Журнал: Мир Химии №2
Журнал для детей и учителей
Мир Химии
Выпуск № 2
от 11 февраля 2013 года
Содержание:
1. Рубрика «Историческое развитие химии»………… стр. 1
2. Рубрика «Химия и медицина»……………………….стр. 6
3. Рубрика «Химия вокруг нас»………………………...стр. 8
4. Рубрика «Химия – сестра логики»………………... стр. 10
5. Рубрика «Поэтическая страница»………………….. стр.13
6. Страница отзывов и предложений…………………. стр.18
7. В создании журнала принимали участие………….. стр.19
Рубрика: «Историческое развитие химии»
Основные понятия химии
Все химические вещества состоят из частиц, классификация которых в химии (и физике!) достаточно сложна; химические превращения связывают, прежде всего, с такими частицами, как атом, молекула, ядро, электрон, протон, нейтрон, атомные и молекулярные ионы, радикалы.
Атом. Принято считать, что атом — это наименьшая химическая частица вещества, хотя, как мы знаем, каждый атом состоит из так называемых “элементарных частиц”. Атом состоит из определенного числа протонов р, нейтронов n и электронов е. Атом — наименьшая частица химического элемента, входящая в состав молекул простых и сложных веществ. Химические свойства элемента определяются строением его атома.
Атом — электронейтральная система взаимодействующих элементарных частиц, состоящая из ядра (образованного протонами и нейтронами) и электронов.
Хотя атомы образуются при взаимодействии всего лишь трех типов элементарных частиц, при их сочетании возникает большой набор разнообразных устойчивых или неустойчивых (радиоактивных!) систем.
При этом выяснилось, что всю совокупность образовавшихся таким образом атомов легко классифицировать всего лишь по одному параметру — заряду ядра z.
Электрон. Первые указания о сложном строении атома были получены при изучении процессов прохождения электрического тока через жидкости и газы. Опыты выдающегося английского ученого М. Фарадея в 30-х гг. XIX в. навели на мысль о том, что электричество существует в виде отдельных единичных зарядов.
Величины этих единичных зарядов электричества были определены в более поздних экспериментах по пропусканию электрического тока через газы (опыты с так называемыми катодными лучами). Было установлено, что катодные лучи — это поток отрицательно заряженных частиц, которые получили название электронов.
Двойственная природа электрона. В основе современной теории строения атома лежат следующие основные положения:
1. Электрон имеет двойственную (корпускулярно волновую) природу. Он может вести себя и как частица, и как волна: подобно частице, электрон обладает определенной массой и зарядом; в то же время движущийся поток электронов проявляет волновые свойства, например характеризуется способностью к дифракции. Длина волны электрона , и его скорость связаны соотношением де Бройля:
где m — масса электрона.
2. Для электрона невозможно одновременно точно измерить координату и скорость. Чем точнее мы измеряем скорость, тем больше неопределенность в координате, и наоборот. Математическим выражением принципа неопределенности служит соотношение
ħ / 2,
где x — неопределенность положения координаты, — погрешность измерения скорости.
3. Электрон в атоме не движется по определенным траекториям, а может находиться в любой части околоядерного пространства, однако вероятность его нахождения в разных частях этого пространства неодинакова.
Атомные орбитали. Пространство вокруг ядра, в котором вероятность нахождения электрона достаточно велика, называют орбиталью.
Орбиталъ — совокупность положений электрона в атоме, т. е. область пространства, в которой наиболее вероятно нахождение электрона.
Квантовые числа. Главное квантовое число n определяет общую энергию электрона на данной ор-битали. Оно может принимать любые целые значения, начиная с единицы (n = 1, 2, 3,...). Под главным квантовым числом, равным , подразумевают, что электрону сообщена энергия, достаточная для его полного отделения от ядра (ионизация атома).
В пределах определенных уровней энергии электроны могут отличаться своими энергетическими подуровнями. Существование различий в энергетическом состоянии электронов, принадлежащих к различным подуровням данного энергетического уровня, отражается побочным (иногда его называют орбитальным)квантовым числом l. Это квантовое число может принимать целочисленные значения от 0 до n - 1 (l = 0, 1, ..., п - 1). Обычно численные значения l принято обозначать следующими буквенными символами:
Значение l: 0 1 2 3 4
Буквенное обозначение: s p d f g
В этом случае говорят о s-, p-, d- ,f-, g-состояниях электронов, или о s-, p-, d- ,f-, g-орбиталях.
Побочное (орбитальное) квантовое число l характеризует различное энергетическое состояние электронов на данном уровне, определяет форму электронного облака, а также орбитальный момент р — момент импульса электрона при его вращении вокруг ядра (отсюда и второе название этого квантового числа — орбитальное)
p = ħ
Таким образом, электрон, обладая свойствами частицы и волны, с наибольшей вероятностью движется вокруг ядра, образуя электронное облако, форма которого в s-, p-, d- ,f-, g-состояниях различна.
Форма электронного облака зависит от значения побочного квантового числа l. Так, если l = 0 (s-орбиталь), то электронное облако имеет сферическую форму (шаровидную симметрию) и не обладает направленностью в пространстве. При l = 1 (р-орбиталь) электронное облако имеет форму гантели, т. е. форму тела вращения, полученного из “восьмерки”. Формы электронных облаков d- ,f- и g-электронов намного сложнее.
Движение электрического заряда (электрона) но замкнутой орбите вызывает появление магнитного поля. Состояние электрона, обусловленное орбитальным магнитным моментом электрона (в результате его движения по орбите), характеризуется третьим квантовым числом — магнитным ml. Это квантовое число характеризует ориентацию орбитали в пространстве, выражая проекцию орбитального момента импульса на направление магнитного поля.
Соответственно ориентации орбитали относительно направления вектора напряженности внешнего магнитного поля магнитное квантовое число ml может принимать значения любых целых чисел, как положительных, так и отрицательных, от -l до +l. включая 0, т.е. всего (2l + 1) значений. Например, при l = 0 ml = 0; при l = 1 ml = -1, 0, +1; при l = 3, например, магнитное квантовое число может иметь семь (2l + 1 = 7) значений: -3, -2, -1, 0, +1, +2,+3.
Таким образом, ml характеризует величину проекции вектора орбитального момента количества движения на выделенное направление. Например, р-орбиталь (“гантель”) в магнитном поле может ориентироваться в пространстве в трех различных положениях, так как в случае l = 1 магнитное квантовое число может иметь три значения: -1, 0, +1. Поэтому электронные облака вытянуты по координатным осям х, у и z, причем ось каждого из них перпендикулярна двум другим.
Для полного объяснения всех свойств атома была выдвинута гипотеза о наличии у электрона так называемого спина. Спин — это чисто квантовое свойство электрона, не имеющее классических аналогов. Спин — это собственный момент импульса электрона, не связанный с движением в пространстве.Для всех электронов абсолютное значение спина всегда равно s = ½. Проекция спина на ось z (магнитное спиновое число ms) может иметь лишь два значения: ms = + ½ или ms = -1/2.
Поскольку спин электрона s является величиной постоянной, его обычно не включают в набор квантовых чисел, характеризующих движение электрода в атоме, и говорят о четырех квантовых числах.
Так как при химических реакциях ядра реагирующих атомов остаются без изменения (за исключением радиоактивных превращений), то физические и химические свойства атомов зависят, прежде всего, от строения электронных оболочек атомов.
Принцип Паули. В атоме не может быть двух электронов, у которых все четыре квантовых числа были бы одинаковы.
Хотя бы одно из квантовых чисел n, l, ml и ms должно обязательно отличаться. Так, электроны с одинаковыми квантовыми числами n, l, и ml должны обязательно различаться проекцией спина. Поэтому в атоме могут быть лишь два электрона с одинаковыми n, l, ml: один ms = + ½, другой ms = -1/2.
Напротив, если проекции спина двух электронов одинаковы, должно отличаться одно из квантовых чисел n, l или ml.
Зная принцип Паули, рассмотрим, сколько электронов в атоме может находиться на определенной “орбите” с главным квантовым числом n. Первой “орбите” соответствует п = 1. Тогда l = 0, ml = 0 и ms может иметь произвольные значения: = + ½, или -1/2. Т. е. при п = 1, таких электронов может быть только два.
