С помощью радиоволн можно передавать на расстояния не только звук, но и изображение. Без телевизионной связи сейчас трудно представить нашу цивилизацию. Практически в каждом доме имеется телевизор – источник информации. История создания телевизионного вещания началась в Х1Х веке. Само слово телевидение было введено русским инженером-электриком К. Д. Перским на международном конгрессе в 1900 году. Это слово произошло от греческого слова «теле», что означает «далеко», и латинского – «визо», что означает «смотреть». Возможность видеть события, происходящие в разных уголках земного шара и в нашей Солнечной системе, наблюдать за космическими объектами сделала телевидение незаменимым средством информации и культурного общения всех народов мира. Как же начиналось телевидение?
Вложение | Размер |
---|---|
dokument_microsoft_word_2.docx | 137.72 КБ |
Муниципальное Автономное Образовательное Учреждение с углубленным изучением отдельных предметов
Телевидение
Работу выполнила:
Ученица 11 класса А
МАОУ СОШ №27
Калашникова Валерия
г.Балаково 2014
1.Введение
С помощью радиоволн можно передавать на расстояния не только звук, но и изображение. Без телевизионной связи сейчас трудно представить нашу цивилизацию. Практически в каждом доме имеется телевизор – источник информации. История создания телевизионного вещания началась в Х1Х веке. Само слово телевидение было введено русским инженером-электриком К. Д. Перским на международном конгрессе в 1900 году. Это слово произошло от греческого слова «теле», что означает «далеко», и латинского – «визо», что означает «смотреть». Возможность видеть события, происходящие в разных уголках земного шара и в нашей Солнечной системе, наблюдать за космическими объектами сделала телевидение незаменимым средством информации и культурного общения всех народов мира. Как же начиналось телевидение?
В конце Х1Х века телевизионная лихорадка охватила всю планету. В патентные бюро поступили описания более двадцати пяти проектов – прообразов телевизионных систем. Наиболее интересная система механического телевидения была предложена немецким изобретателем Нипковым. Но механические системы были очень громоздкими. А теперешнее, электронное, телевидение родилось 25 июля 1907 года, когда профессор Петербургского университета Борис Львович Розинг подал заявку в патентные ведомства России, Англии и Германии на изобретенный им способ электрического воспроизведения изображения с помощью электронной развертки. 22 мая 1911 года Б. Л. Розинг впервые в мире демонстрирует изображение четырех параллельных линий, полученное с помощью немеханической приемной системы.
Принципиальными особенностями по сравнению с радиосвязью являются: преобразование изображения в электрические сигналы и наоборот, преобразование электрических сигналов в видеоизображение. Это происходит в специальных устройствах: в первом случае – в иконоскопе, во втором случае – в кинескопе. В современных системах цветного телевидения это сложные радиоэлектронные устройства. Принцип осуществления телевизионной связи представлен блок-схемой.
2.Как происходит телевизионный прием?
Телевидение, несомненно, следует отнести к одному из самых значительных достижений человеческого разума. Наука о телевидении и телевизионная техника представляет собой сложный комплекс сведений и технических решений из самых различных областей знаний – светотехника, световой (геометрической) и электронной оптики, учения о фотоэлектричестве, электровакуумной и импульсной техники, техники радио и проводной связи и других областей знаний.
В основе телевизионной передачи лежат три важнейших физических процесса:
Таким образом, в изобретении и создании важнейших узлов телевизионных систем весьма большой вклад внесли русские ученые П. И. Бахметьев, Б. Л. Розинг, П. В. Шмаков, С. И. Катаев, а также американцы Ч. Дженкинс и В. К. Зворыкин, англичанин Дж. Л. Берд, немец Ф. Шретер, француз Р. Бартлеми, поляк П. Нипков и многие другие.
В октябре 1967 года телевизионное вещание перешло к новому этапу своего развития – начались регулярные передачи цветного телевидения.
Цветное изображение содержит значительно больше полезной информации, чем черно-белое. Цвет повышает художественную ценность изображения, уменьшает его отличие от оригинала, помогает зрителю полнее и быстрее воспринимать содержание изображения, повышает эмоциональность восприятия.
