На нанотехнологии возлагают особые надежды и считается, что именно под их знаком будет идти развитие человечества в ХХI веке. В этой связи такие новые слова, как «нанотехнологии», «наноиндустрия», «нанотехника», «наноматериалы» воспринимаются вполне привычно и уже не вызывают удивления. Недавно появился новый термин – «умные» наноматериалы. Примечательно, что разработка таких «умных» наноматериалов ведётся в рамках нанохимии, которой отводится в этой работе главная роль.
В данной работе проведено информационное исследование этих понятий и ввыявлены отличия «умных» наноматериалов от «обычных» наноматериалов, выяснено, почему в их разработке главная роль отводится именно нанохимии, а не другим наукам.
Вложение | Размер |
---|---|
umnye_nanomaterialy.doc | 310.5 КБ |
Департамент образования г. Москвы
ГБОУ Гимназия №1526
ИНФОРМАЦИОННОПОИСКОВОЕ ИССЛЕДОВАНИЕ
на тему: «Аналитический обзор практики научной разработки умных наноматериалов»»
[по материалам новостей химической науки]
Выполнила:
ученица 10 «А» класса
Макаров Вячеслав
Руководитель:
учитель химии
Ампилова Н.Ф.
Москва – 2012
СОДЕРЖАНИЕ:
СОДЕРЖАНИЕ
§1 К содержанию термина «’’умные’’ наноматериалы»
§2 «Умные» наноматериалы как отдельный класс наноматериалов
§3 Умные наноматериалы в строительной индустрии
Настоящее и будущее наноматериалов в строительстве
§4 Настоящее и будущее умных наноматериалов в других сферах жизни и деятельности человека
Биодеградируемые (умные нано-) материалы
Введение
На нанотехнологии возлагают особые надежды и считается, что именно под их знаком будет идти развитие человечества в ХХI веке.
В этой связи такие новые слова, как «нанотехнологии», «наноиндустрия», «нанотехника», «наноматериалы» воспринимаются вполне привычно и уже не вызывают удивления.
Недавно появился новый термин – «умные» наноматериалы. Примечательно, что разработка таких «умных» наноматериалов ведётся в рамках нанохимии, которой отводится в этой работе главная роль.
Мне стало интересно, чем отличаются «умные» наноматериалы от «обычных» наноматериалов и почему в их разработке главная роль отводится именно нанохимии, а не другим наукам. Поиск ответов на эти вопросы составил цель моего информационно-поискового исследования
Гипотеза исследования: «умные» наноматериалы обладают специфическими чертами, отличающими их от просто наноматериалов. Особенности получения умных наноматериалов обусловливают отведение нанохимии в этом процессе главной роли.
Задачи исследования:.
Методы исследования – изучение научно-практических отчётов по теме, обзор, анализ, сравнение, сопоставление, обобщение.
Источники исследования – следующие доступные Интернет-ресурсы:
Сроки исследования: информационно-поисковое исследование было проведено в период с 20 сентября по 15 ноября 2012.
§1 К содержанию термина «’’умные’’ наноматериалы»
На протяжении всей своей жизни цивилизации неустанно ведут кропотливую и трудоёмкую работу по преобразованию «ойкумены» (окружающей человека среды) с целью повысить её комфортность, качество жизни людей.
В ответ на развитие нанотехнологий, которые позволяют организовать работу с ничтожно малыми объектами, в науке и технике вновь оживлённо применяется биомиметический подход.
Биомиметический подход заключается в том, что при разработке техники нужно изучать, как устроен окружающий мир; как действуют биополимерные структуры в живых системах и реализовывать аналогичные типы самоорганизации для синтетических устройств, полимерных систем, конструируемых человеком.
Особое воодушевление нанотехнологиями объясняется просто: раньше было невозможно повторить живую ткань – например, кожу – просто потому, что это не просто белковый полимер, но полимер, куда вживлены волосы; миллиарды рецепторов, которые позволяют обеспечивать терморегуляцию (кожа становится гусиной в ответ на холод, поднимает волоски, которые греют кожу; кожа потеет в ответ на повышенное тепло), защитные функции и прочее.
Теперь можно изготовить материал с включением нанокомпонентов – и вот, пожалуйста, вам миллиарды сенсоров.
Такое воодушевление вылилось в новый научный подход к разработке материалов, который получил название SMARTS (саморегулирующаяся механохимическая адаптивно изменяемая настраиваемая система), которая предлагает настраиваемый способ автономного включения и выключения химических реакций, которые воспроизводят такой тип динамических энергетически автономных обратных связей, который встречается в биологических системах
Сочетание букв в подходе легло в английское слово «smart», в его множественном числе «smarts», что в переводе означает «умные». Поскольку получившееся слово отражает суть описываемых наноматериалов, постольку термин «умные наноматериалы» получил в дальнейшем самостоятельное распространение.
Гарвардская команда инженеров представила стратегию построения самотерморегулирующихся наноматериалов, которые могут быть адаптированы таким образом, чтобы поддерживать уровень pH, давления, или почти любого другого выбранного параметра, подстраиваясь под изменения окружающей среды
Одним из главных практических применений нанохимии является производство всевозможных наноматериалов. Благодаря специфическим свойствам наночастиц, лежащих в их основе, такие материалы часто превосходят “обычные” по многим параметрам.
Например, прочность металла, полученного средствами нанотехнологии, превышает прочность обычного в 1,5 – 2, а в некоторых случаях – и в 3 раза. Твердость его больше в 50 - 70 раз, а коррозийная стойкость – в 10-12 раз!
Разнообразие наноматериалов с уникальными свойствами буквально поражает воображение: это и сверхлегкие, сверхпрочные нанопокрытия для чего угодно – от самолетов до режущих инструментов, и самоочищающиеся ткани, и материал, защищающий человека от вредного воздействия радиоизлучения (ведущие производители сотовых телефонов уже планируют производить из него корпуса для телефонов нового поколения).
"Умные" материалы активно реагируют на изменения окружающей среды и изменяют свои свойства в зависимости от обстоятельств.
