Теория вероятностей представляет собой область математики, необычайно богатую парадоксами - истинами, настолько противоречащими здравому смыслу, что поверить в них трудно даже после того, как правильность их подтверждена доказательством. На самом деле в математике нет другого такого раздела науки, в котором так же легко совершить ошибку. Даже само высказывание "вычислить вероятность" содержит парадокс. Ведь вероятность, в противоположность достоверности, есть то, чего не знают. Как же можно вычислять то, о чем нет никаких знаний?
Вложение | Размер |
---|---|
laryushkin_smirnov_matematicheskie_izyski_ili_teoriya_veroyatnosti.doc | 37 КБ |
МАТЕМАТИЧЕСКИЕ ИЗЫСКИ ИЛИ ТЕОРИЯ ВЕРОЯТНОСТИ
Александр Ларюшкин, Данила Смирнов,
Научный руководитель – Е.С. Гусенкова,
ГБОУ СПО «Жигулевский государственный колледж»
Теория вероятностей представляет собой область математики, необычайно богатую парадоксами - истинами, настолько противоречащими здравому смыслу, что поверить в них трудно даже после того, как правильность их подтверждена доказательством. На самом деле в математике нет другого такого раздела науки, в котором так же легко совершить ошибку. Даже само высказывание "вычислить вероятность" содержит парадокс. Ведь вероятность, в противоположность достоверности, есть то, чего не знают. Как же можно вычислять то, о чем нет никаких знаний?
Возникновение теории вероятностей в современном смысле слова относится к середине XVII века и связано с исследованиями Паскаля (1623 - 1662), Ферма (1601 - 1665) и Гюйгенса (1629 - 1695) в области теории азартных игр. В этих работах постепенно сформировались такие важные понятия, как вероятность и математическое ожидание; были установлены их основные свойства и приемы их вычисления. Уже с конца XVII века страхование стало производиться на научной математической основе. С тех пор теория вероятностей находит все более широкое применение в различных областях.
Крупный шаг вперед в развитии теории вероятностей связан с работами Якова Бернулли (1654 - 1705). Ему принадлежит первое доказательство одного из важнейших положений теории вероятностей – так называемого закона больших чисел. Теорема Якова Бернулли – простейшая форма закона больших чисел – устанавливает связь между вероятностью события и частотой его появления. Другой важный этап в развитии теории вероятностей связан с именем Моавра (1667 - 1754). Этот ученый впервые ввел в рассмотрение и для простейшего случая обосновал своеобразный закон, очень часто наблюдаемый в случайных явлениях. Значительный шаг в развитии теории вероятностей связан с именем Гаусса (1777 - 1855), который разработал метод обработки экспериментальных данных, известный под названием «метод наименьших квадратов». С именем Пуассона (1781 - 1840) связан один из законов распределения, играющий большую роль в теории вероятностей и её приложениях.
Для всего XVIII и начала XIX века характерны бурное развитие теории вероятностей и повсеместное увлечение ею. Теория вероятностей становится «модной» наукой. Её начинают применять не только там, где это применение правомерно, но и там, где оно ничем не оправдано. Во множестве появились работы, посвященные вопросам судопроизводства, истории, политики, даже богословия, в которых применялся аппарат теории вероятностей. Естественно, что все подобные попытки были обречены на неудачу и не могли сыграть положительной роли в развитии науки. Примерно в 20-х-30-х годах XIX века в Западной Европе повсеместное увлечение теорией вероятностей сменилось разочарование и скептицизмом. На теорию вероятностей стали смотреть как на науку сомнительную, второсортную, род математического развлечения, вряд ли достойный серьезного изучения.
Замечательно, что именно в это время в России создается та знаменитая Петербургская математическая школа, трудами которой теория вероятностей была поставлена на прочную логическую и математическую основу и сделана надежным, точным и эффективным методом познания. Со времени появления этой школы развитие теории вероятностей уже теснейшим образом связано с работами русских, а в дальнейшем – советских ученых.
Однако для наглядности давайте рассмотрим практические примеры действия теории вероятности и убедимся в том, что на практике она интересней, чем нам кажется.
Петербургский парадокс считается самым знаменитым. Предположим, что некто бросает монету и согласен уплатить вам доллар, если выпадет орел. В случае же выпадения решки, он бросает монету второй раз и платит вам два доллара, т.е. с каждым разом он удваивает выплачиваемую сумму. Бросать монету некто продолжает до тех пор, пока вы не остановите игру и не предложите расплатиться. Какую сумму вы должны заплатить, чтобы некто согласился играть с вами в эту "одностороннюю игру", а вы не остались в убытке? В каждой отдельно взятой партии вероятность того, что вы выиграете один доллар, равна 1/2, вероятность выиграть два доллара равна 1/4, четыре доллара — 1/8 и т.д. В итоге вы можете рассчитывать на выигрыш в сумме (1 x 1/2) + (2 x 1/4) + (4 x 1/8) … Этот бесконечный ряд расходится: его сумма равна бесконечности. Разумеется, если вы заплатили за право сыграть одну партию, например 1000 долларов, то с весьма высокой вероятностью вы эту партию проиграете, но ожидание проигрыша с лихвой компенсируется шансом, хотя и небольшим, выиграть астрономическую сумму при выпадении длинной серии из одних лишь орлов. Петербургский парадокс возникает в любой азартной игре с удваивающимися ставками.
Парадокс закона больших чисел Бернулли
Игроки часто уверены, что если правильная монета много раз падает гербом, то вероятность выпадения решки возрастает. В противном случае нарушалось бы то, что при очень большом числе бросаний выпадение герба и решки происходят приблизительно одинаково часто. Но ведь у монет, очевидно, нет памяти, поэтому они не знают, сколько раз они уже выпадали гербом или решкой. По этой причине шансы выпадения герба при каждом бросании равны 1/2, даже если монета уже выпадала гербом несколько десятков раз.
Современный вид теория вероятностей получила благодаря аксиоматизации, предложенной Андреем Николаевичем Колмогоровым. В результате теория вероятностей приобрела строгий математический вид и окончательно стала восприниматься как один из разделов математики.
Можно от Солнца уйти...
Как зима кончилась
Знакомимся с плотностью жидкостей
Три орешка для Золушки
Эта весёлая планета