В общем случае при любом заданном значении n электроны прежде всего отличаются побочным квантовым числом l принимающим значения от 0 до п - 1. При заданных n и 1 может быть (21 + 1) электронов с разными значениями магнитного квантового числа ml. Это число должно быть удвоено, так как заданным значениям n, l, и ml соответствуют два разных значения проекции спина ms.
Следовательно, максимальное число электронов с одинаковым квантовым числом n выражается суммой
Отсюда ясно, почему на первом энергетическом уровне может быть не больше 2 электронов, на втором — 8, на третьем — 18 и т. д.
Правило Гунда. При данном значении l (т. е. в пределах определенного подуровня) электроны располагаются таким образам, чтобы суммарный спин был максимальным.
Если, например, в трех р-ячейках атома азота необходимо распределить три электрона, то они будут располагаться каждый в отдельной ячейке, т. е. размещаться на трех разных р-орбиталях:
Рассмотрим электронную конфигурацию атома четвертого периода 19К. Первые 18 электронов заполняют следующие орбитали: 1s22s22р63s23р6. Казалось бы, что девятнадцатый электрон атома калия 19К должен попасть на подуровень Зd, которому соответствуют п = 3 и l = 2. Однако на самом деле валентный электрон атома калия располагается на орбитали 4s. Дальнейшее заполнение оболочек после 18-го элемента происходит не в такой последовательности, как в двух первых периодах. Электроны в атомах располагаются в соответствии с принципом Паули и правилом Гунда, но так, чтобы их энергия была наименьшей.
Принцип наименьшей энергии. В атоме каждый электрон располагается так, чтобы его энергия была минимальной (что отвечает наибольшей его связи с ядром).
Энергия электрона в основном определяется главным квантовым числом п и побочным квантовым числом l, поэтому сначала заполняются те подуровни, для которых сумма значений квантовых чисел п и l является наименьшей. Например, энергия электрона на подуровне 4s меньше, чем на подуровне Зd, так как в первом случае n + l = 4 + 0 = 4,аво втором n + l = 3 + 2 = 5; на подуровне 5s (n + l = 5 + 0 = 5) энергия меньше, чем на 4d (n + l = 4 + 2 = 6); на 5р (n + l = 5 + 1 = 6) энергия меньше, чем на 4f (n + l = 4 + 3 = 7) и т. д.
В. М. Клечковский сформулировал общее положение, гласящее, что электрон занимает в основном состоянии уровень не с минимально возможным значением n, а с наименьшим значением суммы n + l.
В том случае, когда для двух подуровней суммы значений n и l равны, сначала идет заполнение подуровня с меньшим значением n. Например, на подуровнях Зd, 4р, 5s сумма значений n и l равна 5. В этом случае происходит сначала заполнение подуровней с меньшими значениями n, т. е. Зd-4р-5s и т. д.
Принцип наименьшей энергии справедлив только для основных состояний атомов. В возбужденных состояниях электроны могут находиться на любых орбиталях атомов, если при этом не нарушается принцип Паули.
Химический элемент. Определенный вид атомов, характеризующийся одинаковым зарядом ядра, называется химическим элементом.
Каждый элемент имеет свое название и свой символ, например элементы гелий Не, медь Сu, фосфор Р и т. д. (см. периодическую таблицу).
Молекула. Следующей, более сложной после атома частицей может рассматриваться молекула.
Молекула — это электронейтральная наименьшая совокупность атомов, образующих определенную структуру посредством химических связей. Молекула — это наименьшая частица данного вещества, обладающая его химическими свойствами. Химические свойства молекулы определяются ее составом и химическим строением.
Химическая формула. Наименование и символы элементов — химическая азбука, позволяющая описать состав любого вещества химической формулой.
Вещество. Молекулы могут содержать атомы только одного элемента, например молекула кислорода содержит два атома кислорода и описывается формулой О2, молекула озона состоит из трех атомов кислорода — О3, молекула белого фосфора — из четырех атомов фосфора Р4, молекула брома — из двух атомов Br2 и т. д.; такие вещества называют простыми веществами.
Вещества, молекулы которых состоят из атомов разных элементов, называют сложными веществами или химическими соединениями, например оксид водорода (вода) Н2О, азотная кислота HNO3, глюкоза С6Н12О6 и т. д.
Согласно современным представлениям из молекул состоят вещества в газообразном и парообразном состоянии. В твердом состоянии из молекул состоят лишь вещества, кристаллическая решетка которых имеет молекулярную структуру. Например, органические вещества, неметаллы (за небольшим исключением), оксид углерода (IV), вода. Большинство же твердых неорганических веществ не имеет молекулярной структуры: их решетка состоит не из молекул, а из других частиц (ионов, атомов); они существуют в виде макротел (кристалл хлорида натрия, друза кварца, кусок меди и др.). Не имеют молекулярной структуры соли, оксиды металлов, алмаз, кремний, металлы.
Химическая связь между молекулами у вещества с молекулярной структурой менее прочная, чем между атомами, поэтому их температуры плавления и кипения сравнительно низкие. У веществ с немолекулярной структурой химическая связь между частицами весьма прочная, поэтому их температуры плавления и кипения высокие. Современная химия изучает свойства микрочастиц (атомов, молекул, ионов и др.) и макротел.
Относительная атомная масса. Относительной атомной массой элемента называют отношение абсолютной массы атома к 1/12 части абсолютной массы атома изотопа углерода 12С. Обозначают относительную атомную массу элемента символом Аr, где r - начальная буква английского слова relative (относительный).
Относительная молекулярная масса. Относительной молекулярной массой Мr называют отношение абсолютной массы молекулы к 1/12 массы атома изотопа углерода 12С. Обратите внимание на то, что относительные массы по определению являются безразмерными величинами.
Таким образом, мерой относительных атомных и молекулярных масс избрана 1/12 часть массы атома изотопа углерода 12С, которая называется атомной единицей массы (а.е.м.):
Абсолютные и относительные массы связаны простыми соотношениями:
Моль. В химии чрезвычайное значение имеет особая величина — количество вещества.
Количество вещества определяется числом структурных единиц (атомов, молекул, ионов или других частиц) этого вещества, оно обозначается обычно и выражается в молях (моль).
Моль — это единица количества вещества, содержащая столько же структурных единиц данного вещества, сколько атомов содержится в 12 г углерода, состоящего только из изотопа 12С.
Число Авогадро. Определение моля базируется на числе структурных единиц, содержащихся в 12 г углерода. Установлено, что данная масса углерода содержит 6,02 1023 атомов углерода. Следовательно, любое вещество количеством 1 моль содержит 6,02 1023 структурных единиц (атомов, молекул, ионов).
Число частиц 6,02 1023 называется числом Авогадро или постоянной Авогадро и обозначается NA:
NA = 6,02 1023 моль-1.
Молярная масса. Для удобства расчетов, проводимых на основании химических реакций и учитывающих количества исходных реагентов и продуктов взаимодействия в молях, вводится понятие молярной массы вещества.
Молярная масса М вещества представляет собой отношение его массы к количеству вещества:
,
где т — масса в граммах, — количество вещества в молях, М — молярная масса в г/моль — постоянная величина для каждого данного вещества.
Значение молярной массы численно совпадает с относительной молекулярной массой вещества или относительной атомной массой элемента.
Классификация химических веществ. Индивидуальные вещества, смеси, растворы. Все вещества подразделяются на смеси и чистые вещества. Смесисостоят из нескольких веществ, каждое из которых сохраняет свои индивидуальные свойства и может быть выделено в чистом виде.
Смеси могут быть гомогенными (однородными) и гетерогенными (неоднородными). Примером гомогенной смеси могут служить растворы, гетерогенной — бетон, смесь сахара и соли и т.д.
Для получения чистых химических используются различные химические и физические методы очистки. Однако на практике любое вещество содержит какое-то количество примесей. При высокой степени очистки содержание последних настолько мало, что практически не влияет на химические и физические свойства веществ.
Химические вещества подразделяются на простые и сложные.
Простые вещества — это вещества, образованные из атомов одного элемента.
Например, простое вещество уголь образовано атомами элемента углерода, простое вещество железо — атомами элемента железа, простое вещество азот — атомами элемента азота.