Цветное телевидение появилось, и начало развиваться, когда черно-белое телевидение уже получило широкое распространение – в эксплуатации у населения находились десятки миллионов черно-белых телевизоров. Поэтому перед разработчиками системы цветного телевидения была поставлена задача – создать такую систему, которая была бы совместимой с существующей системой черно-белого телевидения. То есть, чтобы имелась возможность приема передаваемых цветных передач в черно-белом виде существующими черно-белыми телевизорами и наоборот черно-белые программы принимать цветными телевизорами естественно в черно-белом виде.
В процессе решения поставленной задачи было предложено около трех десятков различных систем цветного телевидения. Однако были стандартизованы и получили практическое применение только три системы:
3,Открытие Столетова. Фотоэффект и фотоэлемент
Преобразование оптического сигнала в электрический основывается на явлении фотоэффекта. Впервые прямое влияние света на электричество было обнаружено немецким физиком Г. Герцем во время его опытов с электроискровыми вибраторами. Герц установил, что заряженный проводник, будучи освещен ультрафиолетовыми лучами, быстро теряет свой заряд, а электрическая искра возникает в искровом промежутке при меньшей разности потенциалов. Замеченное явление было описано Герцем в его статьях 1887-1888 годов, но оставлено им без объяснения, так как физическую природу его он не знал. Не сумели правильно объяснить действие света на заряды и немецкий физик Гальвакс, и итальянский физик Риги, и английский физик Лодж, который, демонстрируя в 1894 году опыты Герца в своей знаменитой лекции «Творение Герца», лишь предположил химическую природу явления. И это неудивительно: электрон будет открыт Джозефом Джоном Томсоном лишь в 1897 году, а без упоминания об электроне объяснить фотоэффект невозможно.
Однако 26 февраля 1888 года заслужено считается одним из замечательнейших дней в истории науки и техники и, в частности, телевидения. В этот день великий русский ученый Александр Григорьевич Столетов (1839-1896) блестяще осуществил опыт, наглядно продемонстрировавший внешний фотоэффект и показавший истинную природу и характер влияния света на электричество.
Первые опыты со светом А.Г. Столетов проводил с обычным электроскопом. Освещая электрической дугой Петрова цинковую пластину, заряженную отрицательно и соединенную с электроскопом, он обнаружил, что заряд быстро исчезал. Положительный же заряд не уничтожался, вопреки имевшемуся утверждению Риги.
Для постановки точных опытов Столетов создал экспериментальный прибор, ставший прообразом современных фотоэлементов.
Экспериментальный прибор Столетова
Прибор состоял из двух плоскопараллельных дисков, один из которых был сетчатый и пропускал световые лучи. К дискам подводилось напряжение от 0 до 250В, причем к сплошному диску подключался отрицательный полюс батареи. При освещении сплошного диска ультрафиолетовым светом включенный в цепь чувствительный гальванометр отмечал протекание тока, несмотря на наличие воздуха между дисками. Продолжая опыты, А. Г. Столетов установил зависимость фототока от величины напряжения батареи и интенсивности светового пучка. Дальнейшие работы привели к созданию первого в мире фотоэлемента, представлявшего собой стеклянный баллон с кварцевым окном для пропускания ультрафиолетовых лучей. Внутрь баллона помещались электроды, один из которых был чувствителен к свету, газ откачивался. Современные фотоэлементы отличаются от первого лишь конструкцией электродов и их структурой.
Фотоэффект - явление вырывания электронов с поверхности вещества под действием света - был назван А.Г. Столетовым актиноэлектрическим разрядом. Электронная природа фотоэффекта была показана в 1899 году Дж. Дж. Томсоном и в 1900 году Ленардом, а полное объяснение было дано лишь в 1905 году А. Эйнштейном на основе квантовой теории. Сам же чувствительный к свету фотоэлемент был назван современниками «электрическим глазом».
Как развитие фотоэлемента в 1934 году советским инженером Кубецким и, независимо, американцем Фарнсвортом был сконструирован фотоэлектронный умножитель (ФЭУ), работа которого основана на использовании вторичных электронов, выбиваемых с анодов прибора вначале светом, а затем падающими на аноды первичными электронами. Таким образом, ФЭУ сочетает в себе фотоэлемент и усилитель с коэффициентом усиления в несколько миллионов единиц.