Учёные черпают вдохновение при разработке «умных» наноматериалов у природы, наблюдая окружающий мир. Так, для иллюстрации принципа действия «умных» наноматериалов, учёные приводят «самый простой пример», в качестве которого выступает … кожа человека.
Кожа человека – это «умный» материал, созданный природой. Она покрыта миллиардами чувствительных “нанодатчиков”, связанных с головным мозгом! Благодаря этому мы – даже с закрытыми глазами – легко отличаем круглое от квадратного, мокрое от сухого, горячее от холодного... Наша кожа способна реагировать на “опасность”, заставляя нас рефлекторно одергивать руку, чтобы не обжечься, или одеваться потеплее, чтобы защитить свой организм от переохлаждения; она способна к самозаживлению при травмах, самодостраивается по мере роста человека. Кроме того, наша кожа обладает уникальной системой потоотделения, необходимой для защиты организма в условиях высоких температур. Каждый школьник знает, что оптимальная температура здорового человека – около 36,6° С. При повышении или понижении температуры тела всего лишь на 2-3 градуса мы чувствуем слабость, наша работоспособность падает, внимание и память ухудшаются, портится настроение. Падение температуры тела ниже 30° С очень опасно для здоровья. При 27° С наступает кома, происходит нарушение сердечной деятельности и дыхания. Температура ниже 25° С является критической – человек умирает. Не менее опасно и повышение температуры тела. Критической считается температура 42° С – при ней происходит нарушение обмена веществ в тканях мозга, человек теряет сознание. Если такая температура долго не спадает, это грозит повреждением головного мозга и даже смертью. Тем не менее, благодаря потовым железам, «встроенным» в нашу кожу, мы способны без особого вреда переносить температуры, намного превышающие эти критические 42 градуса.
Как доказали английские физики Благден и Чентри (проводившие ради опыта несколько часов в натопленной печи хлебопекарни), в сухом воздухе при постепенном нагревании наш организм способен выдержать до 160°С! (напомним, что это больше чем в полтора раза выше температуры кипения воды!). То есть можно запросто сварить яйцо или поджарить бифштекс в воздухе, в котором люди могут достаточно долго оставаться без вреда для себя.
Чем же объясняется такая выносливость? Тем, что наша кожа автоматически реагирует на повышение температуры окружающей среды посредством обильного выделения пота. Испарение капелек пота с поверхности нашего тела поглощает тепло из того слоя воздуха, который непосредственно прилегает к коже, тем самым охлаждая его до нормальной температуры.
Природа позаботилась о своих созданиях, наградив нас этим поистине волшебным средством защиты. Но и человеческая мысль тоже не стоит на месте! Уже довольно давно металлурги изобрели “потеющий” металл для защиты промышленных объектов от высоких температур. Этот, тоже своего рода “умный”,материал представляет собой пористую сталь с вкраплениями множества микрочастиц меди. Так как температура плавления меди меньше, чем стали, то, как только внешняя температура достигает некоторого критического предела, металл начинает активно “потеть”: медь расширяется и сквозь поры выходит на поверхность, унося излишек тепла из системы. При остывании капельки меди снова “всасываются” стальными капиллярами и материал возвращается в исходное состояние.
Разброс свойств «умных» наноматериалов огромен.
Помимо улучшения свойств привычных промышленных материалов, развитие нанохимии ведет к распространению так называемых «умных» наноматериалов. Они активно реагируют на изменения окружающей среды и изменяют свои свойства в зависимости от условий.
Например, уже довольно давно изобрели «потеющий» металл для защиты промышленных объектов от высоких температур. Этот «умный» материал представляет собой пористую сталь с вкраплениями множества нано- и микрочастиц меди. Так как температура плавления меди меньше, чем стали, то, как только внешняя температура достигает некоторого критического предела, металл начинает активно «потеть»: медь расширяется и сквозь поры выходит на поверхность, унося излишек тепла из системы. При остывании капельки меди снова «всасываются» стальными капиллярами и материал возвращается в исходное состояние.
Такая «умная» сталь оказывается более устойчивой к деформации и износу; обеспечивает повышение безопасности тех промышленных объектов, где она используется.
«Умные» наноматериалы не только активно реагируют на изменения окружающей среды, но и поддаются управлению. Их поведение можно запрограммировать заранее. «Умные» наноматериалы следующего поколения представляют собой программно аппаратный комплекс из всевозможных сенсоров, миниатюрных компьютеров и исполнительных наноустройств.
§2 «Умные» наноматериалы как отдельный класс наноматериалов
На сегодняшний день известно довольно высокое разнообразие различных наноматериалов, некоторые из которых уже нашли широкое применение в жизни и деятельности человека. Это многообразие можно описать, выделив в совокупности наноматериалов следующие группы:
Каждый из названных нанообъектов находит свое применение в различных отраслях техники. Например, нанопроволоки предлагают использовать как проводники в субмикронных и наноэлектронных узлах. Нановолокна применяются как элемент наноструктурированных нанокомпозиционных полупроводников. Органические макромолекулы также находят применение в создании наноструктурированных материалов.
Функциональные – «умные» – наноматериалы имеют свои специфические особенности.
Гарвардская команда инженеров представила стратегию построения самотерморегулирующихся наноматериалов, которые могут быть адаптированы таким образом, чтобы поддерживать уровень pH, давления, или почти любого другого выбранного параметра, подстраиваясь под изменения окружающей среды
Живые организмы развили в себе сложные способности для сохранения стабильности в условиях изменяющейся окружающей среды, подстраиваясь под колебания в температуре, уровне pH, давлении; научились компенсировать наличие или отсутствие важных молекул. Однако наделение подобными способностями искусственных материалов оставалось проблемой - до настоящего времени.
В последнем номере Nature Гарвардская команда инженеров представила стратегию построения самотерморегулирующихся наноматериалов, которые могут быть адаптированы таким образом, чтобы поддерживать уровень pH, давления, или почти любого другого выбранного параметра, подстраиваясь под изменения окружающей среды с помощью компенсационной ответной химической реакции.
