богословской деятельности. В 1730 году занял пост на кафедре физики. В 1733 году Леонард Эйлер стал почетным академиком. Леонард внес значительные изменения в вектор развития образования в России . В 1766 году Леонард Эйлер выпустил следующую свою работу «Элементы алгебры», которая была начитана им из-за потери зрения к тому времени. В этот же период вышли на свет такие его труды, как «Вычисление кометы 1769», «Вычисление затмения Солнца», «Навигация», «Новая теория Луны», три тома интегрального вычисления, два тома элементов алгебры, а также мемуары ученого. Леонарду Эйлеру принадлежат более чем 800 трудов, которые в значительной мере ускорили развитие математической науки. Скончался известный математик и ученый 18 сентября 1783 года в Петербурге и был похоронен на Смоленском кладбище. Леонард Эйлер
Слайд 5
Теорема Эйлера хорошо известна и присутствует в продвинутых школьных курсах математики. Однако там она, как правило, жестко связана с изучением многогранников и используется в основном для выяснения того, какие правильные многогранники могут существовать. Такой подход создает превратное впечатление о роли и месте теоремы Эйлера : остается невскрытой чисто топологическая сущность этой теоремы и ее роль в классификации поверхностей, не выясняется связь эйлеровой характеристики с родом поверхности. В результате возникают потери и для приложений: распространение теоремы Эйлера на более сложные, чем обычные многогранники, объекты (сферы с “ ручками ”, многогранники с “дырками” и т.д.) остается вне школьных факультативов.
Слайд 6
Начнем с рассмотрения двух многогранников, хорошо известных из школьной программы, – тетраэдра и куба. Условимся обозначать число вершин многогранника буквой В, число ребер – буквой Р, число граней – буквой Г. Тогда для выбранных многогранников можно составить следующую табличку: В последнем столбце таблицы вычисляется величина Э, которая, по определению, равна В + Г − Р. Мы видим, что, хотя числа В, Г и Р для тетраэдра и куба различны, величины Э для них совпадают. Можно было бы подумать, что это совпадение случайно , однако если бы мы подсчитали величины В, Г и Р для какого-либо другого многогранника “без дырок”, заполнив свободную строчку таблицы, то еще раз убедились бы, что, несмотря на различия самих многогранников и различия для них величин В, Г и Р, значение Э остается постоянным и равным двум. Таким образом, имеет место равенство В + Г − Р = 2, которое и называется теоремой Эйлера для многогранников
Слайд 7
Задачи по тереме Эйлера В 2007 году исполнится 300 лет со дня рождения Леонарда Эйлера – одного из величайших математиков, работы которого оказали решающее влияние на развитие многих современных разделов математики . Л. Эйлер был действительным членом Петербургской Академии наук, оказал большое влияние на развитие отечественной математической школы и в деле подготовки кадров ученых-математиков и педагогов в России. Поражает своими размерами научное наследие ученого. При жизни им опубликовано 530 книг и статей, а сейчас их известно уже более 800. Причем последние 12 лет своей жизни Эйлер тяжело болел, ослеп и, несмотря на тяжелый недуг, продолжал работать и творить. Статистические подсчеты показывают, что Эйлер в среднем делал одно открытие в неделю. Трудно найти математическую проблему, которая не была бы затронута в произведениях Эйлера. Все математики последующих поколений так или иначе учились у Эйлера, и недаром известный французский ученый П.С. Лаплас сказал : "Читайте Эйлера, он – учитель всех нас".
Слайд 8
С именем Эйлера , является задача о трех домиках и трех колодцах. Три соседа имеют три общих колодца. Можно ли провести непересекающиеся дорожки от каждого дома к каждому колодцу?
Слайд 9
Для решения этой задачи воспользуемся теоремой, доказанной Эйлером в 1752 году Если многоугольник разбит на конечное число многоугольников так, что любые два многоугольника разбиения или не имеют общих точек, или имеют общие вершины, или имеют общие ребра, то имеет место равенство. В - Р + Г = 1, где В - общее число вершин, Р - общее число ребер, Г - число многоугольников (граней ).
