Научно-исследовательский проект по теме "Торсионные поля", рассматривающий свойства полей и их применение.
Вложение | Размер |
---|---|
proekt_po_fizike.docx | 533.43 КБ |
peredacha_informatsii.pptx | 614.71 КБ |
Окружной конкурс физико – технических
проектов школьников
Передача информации
при помощи торсионных полей
и их другое возможное применение.
Работу выполнил:
Семенихин Аркадий
1995 г.
Ученик 11 Б класса
МБОУ СОШ №3
Руководитель проекта:
учитель физики: Плотникова Т.П.
Г. Александров 2012г.
Оглавление
Проект «Передача информации при помощи торсионных полей и их другое возможное применение.»
2.1.1 Общие сведения о передаче информации;
2.1.2 Историческое развитие средств коммуникации;
2.1.3 Передача информации в настоящее время;
2.1.4 Введение в курс темы «Торсионные поля»
2.2Практическая часть:
2.2.1 Запись на основе торсионной теории;
2.2.2 Отрицательное влияние торсионных полей;
2.2.3 Торсионные поля в медицине;
2.2.4 Свойства торсионных полей, благодаря которым скорость передачи будет практически мгновенной;
2.2.5 Передача информации но основе торсионных полей;
2.2.6 Немного в металлургии;
2.2.7 Торсионные поля и человек
3. Заключение
Любое общество отличается от чего-либо другого тем, что его участники имеют способность общаться друг с другом. Значит, человек не будет личностью, когда он не имеет возможности общаться. Если родится ребенок, и будет он расти среди, например, животных, вряд ли он станет личностью, ведь он даже общаться не научится! Именно это отличает людей от животных (люди умеют мыслить и возможность общаться).
Люди не всегда имели и имеют возможность общаться друг с другом с глазу на глаз, и поэтому издавна придумывали другие способы связи между собой. Значит, одна из основных потребностей человека – потребность в общении. Универсальным средством общения в наше время являются коммуникации, обеспечивающие передачу информации с помощью современных средств связи, включающих компьютер.
Основными устройствами для быстрой передачи информации на большие расстояния в настоящее время являются телеграф, радио, телефон, телевизионный передатчик, телекоммуникационные сети на базе вычислительных систем.
Передача информации между компьютерами существует с самого момента возникновения ЭВМ. Она позволяет организовать совместную работу отдельных компьютеров, решать одну задачу с помощью нескольких компьютеров, совместно использовать ресурсы и решать множество других проблем.
Именно поэтому я считаю, что тема данного проекта является актуальной в наше время, и ее усовершенствование имеет огромное значение для человечества.
Изучить историю развития и основы передачи информации.
Узнать о современных способах передачи информации.
Изучить торсионные поля.
Изучить возможное применение торсионных полей в других сферах жизнедеятельности человека.
Изучить влияние на окружающую среду привычных нам устройств.
Доказать, что при использовании торсионных полей намного уменьшиться негативное влияние на окружающую среду.
При помощи найденного в различных источниках информации материала, доказать то, что устройства, основанные на теории торсионных полей, намного будут эффективнее и экономичнее (именно поэтому следует заняться глубоким изучением торсионных полей так как в наше время мы имеем недостаточный запас информации для создания новых устройств по передачи информации).
Изучение литературы по теме;
Систематизация материала;
Сделать выводы на основе известных опытов;
Использование измерений, характеризующих скорость передачи информации;
В любом процессе передачи или обмене информацией существует ее источник и получатель, а сама информация передается поканалу связи с помощью сигналов: механических, тепловых, электрических и др. В обычной жизни для человека любой звук, свет являются сигналами, несущими смысловую нагрузку. Например, сирена — это звуковой сигнал тревоги; звонок телефона — сигнал, чтобы взять трубку; красный свет светофора — сигнал, запрещающий переход дороги. Приложение №1
В качестве источника информации может выступать живое существо или техническое устройство. От него информация попадает на кодирующее устройство, которое предназначено для преобразования исходного сообщения в форму, удобную для передачи. С такими устройствами вы встречаетесь постоянно: микрофон телефона, лист бумаги и т. д. По каналу связи информация попадает в декодирующее устройство получателя, которое преобразует кодированное сообщение в форму, понятную получателю. Одни из самых сложных декодирующих устройств — человеческие ухо и глаз. Приложение № 2.
В процессе передачи информация может утрачиваться, искажаться. Это происходит из-за различных помех, как на канале связи, так и при кодировании и декодировании информации. С такими ситуациями вы встречаетесь достаточно часто: искажение звука в телефоне, помехи при телевизионной передаче, ошибки телеграфа, неполнота переданной информации, неверно выраженная мысль, ошибка в расчетах. Вопросами, связанными с методами кодирования и декодирования информации, занимается специальная наука — криптография.
При передаче информации важную роль играет форма представления информации. Она может быть понятна источнику информации, но недоступна для понимания получателя. Люди специально договариваются о языке, с помощью которого будет представлена информация для более надежного ее сохранения.
Прием-передача информации могут происходить с разной скоростью. Количество информации, передаваемое за единицу времени, есть скорость передачи информации или скорость информационного потока и зависит она от свойств физической передающей среды.
Обычно скорость передачи данных измеряется в битах в секунду (бит/с) и кратных единицах Кбит/с и Мбит/с.
Соотношения между единицами измерения:
На базе физической передающей среды строится коммуникационная сеть.
Таким образом, компьютерная сеть – это совокупность абонентских систем и коммуникационной сети.
неэкранированная витая пара. Максимальное расстояние, на котором могут быть расположены компьютеры, соединенные этим кабелем, достигает 90 м. Скорость передачи информации - от 10 до 155 Мбит/с; экранированная витая пара. Скорость передачи информации - 16 Мбит/с на расстояние до 300 м.
коаксиальный кабель. Отличается более высокой механической прочностью, помехозащищённостью и позволяет передавать информацию на расстояние до 2000 м со скоростью 2-44 Мбит/с;
волоконно-оптический кабель. Идеальная передающая среда, он не подвержен действию электромагнитных полей, позволяет передавать информацию на расстояние до 10 000 м со скоростью до 10 Гбит/с.
Любой канал связи имеет ограниченную пропускную способность, это число ограничивается свойствами аппаратуры и самой линии (кабеля). Объём переданной информации I вычисляется по формуле:
где q- пропускная способность канала (бит/с)
t-время передачи (сек)
2.1.2 Историческое развитие средств коммуникации.