Понятие “простое вещество” нельзя отождествлять с понятием “химический элемент”. Простое вещество характеризуется определенной плотностью, растворимостью, температурами плавления и кипения и т.п. Эти свойства относятся к совокупности атомов и для разных простых веществ они различны. Химический элемент характеризуется определенным положительным зарядом ядра атома (порядковым номером), степенью окисления, изотопным составом и т.д. Свойства элементов относятся к его отдельным атомам.
Сложные вещества, или химические соединения, — это вещества, образованные атомами разных элементов.
Так, оксид меди (II) образован атомами элементов меди и кислорода, вода — атомами элементов водорода и кислорода.
Сложные вещества состоят не из простых веществ, а из элементов. Например, вода состоит не из простых веществ водорода и кислорода, а из элементов водорода и кислорода. Названия элементов обычно совпадают с названиями соответствующих им простых веществ (исключения: углерод и одно из простых веществ кислорода — озон).
Аллотропия. В настоящее время известно 110 элементов, а число образуемых ими простых веществ около 400. Такое различие объясняется способностью того или иного элемента существовать в виде различных простых веществ, отличающихся по свойствам. Это явление называется аллотропией, а образующиеся вещества — аллотропными видоизменениями или модификациями. Так, элемент кислород образует две аллотропные модификации — кислород и озон; элемент углерод — три: алмаз, графит и карбин; несколько модификаций образует элемент фосфор. Aллотропные формы элемента кислорода отличаются числом атомов в их молекулах. Аллотропные формы элемента углерода — алмаз, графит и карбин отличаются строением их кристаллических решеток.
Таким образом, явление аллотропии вызывается двумя причинами: 1) различным числом атомов в молекуле (например, кислород O2 и озон О3) или 2) образованием различных кристаллических форм.
Валентность элементов в соединениях. Современные представления о природе химической связи основаны на электронной (спиновой) теории валентности, в соответствии с которой атомы, образуя связи, стремятся к достижению наиболее устойчивой (т. е. имеющей наименьшую энергию) электронной конфигурации. При этом электроны, принимающие участие в образовании химических связей, называются валентными.
Согласно спиновой теории, валентность атома определяется числом его неспаренных электронов, способных участвовать в образовании химических связей с другими атомами, поэтому понятно, что валентность всегда выражается небольшими целыми числами.
Степень окисления. Для полярных соединений также часто используют понятие степени окисления, условно считая, что такие соединения состоят только из ионов. Так, в галогеноводородах и воде водород имеет формально положительную валентность, равную 1+, галогены — формально отрицательную валентность 1-, кислород — отрицательную валентность 2-, как это обозначено в формулах Н+F-, Н+Сl-, Н+2О2-.
Понятие степени окисления было введено в предположении о полном смещении пар электронов к тому или другому атому (показывая при этом заряд ионов, образующих ионное соединение). Поэтому в полярных соединениях степень окисления означает число электронов, лишь смещенных от данного атома к атому, связанному с ним.
Совсем формальное понятие “степень окисления” используется при рассмотрении ковалентного соединения, поскольку степень окисления — это условный заряд атома в молекуле, вычисленный исходя из предположения, что молекула состоит только из ионов. В действительности никаких ионов в ковалентных соединениях нет.
Рубрика «Химия и медицина»
Современная химия и медицина.
Химики второй половины XX века продолжили дело предков и очень активно занимались исследованиями живой природы. В пользу этого тезиса может свидетельствовать хотя бы тот факт, что из 39 Нобелевских премий по химии, врученных за последние 20 лет (1977-1996), 21 премия (больше половины! а ведь отраслей химии очень много) была получена за решение химико-биологических проблем.
Это и неудивительно, ведь живая клетка это настоящее царство больших и малых молекул, которые непрерывно взаимодействуют, образуются и распадаются... В организме человека реализуется около 100 000 процессов, причем каждый из них представляет собой совокупность различных химических превращений. В одной клетке организма можетпроисходить примерно 2000 реакций . Все эти процессы осуществляются при помощи сравнительно небольшого числа органических и неорганических соединений. Современная химия характеризуется переходом к изучению сложных элементорганических соединений, состоящих из неорганических и органических остатков. Неорганические части представлены водой и ионами различных металлов, галогенов и фосфора (в основном), органические части представлены белками, нуклеиновыми кислотами, углеводами, липидами и достаточно обширной группой низкомолекулярных биорегуляторов, таких как гормоны, витамины, антибиотики, простагландины, алкалоиды, регуляторы роста и т.д.
Для современных врачей и фармацевтов изучение неорганической химии также имеет большое значение, так как многие лекарственные препараты имеют неорганическую природу. Поэтому медики должны четко знать их свойства: растворимость, механическую прочность, реакционную способность, влияние на человека и окружающую среду.
Современная медицина широко исследует взаимосвязь между содержанием химических элементов в организме и возникновением и развитием различных заболеваний. Оказалось, что особенно чутко организм реагирует на изменение в нем концентрации микроэлементов, т. е.элементов, присутствующих в организме в количестве, меньшем 1 г на 70 кг массы человеческого тела. К таким элементам относятся медь, цинк, марганец, молибден, кобальт, железо, никель.
Из неметаллоидов в живых системах практически всегда можно встретить атомы водорода, кислорода, азота, углерода, фосфора и серы в составе органических соединений и атомы галогенов и бора как в виде ионов, так и в составе органических частиц. Отклонение в содержании большинства из этих элементов в живых организмах часто приводит к достаточно тяжелым нарушениям метаболизма.
Большая часть болезней обусловлена отклонением концентраций какого-либо вещества от нормы. Это связано с тем, что огромное число химических превращений внутри живой клетки происходит в несколько этапов, и многие вещества важны клетке не сами по себе, они являются лишь посредниками в цепи сложных реакций; но, если нарушается какое-то звено, то вся цепь в результате часто перестает выполнять свою передаточную функцию; останавливается нормальная работа клетки по синтезу необходимых веществ.
Доказано, что с изменением концентрации цинка связано течение раковых заболеваний, кобальта и марганца – заболеваний сердечной мышцы, никеля – процессов свертывания крови. Определение концентрации этих элементов в крови позволяет иногда обнаружить ранние стадии различных болезней. Так, изменение концентрации цинка в сыворотке крови связано с протеканием заболеваний печени и селезенки, а концентраций кобальта и хрома — некоторых сердечно-сосудистых заболеваний.
В поддержании нормальной жизнедеятельности организма очень велика рольорганических молекул. Их можно разделить по принципам, заложенным в их конструкцию, на три группы:
биологические макромолекулы (белки, нуклеиновые кислоты и их комплексы), олигомеры(нуклеотиды, липиды, пептиды и др.) и мономеры (гормоны, антибиотики, витамины и многие другие вещества).
Для химии особенно важно установление связи между строением вещества и его свойствами, в частности, биологическим действием. Для этого используется множество современных методов, входящих в арсенал физики, органической химии, математики и биологии.
В современной науке на границе химии и биологии возникло множество новых наук, которые отличаются используемыми методами, целями и объектами изучения. Все эти науки принято объединять под термином "физико-химическая биология". К этому направлению относят:
а) химию природных соединений (биоорганическая и бионеорганическая химия bioorganic chemistry and inorganic biochemistry соответственно);
б) биохимию;
в) биофизику;
г) молекулярную биологию;
д) молекулярную генетику;
е) фармакологию и молекулярную фармакологию
и множество смежных дисциплин. В большей части современных биологических исследований
активно используются химические и физико-химические методы. Прогресс в таких разделах биологии, как цитология, иммунология и гистология, был напрямую связан с развитием химических методов выделения и анализа веществ. Даже такая классическая "чисто биологическая" наука, как физиология, все более активно использует достижения химии и биохимии. В США Национальные Институты Здоровья (National Institutes of health USA) в настоящее время финансируют направления медицинской науки, связанные с чисто физиологическими исследованиями, гораздо меньше, чем биохимические, считая физиологию
"неперспективной и отжившей свое" наукой. Возникают такие, кажущиеся на первый взгляд экзотическими науки, как молекулярная физиология, молекулярная эпидемиология и др. Появились новые виды медико-биологических анализов, в частности, иммуноферментный анализ, с помощью которого удается определять наличие таких болезней, как СПИД и гепатит; применение новых методов химии и повышение чувствительности старых методов позволяет теперь определять множество важных веществ не нарушая целостности кожного покрова пациента, по капле слюны, пота или другой биологической жидкости.