От «электрического глаза» до современного телевизора огромный путь, на котором нужно было решить три задачи: преобразовать изображение в последовательность электрических сигналов, передать их на большое расстояние и сделать обратное преобразование в приемном устройстве. Для передачи сигналов на большие расстояния идеально подошло радио, достигшее в 20 веке высокого уровня развития, а вот по созданию преобразовательных систем путь был пройден длинный и сложный.
4.Принцип отображения изображения
Шведскому химику Йёнсу Якобу Берцелиусу, открывшему в 1817 году элемент селен, и в голову не могло прийти, что его открытие станет первой вехой на пути к телевидению. Между тем, это именно так: спустя 50 лет было замечено особое свойство селена и некоторых других материалов изменять свое электрическое сопротивление при освещении. Чем ярче свет, падающий на селеновую пластинку, тем легче она проводит ток.
Если из маленьких кусочков селена сделать мозаику, соединить проводами каждый кусочек с маленькой лампочкой, спроецировать на мозаику изображение и пустить по проводам ток, то лампочки, соединенные с более освещенными кусочками мозаики, будут гореть ярче, а соединенные с затемненными участками - тусклее. Получим изображение, удаленное от оригинала на длину проводов. Впервые такое решение предложил американец Джордж Кэрри в 1880 году, но оно никогда не было осуществлено: уж больно громоздким было бы сооружение при более или менее значительном количестве элементов мозаики. Нужно было искать какой-то другой путь.
Еще в 1833 году бельгийский физик Жозеф Плато наклеил на периферию диска рисунки, запечатлевшие последовательные позы танцующей балерины, и стал вращать диск перед окошком, в котором помещалось лишь одно изображение. Когда диск вращался с какой-то определенной скоростью, зритель видел в окошке балерину, плавно исполнявшую свой танец. Так была открыта важная особенность человеческого зрения - его инерционность, то есть свойство "видеть" какое-то короткое время изображение, когда его уже на самом деле не существовало: предыдущее изображение балерины "сцеплялось" с последующим без зазора, глаз не успевал заметить промежутка между ними.
Инерционность зрения использовали создатели кинематографа: сидя в кинотеатре, мы не замечаем, что на экране каждую секунду сменяют друг друга 24 неподвижных изображений, а напряженно следим за погоней или сочувствуем страданиям любимой актрисы. А для того, чтобы на экране все было так, как в жизни, нужно, чтобы съемка происходила с той же скоростью 24 кадра в секунду.
5.Механическая развертка
Схема построчной развертки
Чтобы выйти из тупика, изобретатели, работавшие над созданием "дальновидения", тоже воспользовались инерционностью зрения, но пошли еще дальше, применив принцип "развертывания" изображения.
Представьте себе, что вы сидите перед экраном в том же зале, но на экран падает не тот широкий пучок света, который несет изображение кадра целиком, а тонкий луч, который с огромной скоростью пробегает по экрану так же, как взгляд наших глаз пробегает страницу книги, строчку за строчкой. Луч все время меняет свою яркость: в одних местах экрана светлеет, в других темнеет, и из-за инерционности зрения мы увидим то же, что и в кино: изображение во весь экран. А если скорость пробегания луча по экрану намного больше, чем скорость смены кадров, эффект движения тоже сохранится.
Вырисовывалась такая схема телепередачи: изображение оптически проецируется на селеновую пластинку, но не все сразу, а лучом построчно; через пластинку проходит ток, который пульсирует в соответствии с изменением освещенности пластинки; пульсирующий ток передается на источник света, яркость которого меняется при пульсации тока; луч от этого источника «бегает» по экрану с той же скоростью и по такому же шаблону, что и луч, "развертывающий" изображение-оригинал.
Преимущества такой схемы были очевидны, остановка была за малым: перейти от идеи к ее реальному воплощению. В 1884 году немецкий инженер (вернее, будущий инженер - тогда он был еще студентом) Пауль Нипков запатентовал устройство «электрический телескоп», в котором для «развертывания» изображения были применены диски с отверстиями, расположенными по спирали. При вращении диска отверстие у периферии пробегало верхнюю «строчку» изображения, следующее отверстие, расположенное чуть ближе к центру, - вторую строчку и т. д. За один оборот диска «разворачивалось» все изображение.
Когда Пауль Нипков сделал свое открытие, он был студентом, совсем молодым человеком. Патент на изобретение ему удалось получить не сразу. По окончании университета он начал работать в управлении железных дорог, где занимался конструированием сигнальных систем. И многие из его изобретений в этой области также были запатентованы, прежде всего - системы аварийной сигнализации. Но главным его открытием, безусловно, оказалось, как потом называли, механическое телевидение.