Развитие человечества не было бы возможно без обмена информацией. С давних времен люди из поколения в поколение передавали свои знания, извещали об опасности или передавали важную и срочную информацию, обменивались сведениями. Например, в Петербурге в начале XIX века была весьма развита пожарная служба. В нескольких частях города были построены высокие каланчи, с которых обозревались окрестности. Если случался пожар, то на башне днем поднимался разноцветный флаг (с той или иной геометрической фигурой), а ночью зажигалось несколько фонарей, число и расположение которых означало часть города, где произошел пожар, а также степень его сложности. Приложение №3
Из истории нам известно, что первыми приборами для передачи информации, пожалуй, были почтовые голуби. Помимо голубей было много и других средств для передачи информации, и называть все их можно очень долго и поэтому я хотел бы пропустить, а назвать те, которые более близки к нашему времени.
Появление телеграфа
Открытие магнитных и электрических явлений привело к повышению технических предпосылок создания устройств передачи информации на расстояние. С помощью металлических проводов, передатчика и приёмника можно было проводить электрическую связь на значительное расстояние. Стремительное развитие электрического телеграфа требовало конструирования проводников электрического тока. Испанский врач Сальва в 1795 году изобрёл первый кабель, который представлял из себя пучок скрученных изолированных проводов.
Решающее слово в эстафете многолетних поисков быстродействующего средства связи суждено было сказать замечательному русскому учёному П.Л. Шиллингу. В 1828 году был испытан прообраз будущего электромагнитного телеграфа. Шиллинг был первым, кто начал практически решать проблему создания кабельных изделий для подземной прокладки, способных передавать электрический ток на расстояние. Как Шиллинг, так и русский физик, электротехник Якоби пришли к выводу о бесперспективности подземных кабелей и о целесообразности воздушных проводящих линий. В истории электро - телеграфии самым популярным американцем был Сэмюэл Морзе. Он изобрёл телеграфный аппарат и азбуку к нему, позволяющие с помощью нажатия на ключ передавать информацию на дальние расстояния. Благодаря простоте и компактности устройства, удобству манипуляций при передаче и приёме и, главное, быстродействию телеграф Морзе в течение полустолетия был наиболее распространённой системой телеграфа, применявшейся во многих странах.
Появление радио и телевидения
Передача на расстояние неподвижных изображений осуществил в 1855 году итальянский физик Дж. Казелли. Сконструированный им аппарат мог передавать изображение текста, предварительно нанесённого на фольгу. С открытием электромагнитных волн Максвеллом и экспериментальным установлением их существования Герцем началась эпоха развития радио. Русский учёный Попов сумел впервые передать по радиосвязи сообщение в 1895 году. В 1911 г. русский учёный Розинг осуществил первую в мировой практике телевизионную передачу. Суть эксперимента состояла в том, что изображение преобразовывалось в электрические сигналы, которые с помощью электромагнитных волн переносились на расстояние, а принятые сигналы преобразовывались обратно в изображение. Регулярные телевизионные передачи начались в середине тридцатых годов нашего века.
Долгие годы упорных поисков, открытий и разочарований было потрачено на создание и конструирование кабельных сетей. Скорость распространения тока по жилам кабеля зависит от частоты тока, от электрических свойств кабеля, т.е. от электрического сопротивления и ёмкости. По истине триумфальным шедевром прошлого века была трансатлантическая прокладка проводного кабеля между Ирландией и Ньюфаундлендом, производимая пятью экспедициями.
Появление телефона
Появление и развитие современных кабелей связи обязаны изобретению телефона. Термин "телефон" старше способа передачи на расстояние человеческой речи. Практически пригодный аппарат для передачи человеческой речи был изобретён шотландцем Беллом. Белл в качестве передающего и приёмного устройства использовал наборы металлических и вибрирующих пластинок - камертонов, настроенных каждый на одну музыкальную ноту. Аппарат, передающий музыкальную азбуку, не имел успеха. Позже Белл с Ватсоном запатентовали описание способа и устройства для телефонной передачи голосовых и других звуков. В 1876 г. Белл впервые продемонстрировал свой телефон на Всемирной электротехнической выставке в Филадельфии.
Вместе с развитием телефонных аппаратов изменялись конструкции различных кабелей для приёма и передачи информации. Заслуживает внимания инженерное решение, запатентованное в 1886 году Шелбурном (США). Он предложил скручивать одновременно четыре жилы, но составлять цепи не из рядом лежащих, а из противолежащих жил, т.е. расположенных по диагоналям образованного в поперечном сечении квадрата. Для достижения гибкости в конструкции кабеля и изоляционной защиты, токопроводящих жил потребовалось около полувека. К началу XX века была создана оригинальная конструкция телефонных кабелей и освоена технология их промышленного производства. К самой оболочке предъявлялись требования гибкости, стойкости к многократным изгибам, растягивающим и сжимающим нагрузкам, вибрациям, возникающим как при транспортировке, так и при эксплуатации, стойкости против коррозии. С развитием химической промышленности в XX веке начал меняться материал оболочки кабелей, теперь она уже стала пластмассовой или металлопластмассовой с полиэтиленом. Развитие конструкции сердечника для городских телефонных кабелей всегда шло по пути увеличения максимального числа пар и уменьшения диаметра, токопроводящих жил. Радикальное решение проблемы обещает принципиально новое направление в развитии кабелей связи: волоконно-оптические и просто оптические кабели связи. Исторически мысль об использовании в кабелях связи вместо медных жил стеклянные волокна (световоды) принадлежит английскому физику Тиндалю.
С развитием телевидения, космонавтики и сверхзвуковой авиации возникла необходимость создания световодов вместо металла в кабелях. Уникальные возможности оптических кабелей состоят в том, что по одному волокну (точнее по паре волокон) можно передавать миллион телефонных разговоров. Для передачи информации используются различные виды связи: кабельные, радиорелейные, спутниковые, тропосферные, ионосферные, метеорные. Кабели совместно с лазерами и ЭВМ позволят создать принципиально новые системы телекоммуникаций.
܀ЭВМ
История развития средств связи и телекоммуникаций неотделима от всей истории развития человечества, поскольку любая практическая деятельность людей неотделима и немыслима без их общения, без передачи информации от человека к человеку.
Современное производство немыслимо без электронно-вычислительных машин (ЭВМ), ставших мощным средством переработки и анализа сообщений. Любое сообщение имеет информационный параметр. Например, изменение звукового давления во времени будет информационным параметром речи. Различные буквы и знаки препинания текста являются информационным параметром текстового сообщения. Звуковые колебания, соответствующие речи, являются примером непрерывного сообщения. Любой текст и знаки препинания относятся к дискретному сообщению.
Передача сообщений на расстояние с использованием электрических сигналов называется электросвязью. Электрические сигналы могут быть непрерывными и дискретными.
Под системой электросвязи можно понимать совокупность технических средств и среды распространения электрических сигналов обеспечивающих передачу сообщений от отправителя к получателю. Любая система электросвязи содержит три элемента: устройство преобразований сообщений в сигнал (передатчик), устройство обратного преобразования сигнала в сообщение (приёмник) и промежуточный элемент, обеспечивающий прохождение сигнала (канал связи).