Эта новая платформа материалов, получившая название SMARTS (саморегулирующаяся механохимическая адаптивно изменяемая настраиваемая система), предлагает настраиваемый способ автономного включения и выключения химических реакций, которые воспроизводят такой тип динамических энергетически автономных обратных связей, который встречается в биологических системах.
Эта разработка является шагом к более интеллектуальным и эффективным медицинским имплантатам, а в будущем - даже к изменяющимся зданиям, которые могли бы более эффективно использовать энергию в зависимости от погоды. Исследователи также считают, что их метод обладает значительным потенциалом для внедрения в такие области, как робототехника, компьютеры и здравоохранение.
Структурно SMARTS напоминает микроскопическую зубную щетку, щетинки которой могут подниматься и опускаться, контактируя или не контактируя со слоем, содержащим химические «питательные вещества».
«Вспомните, как появляется гусиная кожа, - поясняет ведущий автор Джоанна Айзенберг, профессор Материаловедения в Гарвардской школе технических и прикладных наук (SEAS) и старший преподаватель в Институте бионики Висса в Гарварде. - Когда нам холодно, крошечные мышцы вашей руки заставляют волосы подниматься, образуя изолирующий слой. По мере того, как ваша кожа нагревается, мышцы сокращаются и волосы опускаются обратно, чтобы препятствовать перегреву. SMARTS работает похожим образом».
Такие естественные материалы, как кожа, невероятно динамичны и могут сохранять контроль в разных условиях окружающей среды посредством саморегуляции. В отличие от них синтетические материалы не могут легко поддерживать равновесие. Даже «самые умные» материалы – такие как очки, которые темнеют на солнечном свете, или пьезоэлектрический датчик, который преобразовывает колебания акустической гитары в цифровой звуковой сигнал, - обычно реагируют только на один определенный импульс окружающей среды и не способны саморегулироваться.
«Встраивая динамические цепи обратной связи в SMARTS, которые работают по принципу «снизу вверх», нам удалось внедрить желаемые регуляционные способности в сам материал, - говорит соавтор Ксимин Хэ, научный сотрудник в лаборатории Айзенберга в SEAS и в Институте Висса. - Какой бы ни был фактор (уровень pH, температура, влажность, давление, или что-то еще), SMARTS можно спроектировать так, чтобы он был способен непосредственно ощущать и регулировать желаемый фактор, не используя внешней энергии или сложных машин, давая нам концептуально новую отлаженную платформу, которая является настраиваемой, обратимой и удивительно точной».
Чтобы продемонстрировать SMARTS, команда Хэ и Айзенберг выбрали температуру в качестве фактора и внедрили множество крошечных нановолокон, похожих на небольшие волоски, в слой гидрогеля. Гидрогель, подобно мышце, может расширяться или сокращаться в ответ на изменения температуры.
Когда температура понижается, гель набухает и волоски принимают вертикальное положение и вступают в контакт с «питательным» слоем; когда он нагревается, гель сжимается и волоски опускаются. Ключевой аспект заключается в том, что молекулярные катализаторы, помещенные на кончики нановолокон, могут запускать химические реакции в «питательном» слое, приводящие к повышению температуры.
«Двухслойная система эффективно создает саморегулирующийся переключатель на два направления, которым управляет движение волосков, запуская реакцию и вырабатывая тепло, когда холодно. Как только температура достигает определенного уровня, гидрогель сжимается, заставляя волоски опускаться, прекращая дальнейшую выработку тепла. Когда он охлаждается снова ниже определенного уровня, цикл автономно перезапускается. Это гомеостаз, который происходит полностью на уровне материалов», - говорит Айзенберг.
Исследователи ожидают, что усовершенствованная технология могла бы быть внедрена в материалы для медицинских имплантатов, чтобы помочь стабилизировать физические функции, измеряя и регулируя уровень глюкозы или углекислого газа в крови. Кроме того, переменное механическое движение волосков могут использоваться с целью проталкивания, как реснички в живом организме.
«В принципе, можно превратить что угодно - тепло, свет, механическое давление - в химический сигнал в геле. Точно так же реакции, вызываемые движущимися волосами, могут производить много различных типов компенсационных ответов. Путем соединения сигналов и ответов мы можем создать большое количество автономных обратных связей», - добавляет Хэ.
Кроме технологических применений, SMARTS - это также идеальная «лаборатория» для изучения фундаментальных свойств биологических и химических систем, например того, как живые системы могут так эффективно переходить от химических к механическим процессам и обратно.
«Мы взглянули на материалы по-новому и создали увлекательную систему, которая помогает понять некоторые фундаментальные, глубинные вопросы о том, как живые существа поддерживают стабильное состояние», - говорит Айзенберг.
Айзенберг и Хэ сотрудничали с Михаелем Айзенбергом из Института бионики Висса в Гарварде; Ольгой Куксенок и Анной Балазс из университета Питсбурга; Лорен Д. Зарзар и Анкитой Састри из Отдела химии и химической биологии в Гарвардском университете.
§3 Умные наноматериалы в строительной индустрии
Строительная индустрия – один из столпов современной цивилизации. В 2007 году, последнем перед мощным финансовым кризисом, сфера строительства в Европе имела валовый годовой оборот 350 млрд евро и представляла рабочие места каждому десятому трудоспособному гражданину. Ежегодно в мире производится порядка 1 м3 бетона на одного жителя планеты Земля. Естественно предположить, что даже небольшие изменения, например, появление новых материалов, в столь массивной отрасли хозяйства породят ощутимые эффекты для всемирной экономики.
НаноБетон
Самокомпактирующемуся бетону не нужна вибрация, он густеет благодаря наночастицам поликарбоксилата
Оксид кремния (SiO2 ) – это часть стандартной бетонной смеси. Исследования наноструктуры материала показали, что использование наночастиц оксида кремния приводит к существенным изменениям в упаковке вещества – значительному уплотнению бетона и соответственному улучшению его механических свойств (повышению прочности на сжатие в 3–6 раз). Кроме того, модификация материала наночастицами оксида кремния стабилизирует важнейшие валентные взаимодействия Ca – Si – H, ответственные за связность бетона, уменьшая вымывание кальция и увеличивая его влагоустойчивость.