Слайд 10
Решение Предположим , что это можно сделать. Отметим домики точками Д1, Д2, Д3, а колодцы - точками К1, К2, К3. Каждую точку-домик соединим с каждой точкой-колодцем. Получим девять ребер, которые попарно не пересекаются. Эти ребра образуют на плоскости многоугольник, разделенный на более мелкие многоугольники. Поэтому для этого разбиения должно выполняться соотношение Эйлера В - Р + Г= 1. Добавим к рассматриваемым граням еще одну - внешнюю часть плоскости по отношению к многоугольнику. Тогда соотношение Эйлера примет вид В - Р + Г = 2, причем В = 6 и Р = 9. Следовательно, Г = 5. Каждая из пяти граней имеет по крайней мере четыре ребра, поскольку, по условию задачи, ни одна из дорожек не должна непосредственно соединять два дома или два колодца. Так как каждое ребро лежит ровно в двух гранях, то количество ребер должно быть не меньше (5∙4)/2 = 10, что противоречит условию, по которому их число равно 9. Полученное противоречие показывает, что ответ в задаче отрицателен - нельзя провести непересекающиеся дорожки от каждого домика к каждому колодцу.
Слайд 11
Лента Мёбиуса Топологический объект, простейшая неориентируемая поверхность с краем, односторонняя при вложении в обычное трёхмерное евклидово пространство. Лента Мёбиуса была открыта независимо немецкими математиками Августом Фердинандом Мёбиусом и Иоганном Бенедиктом Листингом в 1858 году.
Слайд 13
С начала покажем, как соединить первые два домика с двумя источниками . Возьмем полоску бумаги и отметим на ней точки А, С, 1 и 3. Нарисуем две красные линии, которые будут выходить из точек А и 3, и две синие, которые будут выходить из точек 1 и С. Если мы склеим края полоски бумаги так, чтобы получилось кольцо, то совпадут концы красных и синих линий. Однако если мы повернем один из краев полоски так, чтобы получилась лента Мёбиуса, то заметим, что теперь будут совпадать линии одного цвета. Мы соединили домик А с источником 1 и домик В с источником 2, так что лини не пересекаются. В этом заключается решение задачи,
Слайд 14
Литература http :// www.levvol.ru/answer_euler.php https://ru.m.wikipedia.org/wiki/%D0%9B%D0%B8%D1%81%D1%82%D0%B8%D0%BD%D0%B3,_%D0%98%D0%BE%D0%B3%D0%B0%D0%BD%D0%BD_% D0%91%D0%B5%D0%BD%D0%B5%D0%B4%D0%B8%D0%BA%D1%82 https://studsell.com/view/127400 / http:// life-prog.ru/2_65667_teoremi-eylera.html http://blogstudy.ru/ref/free/qwxnvsdlzmrt / https://yandex.ru/images/search?text=%D0%B7%D0%B0%D0%B4%D0%B0%D1%87%D0%B8+%D0%BD%D0%B0+%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D1%83+% D1%8D%D0%B9%D0%BB%D0%B5%D1%80%D0%B0&redircnt=1459510758.1
Слайд 15
Спасибо за Внимание!
Слайд 1
Подготовила ученица 11 “ А ” класса Юлия Аксён МБОУ Барвихинская СОШ Учитель Остренко Ольга Васильевна Великие открытия в математике ЭвклидСлайд 2
Евклид Евкли́д или Эвкли́д — древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике. Биографические сведения о Евклиде крайне скудны. Достоверным можно считать лишь то, что его научная деятельность протекала в Александрии в 3 в. до н. э.
Слайд 3
Евклид — первый математик Александрийской школы. Его главная работа «Начала» ( Στοιχεῖα , в латинизированной форме — «Элементы») содержит изложение планиметрии, стереометрии и ряда вопросов теории чисел; в ней он подвёл итог предшествующему развитию Древнегреческой математики и создал фундамент дальнейшего развития математики. Из других сочинений по математике надо отметить «О делении фигур», сохранившееся в арабском переводе, 4 книги «Конические сечения», материал которых вошёл в произведение того же названия Аполлония Пергского , а также « Поризмы », представление о которых можно получить из «Математического собрания» Паппа Александрийского Евклид — автор работ по астрономии, оптике, музыке и др
Слайд 4
Евклидова геометрия Геометрия, как и другие науки, возникла из потребностей практики. Само слово «геометрия» греческое, в переводе означает «землемерие». Люди очень рано столкнулись с необходимостью измерять земельные участки. Это требовало определенного запаса геометрических и арифметических знаний. Постепенно люди начали измерять и изучать свойства более сложных геометрических фигур.