Принцип сканирования с помощью диска Нипкова стал основой для телевизионной системы шотландского ученого Джона Бэрда, который в 1926 году впервые продемонстрировал публике передачу изображения и воспроизведения его на экране. Телевизионная система шотландского ученого Джона Бэрда очень отличалась от современного телевидения. Она была основана на механической системе сканирования с использованием металлического диска с отверстиями - изобретения Пауля Нипкова. Достоинство системы Бэрда заключалось в том, что из-за очень малой разрешающей способности экрана можно было передавать телевизионное изображение, используя обычную средневолновую радиосистему. Бэрд мог передавать изображение, используя радиосистему компании BBS. И все это происходило в середине 20-х годов.
Бэрд первым в мире продемонстрировал телевизионное изображение, которое, однако, было размером примерно с почтовую марку. Оно было очень слабым и мерцающим, с очень невысокой разрешающей способностью. Многие ученые, знакомые с системой Бэрда, отмечали, что ее нельзя было усовершенствовать в рамках самой этой системы без изменения фундаментальных технологических принципов работы телевидения.
Любопытно, что Бэйрд назвал свой прибор «телевизором», и это воистину был телевизор (в смысле — передатчик изображения), а не современный «телеприемник». Бэйрд продемонстрировал свой прибор в одном из лондонских универмагов в Сохо. Но изобретателю не удалось добиться передачи полутонов, и на экране были видны лишь силуэты вместо лиц. В 1926 году неутомимый шотландец сделал повторную попытку — на сей раз публика, присутствовавшая на первом публичном телесеансе в истории, была потрясена. Спустя еще два года Бэйрд впервые создал действующую модель цветного телевизора — за 30 лет до его широкого практического использования (в 1929 году экспериментальная телевизионная передача в цвете была проведена и сотрудниками американской компании Bell).
Диски Нипкова оказались удивительно живучими: они использовались в ранних телевизионных передачах вплоть до начала 30-х годов. В дисках было 30 отверстий, что соответствовало 30 строкам развертки, а для того, чтобы получить четкое изображение, необходимо иметь в 20 раз больше строк. Поскольку при этом диск увеличивался до совершенно неприемлемых размеров, все отчетливей проявлялась тупиковасть направления, базировавшегося на механической развертке изображения.
6,Изобретение электронной развертки
Между тем еще в 1907 году российский ученый Борис Львович Розинг предложил использовать для развертки катодно-лучевую трубку, изобретенную за 10 лет до этого немецким физиком Карлом Брауном и применявшуюся в осциллографах. Невесомый электронный луч в этой трубке можно было заставить «пробегать» по «строчкам» изображения с огромной скоростью. Будучи преподавателем Петербургского Технологического института, Борис Львович Розинг запатентовал систему «катодной телескопии», предложив для преобразования электрических сигналов в видимое изображение электронно-лучевую трубку. 9 мая 1911 года Розинг продемонстрировал свое изобретение коллегам и вскоре был удостоен Золотой медали Российского технического общества. Историки телевидения, в том числе и американские, единодушно утверждают, что патент Розинга сыграл основополагающую роль в создании современного телевидения, а его приоритет признан во всем мире.
Принцип работы катодной трубки Розинга стал основой для изобретения более совершенных устройств передачи изображений. В этой трубке вместо механического диска, который, как предвидел Розинг, не мог позволить увеличить качество изображения, то есть разрешение или количество строк на экране, использовался электронный луч (или электронный пучок), который направлялся системой электродов – катодов, отклоняющих электронный пучок на нужное расстояние. Что позволяло засветить лучом мишень с большей точностью и за меньший промежуток времени.
Выдающийся ученый, профессор Розинг разделил участь многих замечательных российских интеллигентов: в 1931 году во время очередной сталинской «чистки» он был арестован и выслан на 3 года в Архангельск, но не дожил до окончания срока и умер в 1933 году от кровоизлияния в мозг. Ему не удалось довести до конца задуманное. Это сделал в Соединенных Штатах его ученик Владимир Зворыкин.