Другое соединение, активно используемое как добавка к бетонным смесям, – диоксид титана (TiO2). Наночастицы диоксида титана уже получили весьма широкое распространение в современной промышленности – из-за высоких отражающих свойств материала, особенно в ультрафиолетовом спектре, их используют в солнцезащитных кремах, а способность расщеплять различные органические соединения, в том числе летучие, делает такие частицы важной добавкой к бетону, оконному стеклу и лакокрасочным покрытиям, уменьшающей уровень загрязнителей воздуха в здании и вокруг него.
Кроме того, диоксид титана обладает ярко выраженной гидрофильностью, что придает содержащим его материалам способность к самоочистке – капельки воды конденсируются на поверхности и, стекая, увлекают за собой частицы грязи. На сегодняшний день уже налажен широкий выпуск белого бетона с добавкой диоксида титана, обеспечивающего зданиям более эстетичный вид.
Исследователи уделяют также много внимания взаимодействию бетона с углеродными нанотрубками. Добавка небольшого количества (~ 1 вес. окисленных многослойных углеродных нанотрубок к традиционным маркам, например портландцементу, приводит к значительному улучшению прочности материала на сжатие (+ 25 Н/мм2) и изгибной прочности (+ 8 Н/мм2).
Однако применение углеродных нанотрубок в качестве наполнителя того или иного материала имеет один важный недостаток: нанотрубки «любят» слипаться за счет взаимодействия графеновых листов, образуя крупные кластеры, что приводит в итоге к потере когезии с материалом-носителем. Поэтому для достижения высоких характеристик композиционного материала необходимо проводить дополнительные процедуры с целью разделения и однородной дисперсии нанотрубок. Один из обнаруженных на сегодня способов – предварительное смешивание углеродных нанотрубок с гуммиарабиком, но необходимы дальнейшие исследования, чтобы подобрать оптимальный состав такого композита.
Углеродные нанотрубки обладают целым набором уникальных свойств; возможно, в самом ближайшем будущем их будут широко применять при создании вычислительной техники, в авиастроении, в различных биомедицинских приложениях. С одной стороны, высокая популярность нанотрубок делает их одним из наиболее изучаемых материалов, и строительная индустрия может косвенно выиграть от открытий, сделанных в других областях, а с другой – значительный спрос определяет высокую цену на нанотрубки, ограничивая экономический эффект их применения.
Интересную работу проводят ученые из Горно-технологической школы Южной Дакоты, разрабатывающие биогерметик бетона на основе карбоната кальция, произведенного генетически модифицированными почвенными бактериями. Полученный материал будут использовать в качестве уплотнителя, препятствующего также зарождению и распространению трещин. Предварительные результаты показывают, что существует прямая зависимость между прочностью модифицированного бетона и концентрацией выращенных микроорганизмов в нем.
Это исследование имеет и важную экологическую составляющую – увеличение времени жизни снижает общее количество используемого материала, снижая тем самым нагрузку на природные ресурсы планеты в его производстве. Сейчас уже можно говорить о целом направлении в современном материаловедении – создании самозалечивающихся материалов. Так, в Университете Иллинойса, США, создан ряд полимерных композиционных материалов, содержащих нанокапсулы, раскрывающиеся на границе трещины и останавливающие ее развитие.
Следует также упомянуть самокомпактирующийся бетон, не требующий вибрационного воздействия для консолидации состава. Его использование значительно уменьшает энергетические и трудовые расходы. Исходный материал, содержащий высокодисперсные наночастицы поликарбоксилата, ведет себя как густая жидкость при небольшом соотношении цемент-вода.
При высыхании набухающие частицы пластификатора препятствуют образованию пустот и трещин. Самокомпактирующийся бетон обладает еще одним важным преимуществом. Обычный пластифицированный бетон медленно схватывается в зимнее время, что приводит к необходимости дополнительной парообработки конструкций. Наночастицы поликарбоксилата значительно уменьшают количество используемой воды и время засыхания материала, делая необязательной стадию парообработки.
Отметим, наконец, технику нанесения волокнистых покрытий на поверхность формируемых бетонных структур, включающую в себя использование волокнистого углеродного композита с наночастицами оксида кремния. Наночастицы заполняют трещинки на поверхности засыхающего бетона и связывают прочно его с материалом-усилителем. Волокна углерода играют важную роль в замедлении трещино-образования, увеличении времени жизни бетонных структур во влажных условиях и устойчивости к царапинам.
Производство химических добавок постепенно выделяется в самостоятельную отрасль промышленности строительных материалов. И в настоящее время в России количество модифицированных бетонов составляет 60–70 % от общего выпуска. Однако по этому показателю мы заметно отстаем от большинства развитых стран, где он достигает 85–95 %.
Наноматериалы и стали
Усталость материала – одна из основных причин разрушения стальных конструкций, подверженных циклическим нагрузкам (мосты, башни и т.п.). Даже напряжения намного меньшие, чем пороги разрушения, могут приводить при периодическом повторении к уменьшению времени жизни изделия. Современная философия строительства включает в себя три основных превентивных стратегии: резкое уменьшение допустимой нагрузки на конструкцию; значительное сокращение допустимого периода ее эксплуатации; регулярный мониторинг состояния. Все три подхода оказывают значительное влияние на стоимость строительства и эксплуатации конструкции.
Цементную плитку покрывают краской на основе нанокомпозита, что делает ее стойкой к непогоде
Исследования показали, что добавка к стали небольших наночастиц меди сглаживает неоднородность поверхности стали, уменьшая таким образом количество точек, в которых концентрируются напряжения. Дальнейшая разработка таких композиционных материалов позволит существенно увеличить безопасность металлических конструкций при одновременной экономии средств мониторинга их состояния.