Слайд 5
О жизни Евклида (около 365 г. до нашей эры — 300 г. до нашей эры) почти ничего не известно. До нас дошли только отдельные легенды о нем. Первый комментатор «Начал» Прокл (V век нашей эры) не мог указать, где и когда родился и умер Евклид. По Проклу , «этот ученый муж» жил в эпоху царствования Птолемея I. Некоторые биографические данные сохранились на страницах арабской рукописи XII века: «Евклид, сын Наукрата , известный под именем «Геометра», ученый старого времени, по своему происхождению грек, по местожительству сириец, родом из Тира». Одна из легенд рассказывает, что царь Птолемей решил изучить геометрию. Но оказалось, что сделать это не так-то просто. Тогда он призвал Евклида и попросил указать ему легкий путь к математике. «К геометрии нет царской дороги», — ответил ему ученый. Так в виде легенды дошло до нас это ставшее крылатым выражение.
Слайд 6
Именно в Александрии Евклид основывает математическую школу и пишет большой труд по геометрии, объединенных под общим названием «Начала» — главный труд своей жизни. Полагают, что он был написан около 325 года до нашей эры. Предшественники Евклида — Фалес, Пифагор, Аристотель и другие много сделали для развития геометрии. Но все это были отдельные фрагменты, а не единая логическая схема.
Слайд 7
«Начала» Евклида были основательно изучены арабами, а позднее европейскими учеными. Они были переведены на основные мировые языки. Первые подлинники были напечатаны в 1533 году в Базеле. Любопытно, что первый перевод на английский язык, относящийся к 1570 году, был сделан Генри Биллингвеем , лондонским купцом. Конечно, все особенности Евклидова пространства были открыты не сразу, а в результате многовековой работы научной мысли, но отправным пунктом этой работы послужили «Начала» Евклида. Знание основ Евклидовой геометрии является ныне необходимым элементом общего образования во всем мире.
Слайд 8
Можно смело утверждать, что Евклид заложил основы не только геометрии, но и всей античной математики. Лишь в девятнадцатом веке исследования основ геометрии поднялись на новую, более высокую ступень. Удалось выяснить, что Евклид перечислил далеко не все аксиомы, которые на самом деле нужны для построения геометрии. В действительности при доказательствах ученый ими пользовался, но не сформулировал. Тем не менее все выше сказанное нисколько не умаляет роли Евклида, первого показавшего, как можно и как нужно строить математическую теорию. Он создал дедуктивный метод, прочно вошедший в математику. А значит, все последующие математики в известной степени являются учениками Евклида.
Слайд 9
Алгоритм Евклида Алгори́тм Евкли́да — эффективный алгоритм для нахождения наибольшего общего делителя двух целых чисел (или общей меры двух отрезков). Алгоритм назван в честь греческого математика Евклида, который впервые описал его в VII и X книгах «Начал». В самом простом случае алгоритм Евклида применяется к паре положительных целых чисел и формирует новую пару, которая состоит из меньшего числа и разницы между большим и меньшим числом. Процесс повторяется, пока числа не станут равными. Найденное число и есть наибольший общий делитель исходной пары. Первое описание алгоритма находится в «Началах» Евклида (около 300 лет до н. э.), что делает его одним из старейших численных алгоритмов, используемых в наше время. Оригинальный алгоритм был предложен только для натуральных чисел и геометрических длин (вещественных чисел). Однако в XIX веке он был обобщён на другие типы чисел, такие как целые числа Гаусса и полиномы от одной переменной. Это привело к появлению в современной общей алгебре такого понятия, как евклидово кольцо. Позже алгоритм Евклида также был обобщён на другие математические структуры, такие как узлы и многомерные полиномы. Для данного алгоритма существует множество теоретических и практических применений. В частности, он является основой для криптографического алгоритма с открытым ключом RSA, широко распространённого в электронной коммерции. Также алгоритм используется при решении линейных диофантовых уравнений ] , при построении непрерывных дробей, в методе Штурма. Алгоритм Евклида является основным инструментом для доказательства теорем в современной теории чисел, например таких как теорема Лагранжа о сумме четырёх квадратов и основная теорема арифметики .