Схема трубки Розинга
7.В.К. Зворыкин
Идея создания телевизора, в котором изображение будет «рисоваться» электронным лучом, возникла у Зворыкина уже во время учебы в Петербургском технологическим институте. Окончил его Владимир Зворыкин в 1912 году, а спустя два года началась Первая мировая война, и молодому радиоспециалисту пришлось надеть военную форму. После Октябрьской революции Зворыкину тоже было не до научных опытов: ему, как бывшему белому офицеру, грозил арест. В 1918 году В. К. Зворыкин уехал из страны, а в 1919 году поселился в США.
Только спустя год после приезда в Америку Зворыкин был принят на работу в фирму Westinghouse Electric. В 1923 году новый сотрудник собрал, весьма далекий от совершенства образец системы электронного телевидения. Однако убедить русского инженера в бесперспективности электронного телевидения оказалось невозможно. Каждый день до позднего вечера он упорно трудился в лаборатории над совершенствованием своего изобретения.
В 1929 году Зворыкин перешел в «Радио корпорацию Америки» и здесь его идеи нашли понимание и необходимую финансовую поддержку. С помощью сотрудников талантливый ученый изготовил катод со сложной фотомозаичной структурой, нашел способ усиления малых токов, возникающих миниатюрных фотоэлементах, решил множество других технических проблем. В результате кропотливых экспериментов в 1931 году была создана работоспособная приемная телевизионная трубка – иконоскоп. Вскоре компания наладила серийное производство аппаратуры, и в 1936 году в США начались первые телевизионные передачи.
8.Кинескоп
Преобразование электромагнитных волн, электрической энергии в световую энергию и, следовательно, в изображение происходит в приемной трубке телевизора — кинескопе.
Кинескоп представляет собой электронно-лучевой прибор для воспроизведения изображения. Черно-белый кинескоп состоит из вакуумного стеклянного баллона 1, электронного прожектора 2, создающего пучок электронов, отклоняющей системы 3 и люминесцентного экрана 4. Отклоняющие системы бывают двух типов: электростатические и магнитные. В современных кинескопах чаще всего встречаются магнитные системы: электронный луч отклоняется под действием магнитного поля. Принятый антенной телевизионный сигнал преобразуется и подается на электрод. Люминофор светится тем сильнее, чем интенсивнее электронный луч, движение которого синхронизировано с движением электронного луча на передающей трубке. Таким образом, на экране кинескопа создается такое же изображение, как и на мозаике иконоскопа. Внимательно всмотритесь в изображение на телевизионном экране: оно состоит из большого количества горизонтальных линий - их называют строками. Каждый кадр содержит ровно 625 строк. За 1/25 долю секунды луч «прорисовывает» на экране 625 строк, затем процесс повторяется. За секунду кадры сменяются 25 раз! Точности ради отметим, что 625 строк луч рисует не подряд, а через строку: нечетные, а затем четные строки. Число строк и количество кадров в течение секунды выбраны не случайно. Здесь учтены два свойства нашего зрения: инерционность и разрешающая способность.
Если бы телевизионные кадры сменялись реже 25 раз в секунду, то изображение на сетчатке исчезло бы раньше, чем на экране появлялся бы следующий кадр. Глаз стал бы фиксировать мелькания. Вы, наверное, видели, как смешно движутся люди в старых кинокартинах. Это объясняется тем, что число кадров в секунду в то время было слишком мало – 16 в секунду.
При проектировании телевизоров расстояние между строками выбирают таким образом, чтобы сидящий на расстоянии 2 м от экрана человек не видел бы отдельных строк. Поскольку при этом весь кадр виден под углом около 100, т. е. 600', а разрешающая способность глаза составляет 1', то строк должно быть более 600 (а их 625)
9,Иконоскоп
Иконоскоп устроен так. В вакуумном стеклянном баллоне 1 укрепляется мозаичный экран 2— слюдяная пластинка, покрытая очень тонким слоем металла. Наружная поверхность этой пластинки представляет собой мозаику из сотен тысяч крошечных зерен серебра, обработанных парами цезия (множество миниатюрных фотоэлементов). С помощью объектива 3 на мозаике фокусируется изображение предмета. Под действием света из фотоэлементов вследствие внешнего фотоэффекта выбиваются электроны, которые летят на заземленный электрод (конструктивно он выполняется вместе с мозаикой, поэтому на рисунке отдельно не показан). Чем ярче свет, тем больше вылетает электронов, тем сильнее электрический импульс. Величина импульса, кроме того, зависит и от количества электронов, заполняющих ячейку. Для восполнения числа потерянных электронов служит электронный прожектор 4, тонкий луч которого с помощью отклоняющей системы 5 обегает построчно всю мозаику и порождает в цепи переменный ток, который затем усиливается. В результате получается точная развернутая во времени электронная копия распределения света и тени на изображении. Этим током в передатчике модулируется электромагнитная волна, которая и излучается в пространство.