Итак, чем же занимаются все вышеперечисленные науки, являющиеся различными ветвями физико-химической биологии?
Основой химии природных соединений явилась традиционная органическая химия, которая первоначально рассматривалась как химия веществ, встречающихся в живой природе. Современная же органическая химия занимается всеми соединениями, имеющими углеродные (или замещенные гетероаналогами углерода) цепочки, а биоорганическая химия, исследующая природные соединения, выделилась в отдельную отрасль науки. Химия природных соединений возникла в середине XIX века, когда были синтезированы некоторые жиры, сахара и аминокислоты (это связано с работами М.Бертло, Ф.Велера, А.Бутлерова, Ф.Кекуле и др.).
Первые подобные белкам полипептиды были созданы в начале нашего века, тогда же Э.Фишер вместе с другими исследователями внес свой вклад в исследование Сахаров. Развитие исследований по химии природных веществ продолжалось нарастающими темпами вплоть до середины XX века. Вслед за алкалоидами, терпенами и витаминами эта наука стала изучать стероиды, ростовые вещества, антибиотики, простагландины и другие низкомолекулярные биорегуляторы. Наряду с ними химия природных соединений изучает биополимеры биоолигомеры (нуклеиновые кислоты, белки, нуклеопротеиды, гликопротеины, липопротеины, гликолипиды и др.). Основной арсенал методов исследования составляют методы органической
химии, однако для решения структурно-функциональных задач активно привлекаются и
разнообразные физические, физико-химические, математические и биологические методы. Основными задачами, решаемыми химией природных соединений, являются:
а) выделение в индивидуальном состоянии изучаемых соединений с помощью кристаллизации, перегонки, различных видов хроматографии, электрофореза, ультрафильтрации, ультрацешрифугирования, противоточного распределения и т.п.;
б) установление структуры, включая пространственное строение, на основе подходов органической и физической органической химии с применением масс-спектроскопии, различных видов оптической спектроскопии (ИК, УФ, лазерной и др.), рентгеноструктурного анализа ядерного магнитного резонанса, электронного парамагнитного резонанса, дисперсии оптического вращения и кругового дихроизма, методов быстрой кинетики и др.;
в) химический синтез и химическая модификация изучаемых соединений, включая полный синтез, синтез аналогов и производных, с целью подтверждения структуры, выяснения связи строения и биологической функции, получения препаратов, ценных для практического использования;
г) биологическое тестирование полученных соединений in vitro и in vivo.
Крупнейшими достижениями химии природных соединений явились расшифровка строения и синтез биологически важных алкалоидов, стероидов и витаминов, полный химический синтез некоторых пептидов, простагландинов, пенициллинов, витаминов, хлорофилла и др. соединений; установлены структуры множества белков, нуклеотидные последовательности множества генов и т.д. и т.п.
Появление науки биохимии обычно связывают с открытием явления ферментативного катализа и самих биологических катализаторов ферментов, первые из которых были идентифицированы и выделены в кристаллическом состоянии в 20х годах двадцатого столетия. Биохимия изучает химические процессы, происходящие непосредственно в живых организмах и использует химические методы в исследовании биологических процессов. Крупнейшими событиями в биохимии явились установление центральной роли АТФ в энергетическом обмене, выяснение химических механизмов фотосинтеза, дыхания и мышечного сокращения, открытие трансаминирования, установление механизма транспорта веществ через
биологические мембраны и т.п.
Молекулярная биология возникла в начале 50х годов, когда Дж.Уотсон и Ф.Крик расшифровали структуру ДНК, что позволило начать изучение путей хранения и реализации наследственной информации.
Крупнейшие достижения молекулярной биологии открытие генетического кода, механизма биосинтеза белков в рибосомах, основы функционирования переносчика кислорода гемоглобина.
Следующим шагом на этом пути явилось возникновение молекулярной генетики, которая изучает механизмы работы единиц наследственной информации генов, на молекулярном уровне. Одной из актуальнейших проблем молекулярной генетики является установление путей регуляции экспрессии генов перевод гена из активного состояния в неактивное и обратно; регуляция процессов транскрипции и трансляции. Практическим приложением молекулярной генетики явилась разработка методов генной инженерии и генотерапии, которые позволяют модифицировать наследственную информацию, хранящуюся в живой клетке, таким образом, что необходимые вещества будут синтезироваться внутри самой клетки, что позволяет получать биотехнологическим путем множество ценных соединений, а также нормализовать баланс веществ, нарушившийся во время болезни. Суть генной инженерии рассечение молекулы ДНК на отдельные фрагменты, что достигается с помощью ферментов и химических реагентов, с последующим соединением; эта операция производится с целью вставки вэволюционно отлаженную цепь нуклеотидов нового фрагмента гена, отвечающего за синтез нужного нам вещества, вместе с так называемыми регуляторами участками ДНК, обеспечивающими активность "своего" гена. Уже сейчас с помощью генной инженерии получают многие лекарственные препараты, преимущественно белковой природы: инсулин, интерферон, соматотропин и др.
Рубрика «Химия вокруг нас»
Озон и озоновый слой в атмосфере
Озоновый слой - это воздушный слой в верхних слоях атмосферы (стратосфере) состоящий из особой формы кислорода - озона. Молекула озона состоит из трех атомов кислорода (О3). Озоновый слой начинается на высотах около 8 км над полюсами (или 17 км над Экватором) и простирается вверх до высот приблизительно равных 50-ти км. Однако плотность озона очень низкая, и если сжать его до плотности, которую имеет воздух у поверхности земли, то толщина озонового слоя не превысит 3,5 мм. ("Reporting on Climate Change"). Озон образуется, когда солнечное ультрафиолетовое излучение бомбардирует молекулы кислорода (О22 —> О3).
Так как озоновый слой поглощает ультрафиолетовое излучение, то его разрушение приведет к более высоким уровням ультрафиолетового излучения на поверхности земли. Это, в свою очередь, вызовет увеличение случаев рака кожи. Другим следствием повышенного уровня ультрафиолетового излучения станет разогрев поверхности земли и, вследствие этого, изменение температурного режима, режима ветров и дождей и повышение уровня моря.
В 1985 году британские ученые обнародовали данные, согласно которым в предшествующие восемь лет были обнаружены увеличивающиеся каждую весну озоновые дыры над Северным и Южным полюсами.
Ученые предложили три теории, объяснявшие причины этого феномена:
Ученые пришли к заключению, что соединения хлора, называемые хлорфторуглеродами (ХФУ), которые широко использовались в промышленности и в быту, несут ответственность за разрушение озонового слоя земли. Некоторые виды хлорфторуглеродов использовались в качестве охладителей в холодильных установках и кондиционерах. Другие ХФУ применялись для производства поролонов и пенопластов - материалов, широко используемых во многих потребительских товарах, начиная от одноразовой пенопластовой посуды и заканчивая изоляционными материалами. Хлорфторуглероды нашли широкое применение в баллонах для распыления аэрозолей и в качестве веществ для промывания электрооборудования.