Слайд 10
История Древнегреческие математики называли этот алгоритм ἀνθυφαίρεσις или ἀνταναίρεσις — «взаимное вычитание». Этот алгоритм не был открыт Евклидом, так как упоминание о нём имеется уже в Топике Аристотеля. В «Началах» Евклида он описан дважды — в VII книге для нахождения наибольшего общего делителя двух натуральных чисел и в X книге для нахождения наибольшей общей меры двух однородных величин. В обоих случаях дано геометрическое описание алгоритма, для нахождения «общей меры» двух отрезков. Историками математики было выдвинуто предположение, что именно с помощью алгоритма Евклида (процедуры последовательного взаимного вычитания) в древнегреческой математике впервые было открыто существование несоизмеримых величин (стороны и диагонали квадрата, или стороны и диагонали правильного пятиугольника). Впрочем, это предположение не имеет достаточных документальных подтверждений. Алгоритм для поиска наибольшего общего делителя двух натуральных чисел описан также в I книге древнекитайского трактата Математика в девяти книгах .
Слайд 11
Геометрический алгоритм Евклида Пусть даны два отрезка длины a и b . Вычтем из большего отрезка меньший и заменим больший отрезок полученной разностью. Повторяем эту операцию, пока отрезки не станут равны. Если это произойдёт, то исходные отрезки соизмеримы, и последний полученный отрезок есть их наибольшая общая мера. Если общей меры нет, то процесс бесконечен. В таком виде алгоритм описан Евклидом и реализуется с помощью циркуля и линейки.
Слайд 12
Пример Для иллюстрации алгоритм Евклида будет использован, чтобы найти НОД a = 1071 и b = 462. Для начала от 1071 отнимем кратное значение 462, пока не получим разность меньше, чем 462. Мы должны дважды отнять 462, ( q 0 = 2), оставаясь с остатком 147: 1071 = 2 × 462 + 147.Затем от 462 отнимем кратное значение 147, пока не получим разность меньше, чем 147. Мы должны трижды отнять 147 ( q 1 = 3), оставаясь с остатком 21: 462 = 3 × 147 + 21.Затем от 147 отнимем кратное значение 21, пока не получим разность меньше, чем 21. Мы должны семь раз отнять 21 ( q 2 = 7), оставаясь без остатка: 147 = 7 × 21 + 0.Таким образом последовательность a > b > r 1 > r 2 > r 3 > … > r n в данном конкретном случае будет выглядеть так: 1071 > 462 > 147 > 21. Так как последний остаток равен нулю, алгоритм заканчивается числом 21 и НОД(1071, 462) = 21
Слайд 13
Вариации и обобщения Евклидово кольцо Кольца , в которых применим алгоритм Евклида, называются евклидовыми кольцами. К ним относятся, в частности, кольца целых чисел и кольца многочленов. Обобщённый алгоритм Евклида для Алгоритм Евклида и расширенный алгоритм Евклида естественным образом обобщается на кольцо многочленов k [ x ] от одной переменной над произвольным полем k , поскольку для таких многочленов определена операция деления с остатком. При выполнении алгоритма Евклида для многочленов аналогично алгоритму Евклида для целых чисел получается последовательность полиномиальных остатков (PRS).