Средой распространения электросвязи может быть искусственное сооружение, созданное человеком (проводная электросвязь) или открытое пространство (радиосистема). По характеру зависимости между сообщением и сигналом различают прямое и условное преобразование. Системой связи с прямым преобразованием является система телефонной связи, где электрические сигналы изменяются по аналогии со звуковыми сообщениями (аналоговыми). Условное преобразование сообщений в сигнал используется при передаче дискретных сообщений. При этом отдельные знаки дискретного сообщения заменяются некоторыми символами, совокупность комбинаций которых называется кодом. Примером такого кода является азбука Морзе. При условном преобразовании сообщения электрический сигнал сохраняет дискретный характер, т.е. информационный параметр сигнала принимает конечное число значений, которых чаще всего два (двоичный сигнал).
Разновидность форм представления сообщений, подлежащих передаче, привела к независимому развитию нескольких видов электросвязи, название и назначение которых определены государственным стандартом. Звуковое вещание и телефонная связь относятся к звуковому вещанию. Звуковое вещание обеспечивает одностороннюю передачу сообщений, имеющих прямое отношение только к двум абонентам. Электросвязь, например телеграфная, факсимильная, передача газет и передача данных предназначены для передачи неподвижных оптических изображений. Эти виды связи называются документальными и предназначены исключительно для односторонней передачи. Передачу подвижных оптических изображений со звуковым сопровождением обеспечивают такие виды электросвязи как телевизионное вещание, видеотелефонная связь. Для передачи сообщений между ЭВМ создан и непрерывно совершенствуется вид связи, называемый передачей данных.
Обобщённая структурная схема системы электрической связи одинакова для передачи любых сообщений. Для осуществления телефонной связи необходимы микрофон и телефон, входящие в состав аппарата, а также телефонный канал связи, образующий совокупность целого ряда технических средств, обеспечивающих усиление сигнала. В системе звукового вещания распределяющие устройства обеспечивают передачу звуковых программ, которые принимаются с помощью радиоприёмного устройства. Средой распространения сигналов электросвязи в этом случае является открытое пространство, называемое эфиром. Характерной особенностью сообщений, передаваемых по системам звукового вещания, является их односторонняя направленность - от одного ко многим.
Для передачи оптических сообщений принято применять следующие виды электросвязи: телеграфная, факсимильная, передача газет, видеотелефонная, телевизионное вещание. Такие виды электросвязи, как телеграфная, факсимильная и передача газет предназначены для передачи неподвижных изображений, которые наносятся на специальные носители (бумагу, плёнку и др. материал) и называются документальными сообщениями. Носитель представляет собой бланк определённых размеров, поверхность которого имеет внешние светлые и цветные участки. Сочетание светлых и тёмных участков поверхности бланка воспринимается зрением человека как изображение.
Данные, предназначенные для связи между ЭВМ, представляют собой сообщения, состоящие из определённого набора цифр. Такие документальные сообщения называются дискретными.
В зависимости от среды, по которой передаются сигналы, все существующие типы линий связи принято делить на проводные (воздушные и кабельные линии связи) и беспроводные (радиолинии). Проводные линии связи созданы искусственно человеком, а в беспроводных сигналы подаются в радиопередатчик, с помощью которого они преобразуются в высокочастотный радиосигнал. Протяжённость радиолиний и возможное число сигналов зависит от диапазона используемых частот, условий распространения радиоволн, технических данных радиопередатчика и радиоприёмника. Радиолинии используются для связи с любыми подвижными объектами: кораблями, самолётами, поездами, космическими аппаратами.
Человечество обладает сегодня таким объёмом информации в каждой области знаний, что люди уже не в состоянии держать его в памяти и эффективно использовать. Накопление информации продолжается нарастающими темпами, потоки вновь создаваемой информации столь велики, что человек не может и не успевает воспринимать и перерабатывать их. С этой целью появились различные устройства, аппаратура для сбора, накопления и обработки информации. Наиболее мощными средствами являются электронные вычислительные машины (ЭВМ), вошедшие в жизнь как один из важнейших элементов научно- технического прогресса. Для оперативной и качественной передачи переработанной информации наряду с развитием средств её обработки идет непрерывный процесс совершенствования средств массовых коммуникаций.
2.1.3 Передача информации в настоящее время.
В настоящее время достаточно хорошо развита высокоскоростная проводная связь, обеспечивающая скоростью свыше 100Мбит/сек. Такая скорость позволяет дает большие возможности для ее пользователей, например, сетью интернет.
Но даже в наше развитое время во многих местах интернет отсутствует из труднодоступного положения ( причина - отдаленное положение). Поэтому начали развивать различные идеи беспроводной передачи информации. Уже существуют приборы, с помощью которых информация передается без использования привычных нам проводных линий, USB-модемы для компьютеров. Их работа основана на использовании тех же принципов, что и мобильные устройства.
Самые первые USB-модемы первого поколения передавали информацию на слишком малой скорости. Далее такую технологию передачи информацию начали развивать дальше. В наше время широкое распространение получили модемы 3-го поколения.
Мобильная связь третьего поколения строится на основе пакетной передачи данных. Сети третьего поколения 3G работают на частотах дециметрового диапазона, как правило в диапазоне около 2 ГГц, передавая данные со скоростью до 3,6 Мбит/с. Они позволяют организовывать видеотелефонную связь, смотреть на мобильном телефоне фильмы и телепрограммы и т.
В США уже созданы модемы, позволяющие передавать информацию на скоростях, сравнимых с оптоволоконной связью. Но пока этот прибор не получил широкого распространения т.к. требуются огромные вклады на производство данных приборов и передающих антенн мобильной связи. Следует добавить, что данные модемы требуют доработки т.к. оказавают неблагоприятное влияние на окружающую среду, главным образом на растительность и живые организмы.
Я же предлагаю передавать информацию не привычными нам электромагнитными волнами, а волнами торсионных полей!
2.1.4 Введение в курс темы «Торсионные поля».
Человек — часть Природы, его существование — жизнь — проходит во взаимодействии с другими частями Природы, которые способствуют жизнедеятельности человека или затрудняют ее, либо даже угрожают ей. Несколько миллионов лет (по современным оценкам «возраста» человечества) жизнь человека зависела в основном от земных природных факторов, а из космических угрозу представляли лишь редкие крупные метеориты.
В конце XIX и в течение XX века появилось еще две координаты жизнедеятельности человека. В результате бурного развития естественных наук человечество осознало, что помимо земных в его жизнедеятельности существуют и космические природные факторы. Например, ультрафиолетовые лучи Солнца и межпланетная магнитная плазма. В этот же период,— исторически мгновенно возникли техногенные факторы. Земные, космические и техногенные факторы образовали «трехмерное» пространство человеческой жизнедеятельности.