10.ЦВЕТНОЕ ТЕЛЕВИДЕНИЕ
В вещательном цветном телевидении наиболее распространены так называемые масочные цветные кинескопы, в которых экран образован неразличимыми глазом узкими полосками или точками люминофоров — красного, зеленого и синего свечения. Три электронных прожектора формируют три сходящихся электронных пучка, каждый из которых возбуждает свечение люминофора только одного цвета. Это обеспечивается пропусканием подходящих к экрану под различными углами пучков через цветоделительную маску со щелевыми или круглыми отверстиями.
Ощущение всей гаммы цветов обеспечивается сложением в глазу излучения трех люминофоров, возбуждаемых в различных пропорциях видеосигналами, и отражающими содержание синей, зеленой и красной составляющих изображения. Электронно-оптическая система цветного кинескопа сводит три пучка в одну точку.
Цветные пучки
В маске есть отверстия и относительно них разноцветные люминофоры располагаются следующим образом (см. рисунок). Эти три точки образуют так называемые триады.
11.Изобретение «анализатора изображения». Файло Фарнсуорт
В это же время в Сан-Франциско над электронным телевидением работал другой американский изобретатель, которого звали Файло Тэйлор Фарнсуорт. Он родился в 1906 году в Юте в семье мормонов и еще в детстве решил стать изобретателем. Он мечтал о том, чтобы так же, как звук, передавать по радио изображение. Судьба была неблагосклонна к нему, он не смог получить основательного образования, но имел хорошие руки и светлую голову. Перебравшись из родного штата в Калифорнию, он уговорил нескольких банкиров ссудить ему денег на создание телевизионной системы. В 1927 году молодой изобретатель разработал передающую электронно-лучевую трубку "анализатор изображения" (image dissector), которую он присоединил к уже существовавшему приемному устройству и пригласил банкиров посмотреть чудо телевидения. Все, что они увидели, было слабое изображение треугольника на светлом фоне. Банкиры не пришли в восторг: они вложили в дело большие деньги и хотели знать, когда они смогут продавать систему и получать прибыль. "Мы когда-нибудь увидим на экране хотя бы доллар?" - спросил один из них. Через несколько месяцев Фарнсуорт показал им четкое изображение доллара, а еще позже - кинематографическую версию шекспировской пьесы "Укрощение строптивой".
В 1930 году к Фарнсуорту приехал Зворыкин. Хозяин продемонстрировал гостю свой анализатор, и тот, к большому удовольствию автора, признал его превосходным. Однако впоследствии, когда Фарнсуорт ознакомился с иконоскопом, он нашел в себе мужество признать, что разработка Зворыкина была лучше, чем его собственная: анализатор не накапливал заряд, при очень хорошей освещенности изображение было прекрасным, но по чувствительности анализатор значительно уступал иконоскопу. Тем не менее, корпорация RCA, видя в Фарнсуорте конкурента, предложила ему продать ей его патентные права. Фарнсуорт был зажат в долговых тисках и пошел на продажу лицензии. Обе передающие трубки применялись в телевизионных системах еще долго, до создания более совершенных устройств: иконоскоп – в передачах кинофильмов, анализатор – в промышленном телевидении.
12.Радиовизионный передатчик.
В 1928 году продемонстрировала “радиовизионный” передатчик W3XK и фирма Jenkins Laboratories, основанная переехавшим из Англии Дженкинсом: 2 июля начались первые регулярные передачи “радиофильмов” на города Восточного побережья США. В том же году в Германии Нипков осуществил первую передачу изображения по проводам, а еще через два года на выставке в Берлине изобретатель обошелся без них.
Однако жители Великобритании еще долго хранили верность Бэйрду. В 1928 году он провел первую трансатлантическую телевизионную передачу, в сентябре следующего начала регулярные телепередачи, вещательная корпорация ВВС, используя, передатчики Бэйрда. Телевидение признали быстро.