Слайд 14
Источники http://www.iq-coaching.ru/nauchnye-otkrytiya/matematika/110.html https://ru.wikipedia.org/wiki/%D0%95%D0%B2%D0%BA%D0%BB%D0%B8%D0%B4
Слайд 1
Великие открытия математики (логарифмы) Выполнила : Леонова Софья Ученица 11 «А» класса МБОУ Барвихинской СОШ Учитель: Остренко Ольга ВасильевнаСлайд 2
Математика Математика — цикл наук, исторически основанный на решении задач о количественных и пространственных соотношениях реального мира путём идеализации необходимых для этого свойств объектов и формализации этих задач. Идеализированные свойства исследуемых объектов либо формулируются в виде аксиом, либо перечисляются в определении соответствующих математических объектов. Затем по строгим правилам логического вывода из этих свойств выводятся другие истинные свойства (теоремы). Эта теория в совокупности образует математическую модель исследуемого объекта. В число математических наук входят арифметика, алгебра, геометрия, тригонометрия и др. Традиционно математика делится на теоретическую, выполняющую углублённый анализ внутриматематических структур, и прикладную, предоставляющую свои модели другим наукам и инженерным дисциплинам, причём некоторые из них занимают пограничное к математике положение.
Слайд 4
Краткая биография В ранней молодости, тотчас же по окончании курса в Сент-Эндрюсском университете, куда он поступил в 1563 году, Непер совершил путешествие по Германии, Франции и Италии, из которого вернулся на родину в 1571 году. Поселившись в своем родном замке и женившись в том же году, он затем уже никогда не оставлял Шотландии. Всё его время было посвящено занятиям богословскими предметами и математикой. По его собственным словам, истолкование пророчеств всегда составляло главный предмет его занятий, математика же служила для него только отдыхом. Тем не менее Непер вошёл в историю как изобретатель замечательного вычислительного инструмента — таблицы логарифмов. Это открытие вызвало гигантское облегчение труда вычислителя. Кроме того, оно привело к появлению новой трансцендентной функции и показало пример решения дифференциального уравнения
Слайд 5
В честь Джона Непера названы: кратер на Луне; астероид 7096 Непер (1992 год); логарифмическая безразмерная единица, измеряющая отношение двух величин (см. Непер); университет в Эдинбурге (Edinburgh Napier Universit
Слайд 6
Открытие логарифмов Потребность в сложных расчётах в XVI веке быстро росла. Значительная часть трудностей была связана с умножением и делением многозначных чисел. В ходе тригонометрических расчётов, Неперу пришла в голову идея: заменить трудоёмкое умножение на простое сложение, сопоставив с помощью специальных таблиц геометрическую и арифметическую прогрессии, при этом геометрическая будет исходной. Тогда и деление автоматически заменяется на неизмеримо более простое и надёжное вычитание. В предисловии к книге «Рабдология» Непер писал: Можно с большой вероятностью предполагать, что Непер был знаком с книгой «Arithmetica integra» Михаэля Штифеля, в которой нашла своё выражение идея логарифма: сопоставить умножению в одной шкале (базовой) сложение в другой шкале (логарифмической). Штифель, впрочем, не приложил серьёзных усилий для реализации своей идеи.
Слайд 7
логарифмы
Слайд 8
В 1614 году Непер опубликовал в Эдинбурге сочинение под названием «Описание удивительной таблицы логарифмов», на латинском языке (56 страниц текста и 90 страниц таблиц). Там было краткое описание логарифмов и их свойств, а также 8-значные таблицы логарифмов синусов, косинусов и тангенсов, с шагом 1'. Сочинение разделено на 2 книги, из которых первая посвящена логарифмам, а вторая — плоской и сферической тригонометрии, причём вторая часть одновременно служит практическим пособием по первой. Более развёрнутое описание содержалось в другом труде, изданном посмертно его сыном; там же Непер пояснил, как он составлял свои таблицы. В указанном сочинении 1614 года Непер сформулировал метод упрощенного получения всех основных соотношений в прямоугольном сферическом треугольнике, математически обоснованный в 1765 году с помощью звёздчатого пятиугольника Ламбертом и ныне известный в сферической тригонометрии как мнемоническое правило Непера.
Слайд 9
Понятия функции тогда ещё не было, и Непер определил логарифм кинематически, сопоставив равномерное и логарифмически-замедленное движение. В современной записи модель Непера можно изобразить дифференциальным уравнением: dx/x = -dy/M, где M — масштабный множитель, введённый для того, чтобы значение получилось целым числом с нужным количеством знаков (десятичные дроби тогда ещё не нашли широкого применения). Непер взял M = 10000000.