Человек нашел возможность уменьшить свою зависимость от природных факторов (земных и космических), но заплатил (и платит) за это трагическим дисбалансом в экологическом равновесии Земли. Достаточно вспомнить о гербицидах, пестицидах, нитратах в сельском хозяйстве, радионуклидах Чернобыля, отходах атомных производств, морских захоронениях химического оружия, озоновых дырах и т. д. Положение тем более сложно, если учесть, что экологический техногенный дисбаланс принял столь глубокий характер, что, по мнению многих ученых, поставил под угрозу само существование Человечества, существование всей Земной Цивилизации.
Преодолев ядерную угрозу существованию земной цивилизации, человечество оказалось в состоянии если не шока, то очевидной растерянности перед второй глобальной угрозой — угрозой экологического техногенного дисбаланса. За нескончаемой чередой констатации гибели цивилизации и пророчеств сроков ее наступления, никто за последние годы не смог указать выхода из этой глобальной кризисной ситуации.
В 1913 году молодой французский математик Э. Картан опубликовал статью, в конце которой он сформулировал в одной фразе фундаментальную, как потом оказалось, физическую концепцию: в природе должны существовать поля, порождаемые плотностью углового момента вращения. В 20-е годы ряд работ в близком к этому направлению опубликовал А. Эйнштейн. К 70-м годам сформировалась новая область физики — теория Эйнштейна — Картана (ТЭК), которая явилась частью теории торсионных полей (полей кручения). В соответствии с современными представлениями электромагнитные поля порождаются зарядом, гравитационные — массой, а торсионные порождаются спином или угловым моментом вращения. Подобно тому, как любой объект, имеющий массу, создает гравитационное поле, так и любой вращающийся объект создает торсионное поле.
Торсионные поля обладают рядом уникальных свойств. До начала 80-х годов проявление торсионных полей наблюдалось в экспериментах, которые не ставили своей целью исследование именно торсионных явлений. С созданием торсионных генераторов ситуация существенно изменилась. Появилась возможность провести широкомасштабные исследования по проверке предсказаний теории в планируемых экспериментах. За последние десять лет такие исследования были выполнены рядом организаций Академий наук, лабораториями высших учебных заведений и отраслевыми организациями России и Украины.
В начале века было понимание того, что электромагнитные поля являются силовыми и дальнодействующими. Затем появилось умение генерировать электрические токи и электромагнитные волны. Сочетание этих фундаментальных факторов привело к тому, что мы живем в век электричества, и очень трудно назвать задачи науки и потребности общества, которые не решались бы с помощью электромагнитных устройств: электродвигатели и ускорители элементарных частиц; СВЧ-печи для приготовления пищи и ЭВМ, установки для электросварки и радиотелескопы и многое, многое другое.
Тогда же было понимание, что гравитационные поля — тоже силовые и дальнодействующие. Но до сих пор никто не умеет делать устройства, генерирующие гравитационные токи и гравитационные волны, хотя попытки понять теоретически, что это такое по аналогии с электромагнетизмом, предпринимались неоднократно со времен Хевисайда. Именно отсутствие этого «умения» делает гравитацию предметом лишь теоретических исследований.
Когда было понято, что торсионные поля так же являются силовыми и дальнодействующими и имеются разработанные источники (генераторы) торсионных токов и торсионных волновых излучений, то по аналогии с электромагнетизмом методологически было допустимо высказать осторожное предположение, что и в рамках торсионной парадигмы можно ожидать столь же широких и разнородных прикладных решений как и в рамках электромагнетизма.
Такая аналогия могла оказаться неправомерной, даже если различные торсионные эффекты оказались бы существующими. Могло оказаться так, что решение прикладных задач на торсионной основе менее эффективно, чем на основе электромагнетизма. Правда, уникальность свойств торсионных полей, отмеченная выше, давала надежду, что в действительности все наоборот,— более эффективными должны оказаться торсионные средства: торсионные источники энергии, двигатели, торсионные средства передачи информации, торсионные методы получения материалов с новыми физическими свойствами, торсионная экология, торсионные методы в медицине, сельском хозяйстве и т. д.
За почти десять лет с тех пор, как были сформулированы указанные выводы, теоретические, экспериментальные и технологические исследования в России и на Украине показали, что торсионные технологии и средства несравнимо более эффективны, чем электромагнитные. Ранее упоминались успехи торсионной технологии в металлургии. Однако в повестке дня уже стоит вопрос не об обработке расплава при стандартном процессе плавки, а о разработке торсионной металлургии, исключающей стадию плавки.
Серьезной проблемой является транспорт на основе двигателей, использующий сжигаемое топливо,— автомобили, тепловозы, корабли, самолеты. Переход на электротранспорт порождает иллюзию экологической чистоты этого «транспорта будущего». Да, воздух городов будет чище, но при этом надо учитывать низкий КПД линий электропередач и электродвигателей. Глобально экологическая обстановка Земли станет хуже из-за того, что часть электростанций — тепловые и из-за экологических опасностей АЭС. При этом помимо Чернобыльского синдрома есть еще одна опасность — мощное вредное воздействие левых торсионных полей, которые создаются всеми реакторами, на людей. При этом существующие средства защиты АЭС прозрачны для торсионных излучений.
Другая глобальная проблема современности — это проблема источников энергии. Топливные ресурсы, судя по существующим темпам их добычи и разведанным запасам, будут исчерпаны уже в первой половине следующего века. Но даже если предположить, что новые методы разведки существенно увеличат разведанный потенциал, человечество без угрозы экологической гибели не может позволить себе сжечь такое количество нефти и газа. Даже если сделать АЭС абсолютно надежными и снабдить их торсионной защитой (торсионными экранами), остается без фундаментального решения проблема утилизации радиоактивных отходов. Захоронение этих отходов — не решение проблемы, а ее отсрочка, платой за которую для наших потомков будет невозможность полноценного существования. Анализ можно было бы продолжить и в отношении других источников энергии.
В этих условиях было бы, наверное, целесообразно прислушаться к предложениям рассмотреть физический вакуум как источник энергии, тем более, что по этой проблеме прошло уже девять Международных конференций. В отношении возможности получения энергии из Вакуума существует твердое, почти общепринятое суждение: это принципиально невозможно. Но, как это часто бывает в науке, авторы подобных категорических отрицаний забывают сопроводить их важным методологическим комментарием: этого не может быть в соответствии с современными научными представлениями, а не вообще.
В связи с этим уместно напомнить, что история естествознания, особенно в XX веке, полна категоричными отрицаниями, опровергнутыми самим развитием науки и техники. Герц считал невозможной Дальнюю связь с помощью электромагнитных волн. Н. Бор полагал маловероятным практическое использование атомной энергии. Идею спина В. Паули назвал глупой идеей (что, правда, потом было опровергнуто его же работами). За десять лет до создания атомной бомбы А. Эйнштейн считал невозможным создание атомного оружия. Этот перечень можно было бы продолжить. Видимо, прав был Луи де Бройль, призывающий периодически подвергать глубокому пересмотру принципы, которые признаны окончательными.