Высотные конструкции требуют создания высокопрочных соединений, что предъявляет особые требования к используемым в таких соединениях болтам. Обычно их производят закаливанием стали и ее последующим отпуском. Когда сдвиговой модуль упругости мартенситной стали превышает 1200 МПа, даже очень малые количества водорода, попадающего на межзеренные границы, существенно охрупчают материал. Этот процесс, известный как отложенное разрушение, ограничивает сдвиговой модуль упругости используемых болтов в диапазоне 1000–1200 МПа. При добавке наночастиц ванадия или молибдена, связывающих атомы водорода и улучшающих микроструктуру материала замещением межзеренной цементитной фазы, порог отложенного разрушения стальных изделий значительно повышается.
Сварные швы и прилежащие к ним области часто охрупчаются и могут разрушиться при резкой динамической нагрузке, поэтому прочность сварных швов имеет большое значение для создания надежных металлических конструкций, особенно в сейсмоопасных зонах планеты. Последствия землетрясения в Лос-Анджелесе в 1994 году заставили ученых и конструкторов переосмыслить значение зон сварки.
Современные стратегии дизайна металлических конструкций включают в себя сознательное ослабление определенных зон с целью переноса областей повышенного напряжения как можно дальше от зон сваривания. Однако последние исследования показывают, что небольшие добавки наночастиц магния или кальция в пять раз уменьшают размер зерен в сварных швах, увеличивая существенно их прочность.
Отметим, что перечисленные выше возможности применения наночастиц можно рассматривать не только с точки зрения безопасности, но и с точки зрения экологии: продление жизни конструкций поможет снизить нагрузки на природу, связанные с добычей и транспортировкой руды, производством стали.
Наноматериалы и древесина
В одном из древнейших конструкционных материалов, дереве, природа использовала природные нанотрубки и нанофибриллы, роль которых выполняют лигноцеллюлозные элементы. Их прочность превышает прочность стали как минимум в два раза. Направленное использование лигноцеллюлозных нанофибрилл может стать новой парадигмой в строительстве, поскольку в производстве таких конструкций будут использованы только возобновляемые ресурсы.
В настоящее время в ряде университетов США и Европы проводятся исследования с целью модификации поверхности лигноцеллюлозных волокон, что позволит использовать их в качестве самостерилизующихся, самозаживляемых элементов, в том числе электронных лигноцеллюлозных приборов: как активных, так и пассивных сенсоров, осуществляющих мониторинг структурных нагрузок, температуры, влажности, теплового режима работы приборов. Однако создание лигноцеллюлозной техники – вопрос более отдаленного будущего по сравнению с другими перечисленными возможностями.
Наноматериалы и стекло
Цементную плитку покрывают краской на основе нанокомпозита, что делает ее стойкой к непогоде
Если покрыть стекло тонкой пленкой, содержащей наночастицы диоксида титана, то его можно использовать не только для пассивного частичного пропускания энергии света, но и для расщепления органических загрязнителей воздуха в помещении.
Противопожарные стекла – другой пример использования нанотехнологий в строительстве. Они представляют собой прозрачный слой нанопористого оксида кремния, заключенный между слоями обычного стекла. При пожаре нанопена затвердевает и мутнеет, позволяя стеклу выдерживать гораздо большие тепловые нагрузки и одновременно становясь надежным барьером для теплового потока.
В настоящее время значительное внимание исследователей и конструкторов сосредоточено на создании «умных» стекол, способных контролировать потоки света и тепла внутрь здания. Можно выделить четыре основных подхода к использованию нанотехнологий для решения этой задачи:
- Нанесение спектрально чувствительных тонкопленочных покрытий, не пропускающих инфракрасные световые волны.
- Активные термохромные покрытия, реагирующие на изменение температуры и способные термоизолировать помещение, обеспечивая одновременно приемлемый уровень освещенности.
- Фотохромные покрытия, изменяющие коэффициент пропускания стекла в зависимости от его освещенности.
- Электрохромные покрытия на основе оксида вольфрама, реагирующие изменением прозрачности на изменение приложенного напряжения (становящиеся непрозрачными при прикосновении).
Настоящее и будущее наноматериалов в строительстве
Строительная индустрия, представляющая гигантское поле деятельности с точки зрения применения нанотехнологий, весьма раздроблена: 97 % строительных фирм в Европе насчитывает персонал не более 20 человек. Именно этот фактор ограничивает финансирование направленной научно-исследовательской работы, которая концентрируется на решении конкретных задач из области создания тех или иных конструкций или конструкционных материалов. На сегодняшний день развитие строительного материаловедения определяется во многом успехами в исследованиях смежных дисциплин (например, автомобиле- и авиастроение).
Небольшими размерами строительных фирм обусловлен также и их относительный консерватизм – сравнительно медленное внедрение новых материалов, связанное с неспособностью к крупным инновационным капиталовложениям. Однако даже небольшие изменения в эффективности используемых в строительстве материалов и технологий оборачиваются чрезвычайно большим экономическим, экологическим, энергетическим эффектом. Поэтому обязательной становится выработка рациональной политики государства, направленной на поддержку инновационного развития строительных предприятий.
Перечисленные выше технологии уже находят свое применение в строительной индустрии. Заглянем, однако, немного дальше – на 10–15 лет вперед. Сегодня мы наблюдаем изменение размеров различных сенсоров, способных к автономной работе и к объединению в беспроводные сети.
А теперь представьте подобную сеть, внедренную в дорожное покрытие, конструкцию здания или моста. Подобные «умные» конструкции будут способны осуществлять самомониторинг – нанодатчики температуры, давления, механических напряжений вовремя сообщат в эксплуатационные службы о развитии трещин в материале, позволяя сэкономить большое количество трудо-дней обслуживающего персонала и значительно увеличить безопасность конструкций. Нанодетекторы способны не только контролировать состояние самой конструкции, но и ее окружения. Дома, способные «чувствовать» присутствующих в них людей, или дороги, определяющие нарушение скоростного режима движущегося по ним транспорта, могут послезавтра стать нашей реальностью.
Необходимо отметить, что нанодороги – дороги с применением разнообразных датчиков, улучшенным дорожным покрытием, повышенной степенью безопасности уже начинают строить. Пока запланирован пилотный проект: до 2014 в России будет проложена одна нанодорога, которая будет апробироваться 2 года. Если проект оправдает ожидания, сеть нанодорог в дальнейшем начнёт расширяться.