Слайд 10
Строго говоря, Непер табулировал не ту функцию, которая сейчас называется логарифмом. Если обозначить его функцию LogNap(x), то она связана с натуральным логарифмом (ln) следующим образом: Очевидно, LogNap(M) = 0, то есть логарифм «полного синуса» есть нуль — этого и добивался Непер своим определением. LogNap(0) = ?. Основное свойство логарифма Непера: если величины образуют геометрическую прогрессию, то их логарифмы образуют прогрессию арифметическую. Однако правила логарифмирования для неперовой функции отличались от правил для современного логарифма. Например, LogNap(ab) = LogNap(a) + LogNap(b) — LogNap(1). Все значения таблицы Непера содержали вычислительную ошибку после шестого знака. Однако это не помешало новой методике вычислений получить широчайшую популярность, и составлением логарифмических таблиц занялись многие европейские математики, включая Кеплера.
Слайд 11
Генри Бригс В 1615 году Непера посетил оксфордский профессор математики Генри Бригс. Непер уже был болен, поэтому не смог усовершенствовать свои таблицы, однако дал Бригсу рекомендации видоизменить определение логарифма, приблизив его к современному. Бригс опубликовал свои таблицы в год смерти Непера (1617). Они уже включали десятичные, а не натуральные, логарифмы, и не только синусов, но и самих чисел (от 1 до 1000, с 14 знаками). Логарифм единицы теперь, как положено, был равен нулю.
Слайд 12
Но и в таблицах Бригса обнаружились ошибки. Первое безошибочное издание на основе таблиц Вега появилось только в 1857 году в Берлине (таблицы Бремикера). В 1620-е годы Эдмунд Уингейт и Уильям Отред изобрели первую логарифмическую линейку, до появления карманных калькуляторов — незаменимый инструмент инженера. Современное определение логарифмирования — как операции, обратной возведению в степень — впервые появилось у Валлиса и Иоганна Бернулли, а окончательно было узаконено Эйлером в XVIII веке. Эйлеру принадлежит и заслуга распространения логарифмической функции на комплексную область.
Слайд 13
Другие увлечения Непера Немалую популярность получил придуманный Непером оригинальный прибор для быстрого умножения — палочки Непера (). Непер занимался также астрономией, астрологией и богословием. Его толкование Апокалипсиса: «A plaine discovery of the whole revelation of S. John etc.» вышло в Эдинбурге, в 1593 г. (последнее издание при жизни автора — Лондон, 1611). Оно написано в математической форме, то есть с разделением содержания на теоремы и доказательства. В частности, 26-я теорема утверждала, что папа есть Антихрист, 36-я — что упоминаемая в Апокалипсисе саранча означает турок и арабов. Конец света, как доказал автор, должен иметь место между 1688 и 1700 годами Книга имела несравненно больший успех, чем все научные произведения автора. Появилось несколько её переводов в Германии, а французский, изданный в Ла-Рошели, выдержал два издания (в 1662-м и 1665-м годах). В Англии после смерти Непера вышло ещё несколько изданий этой работы.
Слайд 15
ссылки на материаллы http://www.people.su/79788_2 http://www.iq-coaching.ru/nauchnye-otkrytiya/matematika/108.html https://yandex.ru/images/search?text=%D1%82%D0%B0%D0%B1%D0%BB%D0%B8%D1%86%D0%B0%20%D0%BB%D0%BE%D0%B3%D0%B0%D1%80%D0%B8%D1%84%D0%BC%D0%BE%D0%B2%20lg&img_url=http%3A%2F%2Fppt4web.ru%2Fimages%2F1344%2F36340%2F310%2Fimg16.jpg&pos=0&rpt=simage&stype=image&lr=213&noreask=1&source=wiz
И тут появился изобретатель
Афонькин С. Ю. Приключения в капле воды
Интересные факты о мультфильме "Холодное сердце"
Барсучья кладовая. Александр Барков
Два плуга