В качестве примеров потенциально возможного в рамках парадигмы торсионных полей были специально взяты ключевые, базовые проблемы энергетики, транспорта, новых материалов и передачи информации. Этим не исчерпывается содержательный потенциал прикладных применений торсионных полей, который, как уже отмечалось, не менее широк, чем круг прикладных применений электромагнетизма. Это означает, что контуры «суммы технологий» XXI века» (используя терминологию С. Лема просматриваются достаточно ясно. Именно эта сумма торсионных технологий в значительной мере определит облик следующей цивилизации, которая сменит нынешнюю.
Еще одно кардинальное направление торсионной парадигмы коснулось проблем биофизики. В частности, была построена квантовая теория памяти воды, которая показала, что эта память реализуется на спиновой протонной подсистеме воды. Упрощая реальную картину, можно сказать, что молекула некоторого вещества, попадая в воду, своим торсионным полем ориентирует в прилежащей водной среде спины протонов (ядра водорода молекулы воды) так, что они повторяют характеристическую, пространственно-частотную структуру торсионного поля этой молекулы вещества. Есть экспериментальные основания полагать, что из-за небольшого радиуса действия статического торсионного поля молекул вещества около таких молекул формируется лишь несколько слоев их спиновых протонных копий.
Собственное торсионное поле таких спиновых протонных копий (спиновых реплик) будет тождественно торсионному полю молекул вещества, породивших эти спиновые реплики. В силу этого на полевом уровне спиновые протонные копии молекул вещества оказывают на живые объекты такое же действие, как и само вещество. На уровне экспериментальной феноменологии в гомеопатии это известно со времен Ганемана, затем было исследовано на обширном биохимическом материале Г. Н. Шангиным-Березовским с сотрудниками, а чуть позже переоткрыто Бенвенисто.
Несколько слов о том что представляет собой вода в свете торсионных технологий. Вода – одно из самых загадочных веществ на Земле. Ученые открывают все новые и новые ее свойства. Но здесь речь пойдет об омагниченной воде и ее влиянии на обменные процессы организма. Известно, что обычный магнит имеет торсионные поля. При этом северный полюс магнита формирует правостороннее торсионное поле, а южный полюс – левостороннее (Приложение №4). Вода, обработанная правосторонним торсионным полем, получает усиленную биологическую активность. Физика этого процесса такова: правостороннее торсионное поле улучшает ее текучесть, проницаемость клеточных мембран и скорость обменных процессов на уровне клеток. Известно, что обычная вода обладает памятью. И записанная информация может храниться ее молекулами как угодно долго. Если приготовить водный раствор какого-либо вещества и довести степень разведения до 1:10, а это уже практически чистая вода, то оказывается, что действие раствора останется таким же, что и до разведения. Это означает, что молекулы воды записывают информацию о молекуле вещества и сохраняют ее. Если обеспечить запись информационного поля вещества молекулами воды (максимальное число контактов молекул вещества с молекулами воды достигается размешиванием и встряхиванием), можно довести степень разведения раствора до 1:10 (так называемый мнимый раствор). Этот метод получил распространение на бройлерных фабриках.
Применяя его, можно сэкономить значительные денежные средства на закупаемых за .границей пищевых добавках. В качестве ресурсов, подлежащих экономии, могут выступать практически любые материалы. Так развиваются программы создания экологически чистых ресурсосберегающих технологий, систем и средств нетрадиционного высокоэффективного энергообеспечения, производства материалов с заданными свойствами, повышения урожайности сельскохозяйственных культур и продуктивности животноводства, увеличения сроков хранения продовольственных товаров. Высокоэффективное применение торсионных полей возможно во многих областях практической деятельности.
2.2.2 Отрицательное влияние торсионных полей.
При воздействии на воду северным полюсом магнита, т. е. правым торсионным полем, биологическая активность воды увеличивается. При воздействии южным полюсом магнита, т. е. левым торсионным полем, биологическая активность воды уменьшается. Аналогично, при действии северным полюсом магнита апликатора наблюдается его лечебное действие, т. к. в действительности действие осуществляется за счет его правого торсионного поля. При действии южным полюсом магнита апликатора болезненное состояние усиливается.
2.2.3 Торсионные поля в медицине
Загадка биофизической феноменологии — это техника перезаписи лекарств по методике Фолля. Сущность проблемы заключается в следующем. Берутся две пробирки, одна с раствором лекарства, а другая — с водным дистиллятом. Затем одним концом медного провода обвивается в несколько витков одна пробирка, а другим концом провода так же обвивается вторая. Через некоторое время в условиях двойного слепого эксперимента устанавливается, что вода из пробирки с дистиллятом (мнимый раствор) оказывает такое же лечебное действие, как истинный раствор лекарства. При этом оказывается, что длина провода существенно не влияет на наблюдаемый эффект.
Предположение об электромагнитной природе «записи свойств» лекарства на воду отпало, когда оказалось, что эффект перезаписи сохраняется, даже если вместо медного провода взять оптоволокно. Ситуация приняла уже совершенно непонятный характер, когда оказалось, что если поместить на провод или оптоволокно магнит, то эффект перезаписи полностью исчезает. Именно последнее обстоятельство — действие магнита на диамагнитик (что в рамках электромагнетизма, как уже отмечалось, невозможно), свидетельствовало, что в основе перезаписи лежат торсионные (спиновые) эффекты.
Обратим особое внимание на ряд важных следствий эффекта перезаписи лекарства. Лечебное действие мнимого раствора — спиновополяризованной воды ставит новую проблему. Мнимый раствор может оказывать лечебное действие только через его полевые (торсионные) свойства. В то же время традиционно считается, что лекарства оказывают лечебное действие через биохимический механизм. Если мнимые растворы столь же эффективны, как и соли лекарства, то, возможно, в перспективе торсионная технология перезаписи с помощью торсионных генераторов позволяет, с одной стороны, отказаться от производства дорогих лекарств и сделать фармацевтику предельно дешевой. С другой стороны, использование мнимых растворов снижает проблему лекарственного токсикоза, особенно в отношении препаратов длительного и, что особенно важно, лекарств пожизненного приема больными. При лечении мнимыми растворами в организм никакая «химия» не попадает. Однако от указанных общих соображений до массового применения потребуются определенные усилия ученых и практиков.
Если мнимый раствор оказывает лечебное действие через его полевые (торсионные) свойства, то, естественно, возникает вопрос: а может, вообще отказаться от водного посредника (мнимого раствора) и действовать на организм прямо усиленным торсионным полем лекарства? Не исключена возможность, того, что по крайней мере в ряде ситуаций это будет возможно.
2.2.4 Свойства торсионных полей, благодаря которым скорость передачи будет практически мгновенной.