В середине сентября 1987 года представители двадцати четырех стран встретились в Монреале и подписали соглашение, по которому обязались сократить вдвое использование озоноразрушаюших ХФУ к 1999-му году. Однако в связи с ухудшающейся ситуацией в 1990-м году в Лондоне были приняты поправки к Монреальскому протоколу. Согласно Лондонским поправкам в список регулируемых ХФУ вошли еще десять веществ и было принято решение прекратить использование ХФУ, галогенов и четырехлористого углерода к 2000-х тысячному, а метилхлороформа - к 2005-му году.(Reporting on Climate Change. p.75)
В Монтреале была принята система, по которой озоноразрушающие вещества подразделялись по следующим критериям: способность разрушать озон и продолжительность их жизни в атмосфере (Reporting on Climate Change. p.73) Ниже приведена таблица этих веществ, взятая из Федерального реестра 1988-го года (английская аббревиатура CFC обозначает «хлорфтороуглерод»):
Озоноразрушающий потенциал некоторых веществ
| Разрушающий потенциал | Продолжительность жизни |
CFC 11 | 1.0 | 75 |
CFC 12 | 1.0 | 111 |
CFC 113 | 0.8 | 90 |
CFC 114 | 1.0 | 185 |
CFC 115 | 0.6 | 380 |
HCFC 22 | 0.05 | 20 |
Метилхлороформ | 0.10 | 6.5 |
Четырехлористый углерод | 1.06 | 50 |
Halon 1211 | 3.0 | 25 |
Halon 1301 | 10.0 | 110 |
Halon 2402 | 6 | не установлено |
Иная проблема, связанная с озоном, но не связанная с разрушением озонового слоя - это фотохимический смог. Озон в нижних слоях атмосферы (тропосфере) является загрязняющим веществом. Он образуется на свету при реакции оксидов азота с углеводородами (см. главу "Взвешенные в воздухе токсичные вещества"). Озон в тропосфере снижает продуктивность сельскохозяйственных культур. Он замедляет фотосинтез в растениях и ослабляет их. По оценкам специалистов, в США ежегодные потери кукурузы, пшеницы, соевых бобов и арахиса вызванные озоном достигают от 1.9 до 4.5 миллиардов долларов. В дополнение озон ускоряет процесс разрушения резиновых изделий, текстиля и покрытий.
Рубрика: «Химия – сестра логики»
Кроссворд «Подгруппа кислорода»
1. Явление существования химического элемента в виде двух или нескольких простых веществ, различных по строению и свойствам.
Свойство некоторых простых химических тел (элементов) являться в двух или нескольких столь различных видоизменениях, что их можно принять за совершенно различные тела, если бы тождество их химической природы не было твердо установлено химическими превращениями. Эти видоизменения, или модификации, известны для многих элементов. Хороший пример тому представляет углерод, являющийся или в виде алмаза, или в виде графита, или, наконец, в виде аморфного угля. Такие же видоизменения бывают у бора и кремния. Понятие было введено в науку Берцелиусом для обозначения изомерных видоизменений элементов.
2. Элемент подгруппы кислорода – твёрдое хрупкое вещество жёлтого цвета. Плохо проводит теплоту и электричество. Имеет атомную массу 32,06.
Этот элемент широко применяется в промышленности и сельском хозяйстве. Используют для борьбы с вредителями, с болезнями винограда и хлопчатника. Применяют для изготовления чёрного пороха, спичек, светящихся составов. В медицине – для лечения кожных заболеваний.
3. Закон: в равных объёмах любых газов, взятых при одной и той же температуре и при одинаковом давлении, содержится одно и то же число молекул.
1 моль любого газа при нормальных условиях занимает объём 22,4 л.
4. Элемент главной подгруппы 4 группы периодической системы, имеющий электронную конфигурацию: 1s22s22p4.
Этот элемент играет исключительно важную роль в природе. При его участии совершается один из важнейших жизненных процессов – дыхание. Важное значение имеет и другой процесс – тление, гниение погибших животных и растений; при этом сложные органические вещества превращаются в более простые, а затем в углекислый газ, воду и азот. Последние вновь поступают в общий круговорот веществ в природе.
5. Объём 1 моль вещества (Vм , л/моль).
Объем, занимаемый одним молем вещества. Он примерно одинаков для всех газов и при стандартных давлений и температуре составляет 22,414 литра. Величина, получающаяся от деления молярной массы на плотность. Характеризует плотность упаковки молекул.
6. Аллотропная модификация кислорода. При нормальных условиях — голубой газ.
Трёхатомная молекула. При нормальных условиях — голубой газ. При сжижении превращается в жидкость цвета индиго. В твёрдом виде представляет собой тёмно-синие, практически чёрные кристаллы. Этот атмосферный газ играет важную роль для всего живого на планете. Образуя слой в стратосфере, он защищает растения и животных от жёсткого ультрафиолетового излучения. Поэтому проблема образования его дыр имеет особое значение. Он эффективно убивает плесень и бактерии.
7. Кислота, имеющая плотность 1,84, хорошо растворяющаяся в воде и является сильным водоотнимающим средством.
Эта концентрированная кислота при обычных условиях со многими металлами не реагирует. При нагревании она взаимодействует почти со всеми металлами за исключением золота, платины, и некоторых других, при этом водород не выделяется. Она вначале окисляет металл до оксида, а потом взаимодействует с оксидом металла.
Рубрика «Поэтическая страница»
ТАНЦЫ ТВЕРДЫХ ТЕЛ.
Все знают: мир из Атомов построен, –
Но был не прост познанья долгий путь, –
Сперва алхимики прошли неровным строем,
Пытаясь вглубь Металлов заглянуть,
Чтоб в Золото расплавить Соль и Ртуть;
А непокорный вековым канонам,
Лавуазье покончил с Флогистоном
И дал дорогу Газовым Законам,
Раскрыв реакций истинную суть.
Но в крепость Кристаллической структуры
Закрыт был вход и не было ключей,
Покуда не проник сквозь амбразуры
Туда пучок Рентгеновских Лучей,
И странный бал открылся для очей:
Четверки собирая для Кадрили,
Там Углерод и Кремний рядом плыли,
Кружа в водовороте ионной пыли,
Где каждый Ион был общий и ничей.
А как Металл – всех недр земных владыка –
Свет отражает и проводит ток?
Все Атомы – от мала до велика –
Часть Электронов отдают в оброк,
И общий образуется поток,
Который, словно Облако, бесплотно
Вдоль Поля устремляется охотно
Сквозь Ионы, упакованные плотно,
Как шарики пинг-понга в коробок.
Керамика – Царица Хрупкой Глины –
Со всей своей родней пришла на бал.
У них у всех, от Шпата до Рубина,
Ионной связью Кислород связал
С такой судьбой смирившийся Металл.
По этой удивительной причине
В Керамике, и в Кварце, и в Рубине
Свободных Электронов нет в помине,
И им не страшен никакой накал.
А принц Стекло, Керамикой рожденный,
Кристально чист, хоть вовсе не Кристалл,
Его зеркальной гладью отраженный
Мгновенно бы Нарцисс себя узнал,
Но Физик его Хаосом назвал.
Да, Хаос есть и в Связях Ковалентных,
И в бесконечных Полимерных лентах,
В их вычурно сплетенных компонентах,
Построенных в торжественный Хорал.
Затем мы входим в зону биосферы,
Мы к Черепу идем от Черепка,
Нас в царство Жизни вводят Полимеры –
К проблемам Пластика и синтезу Белка,
И к сокровенным тайнам ДНК.
Закончен синтез Полиизопрена,
Мы близко подошли к разгадке Гена,
Но может Кость создать из Коллагена
Одна Природа мудрая пока.
А как должна вести себя решетка,
Когда тепло по ней несет волна?
3NkT звучит, конечно, четко,
Но формула по сути неверна,
Энергию не выразит она.
Лишь с помощью Дебаевских Фононов
В едином ритме Квантовых Законов,
Аморфных тел, к прискорбью, не затронув,
Теория Кристаллов создана.
Свободный Электрон нам обещает
Раскрыть секреты свойств Проводника:
Как в проводник Германий превращает
Ничтожная добавка Мышьяка,
Как ток остановить наверняка,
Как охлажденье току помогает,
Как “Допинг” Ферми-уровни меняет,
И как Кристалл на это отвечает,
Когда Температура в нем низка.
Нет совершенства полного в Природе,
Несовершенны Твердые Тела,
Там Атомы кочуют на свободе:
Их никакая сила не смогла
Затиснуть в три Магических Числа.
Там Электроны с Дырками попарно
F-центры возбуждают лучезарно,
Там трещины скрываются коварно
За гладкой напряженностью Стекла.
А солнца белый луч отнюдь не белый:
Как Радуга, раскрашен белый свет,
И каждый Элемент решает смело,
Как выбрать лишь ему присущий цвет,
На все другие наложив запрет.
Хлориду Калия е-минус дарит синий,
Малиновым сверкает Хром в Рубине,
И Сочетанье из Спектральных линий
Определяет дальний свет Планет.
Ферромагнитных свойств ясна причина –
Непарный Электрон в них виноват:
Все Атомы по направленью Спина,
Глядящего вперед или назад,
Построены, как войско на парад.
Во Внешнем Поле, разрушая Стены,
Сливаются соседние Домены.