§4 Настоящее и будущее умных наноматериалов в других сферах жизни и деятельности человека
Биодеградируемые (умные нано-) материалы
Биодеградируемые наноматериалы представляют сегодня в связи с попытками решения современных экологических проблем (защиты окружающей среды от загрязнений) особый интерес.
Среди них уникален упаковочный биоматериал, способный быстро разлагаться на естественные природные компоненты по истечении определенного времени (например, срока хранения продукта), не загрязняя окружающую среду, как это делают металлические и пластиковые упаковки.
В этом направлении британскими учеными реализован весьма оригинальный проект по утилизации сотовых телефонов. В настоящее время мобильные телефоны являются одними из самых выбрасываемых устройств среди потребительской электроники. В Европе пользователи ежегодно избавляются от более чем ста миллионов старых телефонов. Суть инновации заключается в материале, из которого изготавливается корпус телефона. Ученые предлагают заменить его на новый полимер, который способен разлагаться в земле в течение нескольких недель. Кроме того, внутри корпуса, под прозрачным окошком, можно разместить семена растений – например, подсолнуха.
После того, как телефон попадет в землю, семя начнет прорастать, и из телефона вырастет цветок. Новый полимер совершенно нетоксичен и полностью разлагается при попадании на мусорную свалку. Таким образом, по мнению специалистов, удастся решить проблему экологичной утилизации старых сотовых телефонов.
«Умная» одежда
К числу вещей, созданных из "умных материалов" можно отнести так называемую "умную одежду".
Среди огромного количества подобных проектов можно выделить, например, одежду, реагирующую на изменение температуры: когда жарко, одежда пропускает воздух, чтобы охладить своего владельца, а когда холодно – наоборот, уплотняется.
Совсем скоро на прилавках магазинов появится одежда, не впитывающая запах табачного дыма, самоочищающаяся одежда, спортивная одежда с эффектом охлаждения, костюмы и куртки, самостоятельно "подгоняющие" свой размер под размер хозяина, одежда, отгоняющая насекомых, носки, благоухающие цветочными ароматами, рубашки которые не мнутся, даже если их скомкать и надолго запихнуть в чемодан.
"Умные материалы" следующего поколения представляют собой программно-аппаратный комплекс из всевозможных сенсоров, миниатюрных компьютеров и исполнительных наноустройств.
Разработчиками компании Philips был предложен проект по созданию нижнего белья, со встроенными нанодатчиками, отслеживающими нарушения в сердечном ритме своего обладателя. В экстренном случае (например, инфаркт) одежда связывается по беспроводной связи с ближайшей станцией скорой помощи и этим спасает человеку жизнь...
Ферромагнетики
Сегодня уже существует ферромагнитная жидкость, способная принимать определенную форму под действием электромагнитного поля. Ферромагнитная жидкость представляет собой трехкомпонентную систему, состоящую из дисперсионной среды, магнитной фазы и стабилизатора (рис. 1).
Рис. 1 Ферромагнитная жидкость
В качестве дисперсионной среды может выступать любая жидкая среда: вода, масло, различные растворы. В качестве магнитной составляющей обычно используются наночастицы, обладающие сильными ферромагнитными свойствами. Введение же в жидкость стабилизатора, прочно связывающегося с поверхностью магнитных частиц и препятствующего их агрегации, обеспечивает устойчивость такой жидкости. Ферромагнитные жидкости – это совершенно новый обширный класс магнитных материалов, и их, несомненно, ждет широкий спектр применений в технике и промышленности.
Магнитомягкие материалы (т.е. ферромагнетики) используются, например, в электротехнике при изготовлении трансформаторов, электромоторов, генераторов; в слаботочной техники связи и радиотехнике; магнитожесткие материалы (тоже ферромагнетики) применяют при изготовлении жестких магнитов. Постоянные магниты находят широкое применение в электроизмерительных приборах, громкоговорителях, телефонах, в устройствах звукозаписи, магнитных компасах и т.д.
«Умные» композиты и полимеры
"Умные" композиты иначе самоорганизующиеся системы (англ. smart composites) — особым образом структурированные системы, состоящие из подсистем считывания внешнего сигнала (воздействия), его обработки, исполнения некоторого действия (функциональный отклик), механизмов обратной связи, самодиагностирования и самовосстановления (в случае обратимости).
Каждый элемент такой системы имеет определенную функциональность, которая реализуется соответствующими свойствами разрабатываемых с этой целью перспективных материалов. Вся система структурирована таким образом, чтобы выполнить самоконтролируемое «умное» действие, подобное функционированию живого организма, способного «принимать решение и совершать действие».
Известными примерами «умных» материалов, на основе которых можно сконструировать подобную систему, являются:
Например, разработана «умная» полимерная система для контроля водопритоков в нефтедобывающей скважине. Она сама находит место притока воды и блокирует его [15].
Достигнутые в последнее время успехи в области создания функциональных наноматериалов и «умных» систем посредством управления их структурной и композиционной организацией по принципу «снизу–вверх», основанные, в том числе, на разработанных ранее молекулярных, нано- и микроразмерных материалах, являются первым шагом, объединяющим функциональные наноматериалы с логической системой.
Предложено композиты со «встроенными» сенсорами (оптическими, пьезоэлектрическими, акустическими), обеспечивающими мониторинг состояния материала в процессе его производства, испытаний и эксплуатации, относить к «умным» композитам пассивного типа, тогда как композиты, структура которых включает элементы, управляющие поведением конструкции, относят к композитам активного типа. Наиболее известными композитами такого типа являются материалы, содержащие элементы памяти формы или пьезоэлектрические элементы, подавляющие вибрацию [14].
Нанотехнологии в медицине
В настоящее время ведутся работы по созданию биомиметических наноматериалов (биомиметиков) – материалов, подражающих биологическим тканям (рис. 2).