Торсионные поля обладают уникальными свойствами и могут порождаться не только спинами. Как показал нобелевский лауреат П. Бриджмен, эти поля при определенных условиях могут самогенерироваться. Мы знаем, например, есть заряд — есть электромагнитное поле, нет заряда — нет электромагнитного поля. То есть, если нет источника возмущения, то нет и причины, чтобы оно возникало. Но оказывается, что торсионные поля, в отличие от электромагнитных, могут появляться не только от какого-нибудь источника, который обладает спином или вращением, но и когда искажается структура физического вакуума.
Наиболее важные свойства торсионных полей следующие.
Итак, ясно, что торсионные поля позволят передавать информацию мгновенно в любую точку вселенной. Плюсом является не только быстрая передача данных, но и их малые требования к потреблению энергии.
2.2.5 Передача информации но основе торсионных полей
Если у нас есть передатчик (излучатель торсионных волн), есть система регистрации и приёма торсионных волн, то естественно использовать их для передачи информации. Так можно заменить радиосвязь торсионной связью. В апреле 1986 года были проведены первые эксперименты по передаче двоичной информации с использованием торсионных сигналов. Эти результаты опубликовали в 1995 году. Таким образом существование торсионных полей подтверждено экспериментально. Такие эксперименты были выполнены в апреле 1986 года. Передача торсионных сигналов осуществлялась с первого этажа здания, которое располагалось недалеко от кольцевой автомобильной дороги в Москве в районе Ясенево. Сигнал должен был пройти большое количество зданий, которые отделяли точку, где передавался сигнал, от той точки, где принимался торсионный сигнал, и кроме этого между этими точками были неровности рельефа местности, сквозь толщу земли которых должен бы пройти сигнал. При этом, в качестве передающего устройства, использовался торсионный генератор, который не имел устройств типа антенны в радиосвязи, которые можно было бы разместить на крыше так, чтобы этот сигнал мог перейти по свободному пространству от одного места к другому, огибая все те препятствия, которые должен был бы преодолеть торсионный сигнал. В рамках этого эксперимента торсионный сигнал мог пройти только по прямой через мешающие здания и через толщу рельефа местности. Даже если бы не было рельефа местности и надо было бы преодолеть только эти здания, то с учетом плотности застройки в Москве между точкой передачи и точкой приема (точка передачи находилась недалеко от кольцевой автомобильной дороги, а точка приема находилась в центре Москвы недалеко от площади Дзержинского, расстояние между этими точками, как указано на схеме (приложение №5) , составляло приблизительно 22 км) эффективная толщина железобетонных зданий, которая разделяла эти две точки, составляла не менее 50 м железобетона. Очевидно, что даже если эти здания существовали в виде такой стены, то какими бы сотнями мегаватт радиосвязи (мощности радиопередатчика) мы не располагали, этот сигнал не смог бы попасть в точку приема, он практически полностью был бы поглощен этими железобетонными стенами зданий.
Мощность которая использовалась для реализации передачи торсионного сигнала из точки передачи в точку приема, составляла 30 милливатт, что почти в 10 раз меньше, чем мощность, потребляемая лампочкой от карманного фонаря. Естественно, что при столь малой мощности сигнала никакая передача сигнала в традиционном понимании из точки передачи в точку приема на расстоянии 22 км была бы невозможна.
Несмотря на то, что сигнал был низкий по интенсивности, он был в точке приема устойчиво принят. Этот двоичный сигнал принимался в виде огибающих, которые фиксировались уже в качестве преобразованного из торсионного в электрический сигнал.
Прежде всего, нужно сказать, что сам факт безошибочного приема сигнала из этой точки в точку приема казался совершенно невозможным. Но это было вполне естественным результатом с учетом высокой проникающей способности торсионного сигнала, который не должен был поглотиться на железобетонными зданиями, ни рельефом местности. Во второй серии экспериментов передатчик был привезен прямо в точку приема. И опять была повторена передача торсионного сигнала. Практически эти сигналы по интенсивности не отличаются, что и вытекает из высокой проникающей способности торсионного сигнала. Действительно, торсионному сигналу было все равно, то ли он проходит это расстояние в 22 км через эти поглащающие среды, то ли этих поглощающих сред нет вообще. Интенсивность сигнала при этом никак не меняется. Тем самым, было подтверждено теоретически предсказанное свойство торсионных сигналов не ослабляться ни с расстоянием, ни при прохождении через какие-то природные среды. Сигнал действительно проходил без всякого ослабления.
В настоящее время эти эксперименты уже переросли в рамки нормальной научно-исследовательской работы, которая должна завершиться созданием уже заводских образцов приемо-передающей аппаратуры, которая должна послужить прообразом для создания средств связи на принципах передачи торсионных сигналов.
Существует давний спор по поводу того, кто является изобретателем радио: русский А. Попов или американец Маркони. По торсионной связи такого спора не будет. Ни единой строчки и ни единого патента на этот счёт нигде в мире до настоящего времени не зафиксировано. Россия в этом вопросе будет единоличным лидером. Впрочем, не только по связи, но и вообще по торсионным технологиям. На сегодня ни по одному из направлений — энергетика, связь, транспорт — ни в одной стране мира даже не приступали к работам.
2.2.6 Немного в металлургии.
За последние годы были проведены большие работы в области металлургии. Оказалось, что, изменяя спиновую структуру металла (в расплаве) можно управлять его структурой и свойствами. В результате, не добавляя никаких легирующих присадок, мы можем получать металл, который имеет лучшие характеристики, чем легированный. Например, было получено без легирования, только за счёт воздействия торсионным излучением на расплав металла, увеличение прочности в 1,5 раза и пластичности до 2,5 раз. Ни одна из существующих технологий в металлургии не позволяет повышать свойства материалов в несколько раз, обычно речь идет о процентах. И ни одна технология не позволяет, прочность и пластичность повышать одновременно! Это тоже уже достигнуто в металлургических печах на Российских заводах. Уже завершена стадия патентования. Предполагается, что скоро начнётся выпуск продукции из металлов, полученных по этой технологии.
2.2.7 Торсионные поля и человек.
Одну из сложнейших спиновых систем являет собой человек. Сложность его пространственно-частотного торсионного поля определяется громадным набором химических веществ в его организме и сложностью их распределения в нем, а также сложной динамикой биохимических превращений в процессе обмена. Каждого человека можно рассматривать как источник (генератор) строго индивидуального торсионного поля. В силу уже обсуждавшихся факторов человек своим фоновым (естественным) торсионным полем осуществляет (для подавляющего большинства людей непроизвольно) спиновую поляризацию окружающего пространства в некотором конечном радиусе. Его торсионное поле, несущее в том числе информацию и о состоянии его здоровья, оставляет свою копию (спиновую реплику) и на одежде, и по Физическому Вакууму.