Так создает Гармонию Вселенной
Ничтожных Сил суммарный результат.
Рубрика «Страница отзывов и предложений»
Уважаемые читатели этого журнала, на этой странице Вы можете оставлять свои отзывы и предложения
1.
2.
3.
4.
5.
В создании журнала принимали участие
Директор журнала: Рогожина Надежда Александровна
Редактор журнала: Довнар Алексей
Вниманию читателей!!!
1.Уважаемые читатели этого Журнала, огромная просьба при пользовании журналом обращаться с ним бережно. Помните, что помимо Вас будут пользоваться и другие читатели данным Журналом.
2. При заполнении страницы отзывы и предложения, просьба, указывать свои имя и фамилию, если эту страницу заполняет взрослый человек, то имя, отчество и фамилию. В последующих номерах нашего Журнала мы будем публиковать ваши отзывы и предложения.
3. Создатели Журнала просят прощения у читателей за то, что не были выпущены все номера Журнала по техническим причинам редакции.
С уважением, Создатели Журнала
Журнал для детей и учителей
Мир Химии
Выпуск № 3 ©
от 1 апреля 2013 года
г. Оренбург
Содержание:
1. Рубрика «Историческое развитие химии»………… стр. 3
2. Рубрика «Химия и медицина»………………………стр. 13
3. Рубрика «Химия вокруг нас»………………………..стр. 15
4. Рубрика «Химия – сестра логики»………………... стр. 18
5. Рубрика «Поэтическая страница»………………….. стр.19
6. Страница отзывов и предложений…………………. стр.20
7. В создании журнала принимали участие………….. стр.22
Рубрика: «Историческое развитие химии»
Химические реакции
Закон сохранения массы и энергии. Масса веществ, вступающих в реакцию равна массе веществ, образующихся в результате реакции.
Взаимосвязь массы и энергии выражается уравнением Эйнштейна:
где Е – энергия; m – масса; с – скорость света в вакууме. Закон сохранения массы дает материальную основу для составления уравнений химических реакций и проведения расчетов по ним.
Закон постоянства состава. Состав соединений молекулярной структуры, т. е. состоящих из молекул, является постоянным независимо от способа получения. Состав же соединений с немолекулярной структурой (с атомной, ионной и металлической решеткой) не является постоянным и зависит от условий получения.
Стехиометрия. Стехиометрия – раздел химии, в котором рассматриваются массовые и объемные отношения между реагирующими веществами. Стехиометрические количества – количества веществ, которые соответствуют уравнению реакции или формуле. Стехиометрические расчеты– расчеты по химическим формулам или уравнениям, а также вывод формул веществ и уравнений реакций.
Химические превращения. Наличие химических формул для всех веществ позволяет изображать химические реакции посредством химических уравнений. Наиболее характерными признаками химической реакции являются следующие внешние изменения реакционной среды: 1) выделение газа; 2) образование осадка; 3) изменение окраски; 4) выделение или поглощение теплоты.
Тепловые эффекты химических реакций. Химическая реакция заключается в разрыве одних и образовании других связей, поэтому она сопровождается выделением или поглощением энергии в виде теплоты, света, работы расширения образовавшихся газов.
По признаку выделения или поглощения теплоты реакции делятся на экзотермические и эндотермические.
Количество теплоты, которое выделяется или поглощается в результате реакций между определенными количествами реагентов, называют тепловым эффектом химической реакции и обычно обозначают символом Q.
Наряду с тепловым эффектом термохимические процессы очень часто характеризуют разностью энтальпий H продуктов реакции и исходных веществ.
Энтальпия Н — это определенное свойство вещества, оно является мерой энергии, накапливаемой веществом при его образовании.
Процессы, протекающие при постоянном давлении, встречаются гораздо чаще, чем те, которые протекают при постоянном объеме, так как большинство из них проводится в открытых сосудах. Доказано, что в химических процессах, протекающих при постоянном давлении, выделившееся (или поглощенное) тепло есть мера уменьшения (или соответственно увеличения) энтальпии реакции H.
При экзотермических реакциях, когда тепло выделяется, Н отрицательно. При эндотермических реакциях (тепло поглощается) и H положительно.
Термохимические уравнения. На первых этапах изучения химии вы часто пользовались равным по абсолютной величине и противоположным по знаку обозначением, например:
где Q — количество выделенной теплоты. Если использовать энтальпию (характеристику энергосодержания системы), то это уравнение следует записать иначе:
В справочных таблицах обычно приводят не значения величины Q, а значения величины H, измеренные при определенных условиях (чаще всего при 298 К); их обозначают H0.
Теплота образования химических соединений. Теплотой образования соединения называется количество теплоты, которое выделяется или поглощается при образовании одного моля химического соединения из простых веществ при стандартных условиях (р = 105 Па, T = 298 К). Она измеряется в кДж/моль. Согласно этому определению, теплота образования простого вещества при стандартных условиях равна О.
Изменение энтальпии Н зависит от давления и температуры. Поэтому для того, чтобы облегчить сравнение термохимических данных для различных реакций, были приняты определенные стандартные состояния (условия).
При написании термохимических уравнений твердое вещество, жидкость и газ обязательно обозначаются символами (тв), (ж) и (г) соответственно, поскольку изменение энтальпии зависит от агрегатного состояния реагирующих веществ и продуктов реакции. Стандартное состояние: для газа — состояние чистого газа при 105 Па; для жидкости — состояние чистой жидкости при 105 Па; для твердого вещества — наиболее устойчивое при давлении 105 Па кристаллическое состояние, например графит у углерода, ромбическая сера у серы и т. п. Стандартное состояние всегда относится к 298 К. Так, например, термохимическое уравнение образования воды из водорода и кислорода записывается следующим образом:
Значение 286 кДж является теплотой образования воды в стандартных условиях и означает, что при образовании 1 моля воды выделяется 286 кДж теплоты:
Отметим, что значение теплоты образования газообразной воды уже будет иным:
Закон Гесса и его следствия. Важнейшим законом, на котором основано большинство термохимических расчетов, является закон Гесса (его называют также законом суммы тепловых эффектов).
Тепловой эффект химической реакции зависит от состояния исходных веществ и продуктов реакции, но не зависит от промежуточных стадий реакций.
Пример: Тепловой эффект реакции окисления углерода в оксид углерода (IV) не зависит от того, проводится ли это окисление непосредственно:
или через промежуточную стадию образования оксида углерода (II):
Из закона Гесса следует, что если известны общий тепловой эффект реакции и тепловой эффект одной из двух ее промежуточных стадий, то можно вычислить тепловой эффект (х) второй промежуточной стадии, т. е. еслито
Это положение очень важно, так как позволяет рассчитывать тепловые эффекты для реакций, не поддающихся непосредственному экспериментальному изучению.
Если теплота образования какого-либо вещества из простых веществ не измерена экспериментально, то для расчета можно воспользоваться значениями Н ряда других соединений; комбинируя эти значения, можно получить Нобр искомого соединения.
Особенно удобно проводить такие расчеты, используя следствия, непосредственно вытекающие из закона Гесса:
Тепловой эффект химической реакции равен разности суммы теплообразования продуктов реакции и суммы теплообразования исходных веществ (суммирование проводится с учетом числа молей веществ, участвующих в реакции, т. е. стехиометрических коэффициентов в уравнении протекающей реакции):
Здесь Qi, Qj — теплоты образования продуктов реакции и исходных веществ соответственно; ni, и nj — стехиометрические коэффициенты в правой и левой частях термохимического уравнения соответственно.
Аналогичным образом можно записать:
где н — изменение энтальпии соответствующей реакции, Hi, Hj— энтальпии образования продуктов реакции и исходных веществ соответственно.
Химическая кинетика трактует качественные и количественные изменения в ходе химического процесса, происходящие во времени. Обычно эту общую задачу подразделяют на две более конкретные:
1) выявление механизма реакции — установление элементарных стадий процесса и последовательности их протекания (качественные изменения);
2) количественное описание химической реакции — установление строгих соотношений, которые могли бы удовлетворительно предсказывать изменения количеств исходных реагентов и продуктов по мере протекания реакции.
Как правило, химическая реакция протекает в несколько промежуточных стадий, которые, складываясь, дают суммарную реакцию.