Рис. 2. Биомиметические наноматериалы. (http://www.kti.ru)
Основу всех биомиметиков составляют искусственные белки. Подобно природным белкам, они также состоят из аминокислот, но синтезируются не рибосомой, а человеком. Причем если обычные белки имеют уникальную последовательность из 20 различных аминокислот, то белки для биомиметиков могут ограничиться одной многократно повторяющейся аминокислотой. Так получаются аналоги белков – полиаминокислоты, построенные на основе одного элемента. Затем эти белковые блоки можно соединять между собой, «цеплять» к ним другие молекулы – красители, фотоактивные, электроактивные, люминесцирующие и т.д., – всякий раз получая материалы с новыми уникальными свойствами.
Искусственные биомиметики, сходные по своим качествам с природными белками, также проявляют «разумность» в ответ на слабые внешние раздражители: облучение, тепло, электроток, вредные вещества. На их основе уже сконструированы оптические сенсорные материалы для наноустройств, производящих экологический мониторинг.
Рассматривая отдельный атом в качестве кирпичика или "детальки" нанотехнологи ищут практические способы конструировать из этих деталей материалы с заданными характеристиками. Многие компании уже умеют собирать атомы и молекулы в некие конструкции.
В перспективе, любые молекулы будут собираться подобно детскому конструктору. Для этого планируется использовать нано-роботов (наноботов). Любую химически стабильную структуру, которую можно описать, на самом деле, можно и построить. Поскольку нанобот можно запрограммировать на строительство любой структуры, в частности, на строительство другого нанобота, они будут очень дешевыми. Работая в огромных группах, наноботы смогут создавать любые объекты с небольшими затратами, и высокой точностью.
В медицине проблема применения нанотехнологий заключается в необходимости изменять структуру клетки на молекулярном уровне, т.е. осуществлять "молекулярную хирургию" с помощью наноботов.
Ожидается создание молекулярных роботов-врачей, которые могут "жить" внутри человеческого организма, устраняя все возникающие повреждения, или предотвращая возникновение таковых.
Манипулируя отдельными атомами и молекулами, наноботы смогут осуществлять ремонт клеток.
Прогнозируемый срок создания роботов-врачей, первая половина XXI века.
Рис 3. Нано-роботы в крови человека
В действительности наномедицины пока еще не существует, существуют лишь нанопроекты, воплощение которых в медицину, в конечном итоге, и позволит отменить старение.
Несмотря на существующее положение вещей, нанотехнологии - как кардинальное решение проблемы старения, являются более чем перспективными.
Это обусловлено тем, что нанотехнологии имеют большой потенциал коммерческого применения для многих отраслей, и соответственно помимо серьезного государственного финансирования, исследования в этом направлении ведутся многими крупными корпорациями.
Наноботы или молекулярные роботы могут участвовать (как наряду с генной инженерией, так и вместо нее) в перепроектировке генома клетки, в изменении генов или добавлении новых для усовершенствования функций клетки.
Важным моментом является то, что такие трансформации в перспективе, можно производить над клетками живого, уже существующего организма, меняя геном отдельных клеток, любым образом трансформировать сам организм!
Описание нанотехнологии может показаться притянутым за уши, возможно, потому что ее возможности столь безграничны, но специалисты в области нанотехнологии отмечают, что на сегодняшний день не было опубликовано ни одной статьи с критикой технических аргументов Дрекслера. Никому не удалось найти ошибку в его расчетах. Между тем, инвестиции в этой области (уже составляющие миллиарды долларов) быстро растут, а некоторые простые методы молекулярного производства уже вовсю применяются.
Нанотехнологии могут привести мир к новой технологической революции и полностью изменить не только экономику, но и среду обитания человека. В рамках этой статьи мы рассматриваем лишь перспективность этих технологий для отмены старения людей.
Вполне возможно, что после усовершенствования для обеспечения "вечной молодости" наноботы уже не будут нужны или они будут производиться самой клеткой.
Для достижения этих целей человечеству необходимо решить три основных вопроса:
1. Разработать и создать молекулярных роботов, которые смогут ремонтировать молекулы.
2. Разработать и создать нанокомпьютеры, которые будут управлять наномашинами.
3. Создать полное описание всех молекул в теле человека, иначе говоря, создать карту человеческого организма на атомном уровне.
Рис 4. Наномеханизмы в организме
Основная сложность с нанотехнологией - это проблема создания первого нанобота. Существует несколько многообещающих направлений.
Одно из них заключается в улучшении сканирующего туннельного микроскопа или атомно-силового микроскопа и достижении позиционной точности и силы захвата.
Другой путь к созданию первого нанобота ведет через химический синтез. Возможно, спроектировать и синтезировать хитроумные химические компоненты, которые будут способны к самосборке в растворе.
И еще один путь ведет через биохимию. Рибосомы (внутри клетки) являются специализированными наноботами, и мы можем использовать их для создания более универсальных роботов.
Группа нанотехнологов из института предвидения заявила, что стремительный рост нанотехнологий выходит из-под контроля, но в отличие от Билла Джойа, вместо простого запрета на развитии исследований в этой области, они предложили установить правительственный контроль над исследованиями.
Такой надзор, может предотвратить случайную катастрофу, например когда наноботы создают сами себя (до бесконечности), потребляя в качестве строительного материала все на своем пути, включая заводы, домашних животных и людей.
Рей Курцвейл - к 2020 году появится возможность поместить внутри кровеносной системы миллиарды нанороботов размером с клетку, по оценкам Роберта Фрайтаса, ведущего ученого в области наномедицины, это случится не ранее, чем в 2030-2035 году.
Эти наноботы смогут тормозить процессы старения, лечить отдельные клетки и взаимодействовать с отдельными нейронами. Так ассеблеры практически сольются с нами.
Рис 5. Наноробот
Использование углеродных наноматериалов как биосовместимого модификатора медицинских имплантатов.
Использование нанотехнологий и наноматериалов бесспорно является одним из самых перспективных направлений науки и техники в XXI веке. Учитывая, что в перспективе ожидается тесный контакт человека и других биологических объектов с наноматериалами, изучение вопросов потенциальных рисков их использования представляется первостепенной задачей.