13.Разработка телевидения в СССР
Еще одна страна с самого начала очень серьезно отнеслась к новому СМИ — СССР. Почему, объяснять не нужно. И если говорить только о технической стороне дела, то советское телевидение долгое время шло вровень с наиболее передовым западным. Начать с того, что менее чем за два месяца до получения Зворыкиным патента на иконоскоп аналогичную заявку (“на трубку с трехслойной мишенью и накоплением зарядов”) в СССР подал инженер С.И. Катаев, впоследствии — один из ведущих советских специалистов в этой области. И хотя приоритет остался за Зворыкиным, чьи заслуги перед телевидением не подвергали сомнению и у него на родине, этот факт доказывает, что мысль ученых разных стран двигалась параллельно. Кстати, до середины 1930-х годов Зворыкин поддерживал тесные контакты с коллегами на родине — с тем же С. Катаевым, С. Векшинским, Л. Кубецким, А. Шориным и другими. Удивительно другое: авторы некоторых публикаций утверждают, что «отец телевидения» даже сам побывал в Москве в 1933 году, читал лекции и лично общался, в частности с Катаевым. Но затем такое сотрудничество было по понятным причинам свернуто. Вначале советское телевидение было «малострочным» (имеется в виду количество строк развертки), а, кроме того, механическим, с использованием тех же дисков Нипкова. Кроме того, даже после того, как в конце 1931 года началось опытное вещание из Москвы, поступавшая из студии картинка не всегда сопровождалась звуком. Затем начался период так называемого малокадрового электронного телевидения, заметно улучшившего качество изображения. Впервые идею предложил в 1936 году тот же Катаев, и много позже, в 1959-м, с помощью его метода удалось добиться сенсационного успеха: получить снимки обратной стороны Луны.
Пока же, в конце 30-х, Москва обзавелась первым телецентром — его построили на Шаболовке, рядом со знаменитой радиобашней Шухова. На ее вершине советские специалисты установили передающую антенну УКВ-передатчиков изображения и звука, а основное оборудование было закуплено заграницей. Поначалу Московский телецентр обладал единственной студией площадью 300 кв. м и единственной же камерой (фильмы передавали с помощью двух телекинокамер). В марте 1938 года состоялась первая пробная передача, и в новогоднюю ночь все работники центра могли разливать шампанское дважды: МТЦ был торжественно сдан в эксплуатацию. А уже в марте следующего года начались регулярные передачи.
Работы по усовершенствованию телевизионной техники не прекращались даже во время войны. Так, в 1940 году был разработан телевизионный стандарт на 441 строку, годом позже достигнут американский (525 строк), а в 1944 — рекордный 625-строчный. В октябре следующего года правительство приняло постановление перевести на него МТЦ. Реконструкцию осуществляло закрытое КБ во Фрязине, а помогали ему немецкие специалисты, недостатка в которых СССР в 1945 году не испытывал. 3 сентября 1948 года состоялась первая передача в новом стандарте, и впоследствии его приняли все страны с частотой питания в сети 50 герц.
Примерно в то же время был выпущен первый советский массовый телевизор – КВН-49 (первый опытный телевизионный приемник ТК-1 создали на Ленинградском заводе имени Козицкого еще в 1934-м), который народ тут же расшифровал как “купил, включил, не работает”. Объемам продаж КВНа в послевоенные годы могли бы позавидовать многие западные производители.
До появления спутников связи передача сигнала из Москвы в другие населенные пункты осуществлялась по кабельным или радиорелейным линиям связи. Однако использовали и более хитроумные средства, например, установку ретрансляторов на самолетах: именно так, в частности, передавали репортажи с фестиваля 1957 года в Ленинград, Смоленск, Киев и Минск.
14.Перспективы развития телевидения
В мире используют три системы цветного телевидения. Однако в Бразилии, например, наряду со стандартом М (525 строк) применяют видоизмененную систему PAL, отличающуюся от европейской значением цветовой под несущей. В Люксембурге и Монако телецентры работают по стандартам SECAM и PAL, во Вьетнаме - по системам NTSC и SECAM. В Бельгии, Голландии и других западноевропейских странах принята система PAL, но на территориях, где дислоцируются войска США, используется и система NTSC-M.