Элементарная стадия реакции. Кинетическое уравнение химической реакции (с учетом механизма реакции) может быть получено только в результате экспериментального изучения реакции и не может быть выведено из стехиометрического уравнения суммарной реакции. При обсуждении механизмов реакций принято различать реакции по их молекулярности, т. е. по числу молекул, участвующих в каждом элементарном акте взаимодействия. По этому признаку различают реакции мономолекулярные, бимолекулярные и тримолекулярные.
Мономолекулярными называются реакции, в которых элементарный акт представляет собой химическое превращение одной молекулы, которое в общем виде можно описать уравнением
А = В + С.
Бимолекулярные — это такие реакции, элементарный акт в которых осуществляется при столкновении двух молекул
А + В = С.
В тримолекулярных реакциях элементарный акт осуществляется при одновременном столкновении трех молекул
2А + В = С.
Столкновение более чем трех молекул одновременно практически невероятно, поэтому реакции большей молекулярности на практике не обнаружены.
Скорость химической реакции. Основным понятием в химической кинетике является, понятие о скорости реакции:
Скорость химической реакции определяется количеством вещества, прореагировавшего в единицу времени в единице объема.
Если при неизменных объеме и температуре концентрация одного из реагирующих веществ уменьшилась от с1 до с2 за промежуток времени от t1 до t2, то в соответствии с определением скорость реакции за данный промежуток времени равна:
Знак “-” в правой части уравнения появляется т. к. по мере протекания реакции (t2-t1 > 0) концентрация реагентов убывает, следовательно, c2-c1 < О, а так как скорость реакции всегда положительна, то перед дробью следует поставить знак “-”.
Обычно для реакций, протекающих в газах или растворах, концентрации реагентов выражают в моль/л, а скорость реакции — в моль/(л с).
Скорость каждой химической реакции зависит как от природы реагирующих веществ, так и от условий, в которых реакция протекает. Важнейшими из этих условий являются: концентрация, температура и присутствие катализатора. Природа реагирующих веществ оказывает решающее влияние на скорость химической реакции. Так, например, водород с фтором реагирует очень энергично уже при комнатной температуре, тогда как с бромом значительно медленнее даже при нагревании.
Зависимость скорости гомогенных реакций от концентрации (закон действующих масс). Влияние концентрации реагирующих веществ может быть объяснено из представлений, согласно которым химическое взаимодействие является результатом столкновения частиц. Увеличение числа частиц в заданном объеме приводит к более частым их столкновениям, т. е. к увеличению скорости реакции.
Количественно зависимость между скоростью реакции и молярными концентрациями реагирующих веществ описывается основным законом химической кинетики —законом действующих масс.
Скорость химической реакции при постоянной температуре прямо пропорциональна произведению концентраций реагирующих веществ.
Для мономолекулярной реакции скорость реакции определяется концентрацией молекул вещества А:
где k — коэффициент пропорциональности, который называется константой скорости реакции; [А] — молярная концентрация вещества А.
В случае бимолекулярной реакции, ее скорость определяется концентрацией молекул не только вещества А, но и вещества В:
В случае тримолекулярной реакции, скорость реакции выражается уравнением:
В общем случае, если в реакцию вступают одновременно т молекул вещества А и n молекул вещества В, т. е.
тА + пВ = С,
уравнение скорости реакции имеет вид:
Это уравнение есть математическое выражение закона действующих масс в общем виде.
Чтобы понять физический смысл константы скорости реакции, надо принять в написанных выше уравнениях, что [А] = 1 моль/л и [В] = 1 моль/л (либо приравнять единице их произведение), и тогда = k. Отсюда ясно, что константа скорости k численно равна скорости реакции, когда концентрации реагирующих веществ (или их произведение в уравнениях скорости) равны единице.
Общее выражение для скорости химической реакции получено для данной, фиксированной температуры. В общем же случае, поскольку скорость реакции зависит от температуры, закон действующих масс записывается как
где и k являются функциями температуры.
Гомогенные и гетерогенные реакции. Приведенная выше зависимость скорости химической реакции от концентрации реагирующих веществ справедлива для газов и реакций, протекающих в растворах. Она не распространяется на реакции с участием твердых веществ, так как в этих случаях взаимодействие молекул происходит не во всем объеме реагирующих веществ, а лишь на поверхности, от размера которой также зависит скорость реакции. Поэтому реакции в гетерогенных системах протекают значительно сложнее.
Гетерогенной называется система, состоящая из отдельных частиц, находящихся в различных агрегатных состояниях и разграниченных между собой определенными поверхностями раздела. Отдельные однородные части гетерогенной системы называются ее фазами.
Пример: при 0 °С лед, вода и находящийся над ними пар образуют гетерогенную систему из трех фаз: твердой — льда, жидкой — воды и газообразной — водяного пара; кислота и реагирующие с нею кусочки металла образуют систему из трех фаз и т. д.
В гетерогенной системе реакция всегда происходит на поверхности раздела двух фаз, так как только здесь молекулы различных фаз могут сталкиваться между собой. Поэтому скорость гетерогенной реакции зависит не только от рассмотренных ранее факторов, но и от величины поверхности соприкосновения между реагирующими фазами. Всякое увеличение поверхности приводит и к увеличению скорости реакции. Например, растворение металлов в кислотах протекает намного быстрее, если брать металлы в виде порошков.
Константа скорости химической реакции, ее зависимость от температуры. Многочисленные опыты показывают, что при повышении температуры скорость большинства химических реакций существенно увеличивается, причем для реакций в гомогенных системах при нагревании на каждые десять градусов скорость реакции возрастает в 2—4 раза (правило Вант-Гоффа).
Это правило связано с понятием температурного коэффициента скорости реакции и определяется соотношением
При температурах, не очень значительно изменяющихся, для многих реакций в соответствии с правилом
Вант-Гоффа = 2 4.
Значение температурного коэффициента дает возможность рассчитать изменение скорости реакции при увеличении температуры на некоторое число градусов от Т1до Т2 по формуле
Очевидно, что при повышении температуры в арифметической прогрессии скорость реакции возрастает в геометрической.
Энергия активации. С. Аррениус впервые показал, что влияние температуры сводится к увеличению числа активных молекул, т. е. таких молекул, которые в момент столкновения обладают энергией, не меньше определенной для данной реакции величины, называемой энергией активации химической реакции.
Энергия активации — это некоторое избыточное количество энергии (по сравнению со средней), необходимое для вступления молекул в реакцию.
Согласно Аррениусу, константа скорости химической реакции зависит от температуры экспоненциально:
Здесь Е — энергия активации (Дж/моль), R — универсальная газовая постоянная, T — температура в К,
А — константа.
Явление катализа. Одно из наиболее сильных средств воздействия на скорость химических реакций — использование катализаторов.
Катализаторы. Катализатором называется вещество, изменяющее скорость химической реакции, но остающееся неизменным после того, как химическая реакция заканчивается.
Влияние катализаторов на скорость реакции называется катализом. Когда взаимодействующие вещества и катализатор находятся в одном агрегатном состоянии, говорят о гомогенном катализе. При гетерогенном катализе реагирующие вещества и катализатор находятся в различных агрегатных состояниях: обычно катализатор — в твердом, а реагирующие вещества — в жидком или газообразном (пример: в случае окисления SO2 в SO3 в присутствии платины или оксида ванадия (V) происходит гетерогенный катализ).
О механизмах гомогенного и гетерогенного катализа. Механизм действия катализаторов может быть самым разнообразным и, как правило, очень сложным. Основной гипотезой, объясняющей влияние катализатора на скорость реакции, является предположение об образовании промежуточных продуктов при взаимодействии катализатора и реагирующего вещества. Если химическая реакция А + В = АВ без катализатора происходит медленно, а в присутствии катализатора К быстро, то его действие объясняется тем, что катализатор реагирует с одним из исходных веществ, образуя непрочное (как правило, очень реакционноспособное)промежуточное соединение АК (или ВК):
А (В) + К = АК (ВК).
Образовавшееся промежуточное соединение (например. АК) взаимодействует с другим исходным веществом В, образуя конечный продукт реакции АВ и выделяя катализатор К в первоначальном виде:
АК + В = АВ + К.