Спиновый отпечаток торсионного поля на одежде одного человека оказывается значительным для другого человека, если он будет носить эту одежду. Для того, чтобы исключить это влияние, необходимо подвергнуть такую одежду спиновой торсионной деполяризации. С помощью торсионных генераторов эта процедура выполняется быстро и просто. Старые приметы о нежелательности ношения одежды «с чужого плеча», оказывается, имеют вполне разумное обоснование. Эти выводы в равной мере относятся и к другим вещам, картинам, инструментам и т. п.
Подавляющая часть людей обладает фоновым правым торсионным полем. Крайне редко, в соотношении порядка 106:1, встречаются люди с фоновым левым торсионным полем. Фоновое статическое торсионное поле человека вообще имеет достаточно стабильную величину. Однако вместе с тем было установлено, что при собственном правом торсионном поле задержка дыхания на выдохе даже на 1 мин. Почти вдвое увеличивает напряжённость этого поля. При задержке дыхания на вдохе меняется знак этого поля — новое торсионное поле становится левым.
Указанные факторы, как и аналогичность свойств торсионных полей тому, что демонстрируют экстрасенсы, дали основание предположить, что дальние дистантные воздействия экстрасенсов реализуются через торсионные поля. Отличие сенситива от обычного человека заключается в том, что он может вызывать у себя измененные состояния, при которых сам становится источником торсионного поля заданной пространственно-частотной структуры. На практике сенситив не пользуется этими научными категориями. Он эмпирически подбирает то измененное состояние, при котором наблюдается положительный лечебный эффект. Обычно экстрасенс, начиная работать с новым пациентом, использует некоторое базовое измененное состояние, характерное для сенсорного лечения данного заболевания, которое видоизменяет для каждого конкретного случая. Есть основание считать, что в случае со священником реализуется аналогичный алгоритм.
Для того, чтобы проверить правильность предположения о торсионной природе сенсорной феноменологии, за последние пять лет было проведено большое количество экспериментальных исследований. Много экспериментов по воздействию генераторов торсионных излучений на различные физические, химические и биологические объекты были дублированы группой сенситивов,— Ю. А. Петушковым, Н. П. и А. В. Баевыми в исследованиях на базе Львовского государственного университета. Во всех случаях их экстрасенсорные воздействия имели устойчивую воспроизводимость и демонстрировали такие же, а часто более сильные эффекты, чем при действии торсионных генераторов.
Были проведены исследования воздействия сенситивов и на различные биологические системы. В этих экспериментах также наблюдались устойчивые результаты. Особый интерес представила объективная регистрация воздействия сенситивов на испытуемых по электроэнцефалограмме (ЭЭГ) мозга с картированием мозга по разным ритмам. При этом использовались общепринятые в мировой практике методики и серийная аппаратура картирования мозга по ЭЭГ. Пример регистрируемых изменений по L-ритму с интервалами наблюдений по 20 мин. показал, что корректирующие действия сенситивов в конечном итоге, выражаясь стандартной терминологией,— дают «бабочку», т. е. симметричную картину левого и правого полушария. Вероятно, первой отечественной публикацией по таким исследованиям была работа И. С. Добронравовой и И. Н. Лебедевой (12).
Важным моментом этих экспериментов было то, что испытуемый находился в экранированной камере (камере Фарадея), что исключало электромагнитное воздействие сенситивов, если бы оно имело место.
Установленная торсионная природа действия сенситивов привела к моделям спинового стекла, используемым для описания механизмов мозга, начиная с ранних работ Литтла и Хопфильда. Модель спинового стекла достаточно конструктивна, хотя и обладает известными специалистам недостатками (как и любая модель, а не строгая теория).
В первом приближении отвлечемся от макроструктуры мозга и дифференциации его клеток. Будем предполагать, что мозг — это аморфная среда («стекло»), обладающая свободой в динамике спиновых структур. Тогда допустимо предположить, что в результате актов мышления сопутствующие им биохимические процессы порождают молекулярные структуры, которые являются, как спиновые системы, источниками торсионного поля, причем их пространственно-частотная структура адекватно (вероятно, даже тождественно) отражает эти акты мышления.
При наличии внешнего торсионного поля, под его действием в лабильной спиновой системе — мозге, возникают спиновые структуры, которые повторяют пространственно-частотную структуру воздействующего внешнего торсионного поля. Эти возникшие спиновые структуры отражаются как образы или ощущения на уровне сознания, либо как сигналы управления теми или иными физиологическими функциями.
3 Заключение
Итак, зная такую информацию о торсионных полях, можно с точностью сказать, что беспроводная передача информации на основе торсионных полей намного выгодней, чем при помощи электромагнитных: высокая скорость, экономичность, и передача на неизмеримые расстояния.
Благодаря торсионным полям, можно изобрести двигатели на основе торсионных полей. Такие двигатели можно будет использовать в автомобилях. Отличительной особенностью транспорта с торсионным движителем является отсутствие внешней опоры или реакции отбрасываемой массы, присущих современным транспортным средствам. Как следствие этого новый транспорт с торсионным движителем не будет иметь колес, крыльев, пропеллеров, ракетных двигателей, винтов или каких-либо других приспособлений. В результате возникает уникальная возможность для передвижения по твердой поверхности, по воде, в воздухе, под водой, в космическом пространстве без вредного воздействия на окружающую природную среду. Наиболее экономично торсионный движитель проявит себя при движении в космосе. Эффективность использования горючего в этом случае составит 80-90% в отличие от ракетных двигателей (2%).
Транспортное средство с торсионным движителем будет способно зависать над Землей на любой высоте, свободно парить, почти мгновенно менять направления движения. Подобные транспортные средства не нуждаются в запускающих устройствах, посадочных полосах, аэропортах. Они с легкостью будут достигать скоростей, близких к скорости света. Более того, уже сейчас теоретические разработки указывают на возможность преодолевать как расстояния, так и время путем изменения топологических свойств пространства-времени. Внедрение нового способа движения приведет не только к изменению традиционных средств передвижения, но и окажет сильное влияние на общественное развитие и экономику (резко снизится стоимость транспортировки пассажиров и грузов на средние и дальние расстояния на Земле и в космическом пространстве). Появятся новые предприятия с рабочими местами. Сократятся масштабы использования энергий, загрязняющих среду обитания человека. Развитие торсионных транспортных средств и источников энергии дает возможность понять физические принципы межзвездных перелетов и устройство тех НЛО, которые являются, скорее всего, посланниками других звездных систем.
Кроме того, нам известно, что человеческая мысль нашего мозга является следствием торсионного поля. Он является генератором торсионных полей, но и внешние торсионные поля оказывают воздействия на его работу. Значит, возможно в далеком будущем наши мобильные телефоны станут не нужны. Мы будем передавать и принимать сразу мысли. Силой мысли мы сможем управлять различными устройствами. Более того, сейчас каждому человеку, чтобы получить образование необходимо целых 11 лет учиться в школе, далее, чтобы получить профессию, необходимо еще 3-6 лет учебы! Возможно в будущем, когда будут изучены торсионные поля, мы сможем мгновенно «обучить» человека тому, на что сейчас мы тратим 4-ю часть нашей жизни. Это будет происходить просто, словно, установить программу на компьютере.