Применение стандартов разложения и систем цветного телевидения в регионах Земли показано в таблице. Следует иметь в виду, что в Китае и Индии, использующих систему PAL, проживает около 40 % всего населения планеты. Поэтому можно считать, что все три системы цветного телевидения примерно равнозначно применяются всеми странами мира.
Таблица 3 | |||||
Регион | Число стран/людей (млн.), использующих/принимающих в них | ||||
Стандарт разложения | Систему цветного телевидения | ||||
625 | 525 | SECAM | PAL | NTSC | |
Европа | 40/730 | – | 16/370 | 25/360 | – |
Африка | 50/610 | – | 24/205 | 26/405 | – |
Ближний и Средний Восток | 19/200 | – | 9/120 | 10/80 | – |
Азия | 24/2350 | 8/340 | 7/65 | 17/2474 | 8/340 |
Тихий океан | 8/25 | 8/5 | 2/0,5 | 6/24 | 8/5 |
Северная Америка | 2/0,2 | 4/280 | 1/0,1 | 1/0,1 | 4/280 |
Центральная Америка | 2/1 | 26/149 | 2/1 | – | 26/150 |
Южная Америка | 6/60 | 8/240 | 2/0,2 | 4/190 | 8/100 |
Итого | 151/4156 | 54/1014 | 63/762 | 89/3533 | 54/875 |
Хотя в новых телевизорах качество изображения сейчас оценивается весьма высоко, спрос на них (основного источника доходов производителей телевизионного оборудования), случалось, не рос, а в отдельные периоды даже снижался. Надежды, что это положение изменится в связи с ростом числа принимаемых программ при внедрении кабельных и спутниковых распределительных сетей, к сожалению, не оправдались. Отчасти это объясняется увеличением платы за многопрограммность.
В свое время преобладало мнение, кстати, сохранившееся до наших дней, что привлечь телезрителей может только наибольшее подобие изображения передаваемым объектам съемки, повышение физиологического и эмоционального его воздействия. Одним из таких направлений, пока нереализованных, можно считать объемность (стереоскопичность). Наиболее удачной для ее реализации оказалась идея использования известных особенностей зрительного восприятия изображения. Основное его содержание воспринимается в пределах телесного угла 15x10° («изображение наблюдения»). Ему соответствует формат экрана 4:3, применяемый в телевидении, кино, живописи. Реальное же поле зрения существенно больше - 200x125°. Причем при наблюдении основного события в пределах узкого угла наличие изображения в большем угле создает впечатление стереоскопичности. Практически оно сохраняется при уменьшении его до значения 30x20°.
Другой особенностью восприятия изображения считается необходимое расстояние до экрана, которое должно быть не менее двух метров. При меньших расстояниях могут возникать головные боли, особенно от движущихся объектов.
Учитывая сказанное, минимальный размер телевизионного изображения должен быть 1x0,7 м. В результате в новыхстандартах предусматривается увеличение числа строк разложения примерно вдвое (при формате изображения 16:9). Они получили название телевидения высокой четкости (ТВЧ или ТВВЧ). При этом в странах, где используется частота сети 50 Гц (Европа и др.), уже рекомендовано разложение на 1250 строк и 50 полей, а в странах, где частота сети равна 60 Гц (Америка, Япония и др.), - 1125 строк и 60 полей.
Разработка, испытание и частичное использование таких систем вещания, способов передачи и распределения их сигналов ведутся очень интенсивно. Причем в последнее время заметно стремление перейти на цифровые сигналы, позволяющие передавать в одном стандартном канале сигналы нескольких телевизионных программ и другой различной информации. Это будет способствовать также внедрению интерактивных систем, обеспечивающих потребителю получение по запросу интересующих его программ и другой информации.
Об интенсивности работ в этом направлении свидетельствует то, что в отдельные периоды последних лет в международных организациях изучалось до 40 предлагаемых новых стандартов телевидения: варианты систем телевидения повышенного качества, МАС, PAL-плюс и др. Следует сказать, что до начала их практического использования осталось совсем немного времени. Однако поиски новых идей, конечно, продолжаются.
15.Список литературы
Лев Николаевич Толстой. Индеец и англичанин (быль)
Знакомимся с плотностью жидкостей
Афонькин С. Ю. Приключения в капле воды
Растрёпанный воробей
Астрономический календарь. Ноябрь, 2018