В настоящее время основными областями применения наночастиц в технике, определяемыми их уникальными свойствами, отличными от свойств веществ в обычной (макродисперсной) форме, становятся создание высокопрочных, в том числе композитных, конструкционных материалов, микроэлектроника и оптика (микросхемы, компьютеры, оптические затворы), энергетика (аккумуляторы, топливные элементы, высокотемпературная сверхпроводимость), химическая технология (катализ), охрана окружающей среды (наночипы и наносенсоры).
В пищевой промышленности наноматериалы находят применение в фильтрах для очистки воды, при получении более легких, прочных, более термически устойчивых и обладающих антимикробным действием упаковочных материалов, при обогащении пищевых продуктов микронутриентами. Использование наночипов предполагается для идентификации условий и сроков хранения пищевой продукции и обнаружения патогенных микроорганизмов. В парфюмерно-косметической промышленности наночастицы используются как составная часть солнцезащитных кремов; в сельском хозяйстве - для более эффективной доставки пестицидов и удобрений, для нанокапсулирования вакцин; предполагается использование наночастиц для доставки ДНК в растения для целей генной инженерии.
В медицине наноматериалы находят применение для целей транспорталекарственных средств, в шовных и перевязочных материалах, для создания биосовместимых имплантантатов и др. Область медицинских применений углеродных наноматериалов расширяется с каждым днем. Например, использование углеродных нанотрубок для устранения различных дефектов костей, в том числе связанных с удалением опухолей, травмами, патологией развития. В современной медицине заменяют «утерянную» кость искусственным материалом - имплантатом, что ни в коей мере не способствует костной регенерации. Плохая адгезия костной ткани к ортопедическому имплантату - давняя проблема протезирования. Рост костной ткани на них зачастую не происходит. Этих недостатков лишен биологически инертный титан. Увеличение содержания титана в организме даже на несколько порядков не вызывает ни рака, ни аллергии, ни отравления. Неудивительно, что пористый титан нашел самое широкое применение в медицине, и когда стал вопрос о поиске носителя для имплантатов, исследователи вновь обратились к этому материалу.
Важнейшим вопросом медицинского материаловедения является разработка методов и способов модификации поверхности титана и его сплавов с целью улучшения биологических свойств. В настоящее время имеется большое количество работ, посвященных технологиям получения и исследованию физических свойств различных углеродных покрытий (нанотрубок, алмазоподобных ta-C, нанокомпозитов CNx, а-С:Н и др.). Уникальные свойства каждого типа покрытий позволяют использовать их в качестве защитных в оптической промышленности, электронике, в трибологических системах, в полупроводниковых устройствах и т.д. Помимо уникальных физических свойств, такие покрытия имеют большой потенциал их использования в медицине, о чем свидетельствуют многочисленные публикации, посвященные исследованию их биологических свойств.
Установлено, что структура покрытия, морфология его поверхности, состав, электрические свойства могут оказывать существенное влияние на адгезию клеток, их жизнеспособность, процессы размножения и т.д. Автором предложена технология получения наноуглеродного покрытия на поверхности пористого титана, включающая следующие стадии:
-подготовка поверхности биоимплантата;
-нанесение на подготовленную поверхность состава катализатора, приготовленного по специальной рецептуре для получения особо чистого углеродного наноматериала, пригодного для использования в медицинских целях;
-«выращивание» модифицирующего покрытия – слоя углеродного наноматериала «Таунит»;
-тонкая очистка образовавшегося слоя наноматериала от различных биологически – вредных примесей.Исследование структуры и морфологии покрытия проводится методами электронной микроскопии, наличие примесей в покрытиях определяется рентгеноспектральными методами. Использование любых новых материалов и соединений требует проверки на токсичность. Проблемы нанотоксикологии и биобезопасности используемых наноматериалов в последние годы выходят на одно из первых мест по важности и, соответственно, по числу работ в этой области. Нанотоксикология имеет дело с изучением взаимодействия наноструктур с биологическими системами с акцентом на объяснение связи между физическими и химическими свойствами наноматериалов (такими, как размер, форма, свойства их поверхности, состав и степень агрегации) с индукцией токсического ответа у биологических структур. Токсичность наносистем включает в себя физиологические, физико-химические и молекулярные аспекты.
Известно, что наночастицы могут проникать в организм через кожу, дыхательный тракт, желудочно-кишечный тракт. В прошлые годы большинство нанотоксикологических исследований проводилось с использованием модельных клеточных культур. Однако эти результаты требуют проверки в экспериментах на целом организме. В естественных условиях биологические системы чрезвычайно сложны и взаимодействие наноструктур с такими биологическими компонентами, как молекулы нуклеиновых кислот, белков и клетками в целом, приводят к их уникальному аспределению в тканях организма, возможному иммунному ответу и изменениям в метаболизме.
Заключение
В ходе информационно-поискового исследования удалось установить, что «умные» наноматериалы представляют собой (по сравнению с просто наноматериалами) более сложно организованные нанообъекты, которые в силу этой сложности приобретают уникальные свойства, не присущие просто наноматериалам.
Информационно-поисковое исследование подтвердило гипотезу исследования:
ПЕРВОЕ. «Умные» наноматериалы обладают специфическими чертами, отличающими их от просто наноматериалов:
ВТОРОЕ. Особенности получения умных наноматериалов обусловливают отведение нанохимии в этом процессе главной роли.
Это объясняется тем, что «умные» наноматериалы представляют собой композиты, полимеры, мультифазные системы (например, ферромагнетики) во-первых; а во-вторых, «регуляция» в этих материалах достигается преимущественно за счёт химических процессов, которые носят обратимый характер.
В этой связи конструировать такие материалы, не зная законов химии, вне рамок нанохимии попросту невозможно. Именно в этой связи нанохимии отводится главная роль в разработке «умных» наноматериалов.
Список литературы
Солнечная система. Взгляд со стороны
Спасибо тебе, дедушка!
Свадьба в Малиновке
Учимся ткать миленький коврик
Всему свой срок