Так же, благодаря передачи данных на далекие расстояния, может быть, мы сможем установить контакт с инопланетянами, как бы далеко они не жили. Тогда мы поймем, что человек не одинок в этой вселенной.
Методические рекомендации:
Приложения.
Приложение №1
Приложение №2
Приложение №3
Приложение №4
Приложение №5
Список литературы:
И другие интернет-ресурсы
Слайд 1
Торсионные поля и их применение.Слайд 2
Тема проекта: Передача информации при помощи торсионных полей и их другое возможное применение.
Слайд 3
Цели проекта: Изучить историю развития и основы передачи информации. Узнать о современных способах передачи информации. Изучить торсионные поля. Изучить возможное применение торсионных полей в других сферах жизнедеятельности человека. Изучить влияние на окружающую среду привычных нам устройств. Доказать, что при использовании торсионных полей намного уменьшиться негативное влияние на окружающую среду
Слайд 4
Методы исследования: Изучение литературы по теме; Систематизация материала; Сделать выводы на основе известных опытов; Использование готовых измерений;
Слайд 5
Актуальность проблемы: Одна из основных потребностей человека – потребность в общении. Поэтому активно развиваются различные средства коммуникации. В наше время люди пытаются найти способ беспроводной, высокоскоростной, энергосберегающей, дальнодействующей связи.
Слайд 6
Задачи работы: При помощи найденного в различных источниках информации материала, доказать то, что устройства, основанные на теории торсионных полей, намного будут эффективнее и экономичнее (именно поэтому следует заняться глубоким изучением торсионных полей так как в наше время мы имеем недостаточный запас информации для создания новых устройств по передачи информации).
Слайд 10
Передача информации Проводная Беспроводная
Слайд 11
неэкранированная витая пара. Максимальное расстояние, на котором могут быть расположены компьютеры, соединенные этим кабелем, достигает 90 м. Скорость передачи информации - от 10 до 155 Мбит/с; экранированная витая пара. Скорость передачи информации - 16 Мбит/с на расстояние до 300 м. коаксиальный кабель. Отличается более высокой механической прочностью, помехозащищённостью и позволяет передавать информацию на расстояние до 2000 м со скоростью 2-44 Мбит/с; волоконно-оптический кабель. Идеальная передающая среда, он не подвержен действию электромагнитных полей, позволяет передавать информацию на расстояние до 10 000 м со скоростью до 10 Гбит/с.
Слайд 12
Передача информации между компьютерами
Слайд 13
Торсионные поля. В 1913 году молодой французский математик Э. Картан опубликовал статью, в конце которой он сформулировал в одной фразе фундаментальную, как потом оказалось, физическую концепцию: в природе должны существовать поля, порождаемые плотностью углового момента вращения. В 20-е годы ряд работ в близком к этому направлению опубликовал А. Эйнштейн. К 70-м годам сформировалась новая область физики — теория Эйнштейна — Картана (ТЭК), которая явилась частью теории торсионных полей ( полей кручения). В соответствии с современными представлениями электромагнитные поля порождаются зарядом, гравитационные — массой, а торсионные порождаются спином или угловым моментом вращения. Подобно тому, как любой объект, имеющий массу, создает гравитационное поле, так и любой вращающийся объект создает торсионное поле.
Слайд 14
Запись информации на основе торсионной теории. Опыты проводились учеными на воде. Известно, что обычная вода обладает памятью. И записанная информация может храниться ее молекулами как угодно долго . Любое вещество является спиновой системой, и при влиянии внешнего торсионного поля на него, на нем остаётся спиновый отпечаток .
Слайд 15
Отрицательное влияние торсионных полей При воздействии на воду северным полюсом магнита, т. е. правым торсионным полем, биологическая активность воды увеличивается. При воздействии южным полюсом магнита, т. е. левым торсионным полем, биологическая активность воды уменьшается. Аналогично, при действии северным полюсом магнита апликатора наблюдается его лечебное действие, т. к. в действительности действие осуществляется за счет его правого торсионного поля. При действии южным полюсом магнита апликатора болезненное состояние усиливается.
Слайд 16
Торсионные поля в медецине Загадка биофизической феноменологии — это техника перезаписи лекарств по методике Фолля . Берутся две пробирки, одна с раствором лекарства, а другая — с водным дистиллятом. Затем одним концом медного провода обвивается в несколько витков одна пробирка, а другим концом провода так же обвивается вторая. Через некоторое время в условиях двойного слепого эксперимента устанавливается, что вода из пробирки с дистиллятом (мнимый раствор) оказывает такое же лечебное действие, как истинный раствор лекарства. При этом оказывается, что длина провода существенно не влияет на наблюдаемый эффект.
Слайд 17
Торсионные поля в металлургии Оказалось, что, изменяя спиновую структуру металла (в расплаве) можно управлять его структурой и свойствами. В результате, не добавляя никаких легирующих присадок, мы можем получать металл, который имеет лучшие характеристики, чем легированный. Например, было получено без легирования, только за счёт воздействия торсионным излучением на расплав металла, увеличение прочности в 1,5 раза и пластичности до 2,5 раз.
Слайд 18
Передача информации Огромная скорость распространения волн торсионных полей дает нам возможность передачу, практически, мгновенно. Высокая проникающая способность обещает ничтожно малое потребление энергии. Распространение в вакууме и отсутствие изменения из за каких либо помех дает возможность передавать информацию в любую точку вселенной .
Слайд 19
Первый опыт по передачи информации. В апреле 1986 года были проведены первые эксперименты по передаче двоичной информации с использованием торсионных сигналов. Эти результаты опубликовали в 1995 году. Таким образом существование торсионных полей подтверждено экспериментально. Такие эксперименты были выполнены в апреле 1986 года. Мощность которая использовалась для реализации передачи торсионного сигнала из точки передачи в точку приема, составляла 30 милливатт, что почти в 10 раз меньше, чем мощность, потребляемая лампочкой от карманного фонаря. Естественно, что при столь малой мощности сигнала никакая передача сигнала в традиционном понимании из точки передачи в точку приема на расстоянии 22 км была бы невозможна. Несмотря на то, что сигнал был низкий по интенсивности, он был в точке приема устойчиво принят.
Слайд 20
Методические рекомендации Информацию можно использовать на элективных курсах для 11 класса Проект пригоден для выступления на научной конференции На уроках экологии и физики при изучении данных тем Проект может быть использован при изучении задумок и проектов Николы Тесла. Проект может быть предложен в качестве самостоятельного источника информации для подготовки сообщений учащимися.
Снежная книга
Снежная сказка
Волшебная фортепианная музыка
Снеговик
Сочинение