Приведенная простейшая схема катализа ясно показывает, почему каждая частица катализатора может принимать участие в реакции бесчисленное множество раз. (Правда, “бесчисленное” - только теоретически, потому что практически некоторые вещества, даже в очень малых количествах, могут резко снижать скорость каталитической реакции, уменьшая или полностью уничтожая активность катализатора. Такие вещества называют каталитическими ядами, а само явление снижения активности катализатора -отравлением.) Отсюда ясно, почему катализатор после окончания реакции остается количественно и химически неизменным.
Обратимые реакции. В химических реакциях исходные вещества не всегда полностью превращаются в продукты реакции. Это происходит потому, что по мере накопления продуктов реакции могут создаваться условия для протекания обратимой реакции в противоположном направлении.
Например, если смешать пары иода с водородом при температуре 200 °С, то произойдет реакция:
Однако известно, что йодистый водород уже при нагревании до 180 °С начинает разлагаться на иод и водород:
Понятно, что в этих условиях не произойдет ни полного разложения НI, так как продукты реакции способны вновь реагировать между собой, ни полного образования йодистого водорода. Химические реакции, которые при одних и тех же условиях могут идти в противоположных направлениях, называются обратимыми.
При написании уравнений обратимых реакций вместо знака равенства ставят две противоположно направленные стрелки. Уравнение рассмотренной выше обратимой реакции запишется следующим образом:
Реакцию, протекающую слева направо называют прямой (константа скорости прямой реакции k1), справа налево — обратной (константа скорости обратной реакцииk2).
Химическое равновесие. В обратимых реакциях скорость прямой реакции вначале имеет максимальное значение, а затем уменьшается вследствие уменьшения концентрации исходных веществ, расходуемых на образование продуктов реакции. И наоборот, обратная реакция в начальный момент имеет минимальную скорость, которая увеличивается по мере увеличения концентрации продуктов реакции. Следовательно, скорость прямой реакции уменьшается, а обратной — увеличивается. Наконец, наступает такой момент, когда скорости прямой и обратной реакций становятся равными.
Состояние, в котором скорость обратной реакции становится равной скорости прямой реакции, называется химическим равновесием.
Константа равновесия, степень превращения. Состояние химического равновесия обратимых процессов количественно характеризуется константой равновесия. Так, для обратимой реакции, которую в общем виде можно записать как
согласно закону действующих масс, скорости прямой реакции 1 и обратной 2 соответственно запишутся следующим образом:
В момент достижения состояния химического равновесия скорости прямой и обратной реакций равны:
где К — константа равновесия, представляющая собой отношение констант скорости прямой и обратной
реакций.
В правой части первого уравнения стоят те концентрации взаимодействующих веществ, которые устанавливаются при равновесии, — равновесные концентрации.
Второе уравнение представляет собой математическое выражение закона действующих масс при химическом равновесии.
Этот закон является одним из наиболее важных в химии. Исходя из кинетического уравнения любой химической реакции, можно сразу же записать отношение, связывающее равновесные концентрации реагирующих веществ и продуктов реакции. Если определить константу К экспериментально, измеряя равновесные концентрации всех веществ при данной температуре, то полученное значение можно использовать в расчетах для других случаев равновесия при той же температуре.
Численное значение константы равновесия характеризует тенденцию к осуществлению реакции или, другими словами, характеризует выход данной реакции. Так, при К >> 1 выход реакции велик, так как при этом
Понятно, что при К << 1 выход реакции мал.
Принцип Ле Шателье. Состояние химического равновесия при неизменных внешних условиях может сохраняться сколь угодно долго. В действительности же реальные системы обычно испытывают различные воздействия (изменение температуры, давления или концентрации реагентов), выводящие систему из состояния равновесия. Как только в системе нарушается равновесие, скорости прямой и обратной становятся неодинаковыми и в системе преимущественно протекает процесс, который приводит ее к состоянию равновесия, но уже отвечающему новым условиям. Изменения, происходящие в системе в результате внешних воздействий, определяются принципом подвижного равновесия — принципом Ле Шателье.
Внешнее воздействие на систему, находящуюся в состоянии равновесия, приводит к смещению этого равновесия в направлении, при котором эффект произведенного воздействия ослабляется.
Внешнее воздействие на систему изменяет соотношение между скоростями прямого и обратного процесса, благоприятствуя тому из них, который противодействует внешнему влиянию.
Принцип Ле Шателье универсален, так как применим не только к чисто химическим процессам, но и к физико-химическим явлениям, таким, как кристаллизация, растворение, кипение, фазовые превращения в твердых телах.
Смещение химического равновесия под действием температуры и давления (концентрации). Концентрация. Увеличение концентрации одного из реагирующих веществ сначала приводит к увеличению числа молекул этого вещества. Поскольку число столкновений с участием этих молекул увеличивается, реакция, для которой они являются реагентами, ускоряется. Это приводит к увеличению концентраций реагентов у противоположной реакции и т. д. В результате изменяется концентрация всех веществ, участвующих в химической реакции.
Можно сделать вывод, что при увеличении концентрации одного из реагирующих веществ равновесие смещается в сторону расхода этого вещества, при уменьшении концентрации равновесие смещается в сторону образования этого вещества.
Давление. Влияние давления очень напоминает эффект изменения концентраций реагирующих веществ, но сказывается оно практически только на газовых системах. При повышении давления увеличивается число молекул в единице объема газовой системы. Прямая или обратная реакция, в которой участвует большее количество газообразных веществ, протекает при этом с большей скоростью. В результате этой реакции образуется больше молекул тех веществ, которые участвуют в обратной реакции. Произойдет изменение скорости обратной реакции, и в конце концов будет достигнуто новое состояние равновесия.
При увеличении давления равновесие смещается в сторону уменьшения числа молекул газообразных веществ, т. е. в сторону понижения давления: при уменьшении давления равновесие смещается в сторону возрастания числа молекул газообразных веществ, т. е. в сторону увеличения давления. Если реакция протекает без изменения числа молекул газообразных веществ, то давление не влияет на положение равновесия в этой системе.
Температура. Повышение температуры увеличивает кинетическую энергию всех молекул, участвующих в реакции. Но молекулы, вступающие в реакцию, при которой происходит поглощение энергии (эндотермическая реакция), начинают взаимодействовать между собой быстрее. Это увеличивает концентрацию молекул, участвующих в обратной реакции, и ускоряет ее. В результате достигается новое состояние равновесия с повышенным содержанием продуктов реакции, протекающей с поглощением энергии.
При повышении температуры равновесие смещается в сторону эндотермической реакции, при понижении температуры — в сторону экзотермической реакции.
Рубрика: «Химия и медицина»
Анальгезирующие, жаропонижающие и противовоспалительные средства
Крупная группа лекарственных препаратов – производные салициловой кислоты (орто-гидроксибензойной). Ее можно рассматривать как бензойную кислоту, содержащую в орто-положении гидроксил, либо как фенол, содержащий в орто-положении карбоксильную группу.
Салициловая кислота – сильное дезинфицирующее средство. Ее натриевая соль применяется как болеутоляющее, противовоспалительное, жаропонижающее средство и при лечении ревматизма.
Из производных салициловой кислоты наиболее известен ее сложный эфир-ацетилсалициловая кислота, или аспирин. Аспирин – молекула, созданная искусственно, в природе он не встречается.
При введении в организм ацетилсалициловая кислота в желудке не изменяется, а в кишечнике под влиянием щелочной среды распадается, образуя анионы двух кислот – салициловой и уксусной. Анионы попадают в кровь и переносятся ею в различные ткани. Активным началом, обусловливающим физиологическое действие аспирина, является салицилат-ион.
Ацетилсалициловая кислота обладает противоревматическим,
противовоспалительным, жаропонижающим и болеутоляющим действием. Она также выводит из организма мочевую кислоту, а отложение ее солей в тканях (подагра) вызывает сильные боли. При приеме аспирина могут возникнуть желудочно-кишечные кровотечения, а иногда – аллергия.
Лекарственные вещества были получены за счет взаимодействия карбоксильной группы салициловой кислоты с различными реагентами. Например, при действии аммиака на метиловый эфир салициловой кислоты остаток метилового спирта заменяется аминогруппой и образуется амид салициловой кислоты – салициламид. Он используется как противоревматическое, противовоспалительное, жаропонижающее средство. В отличие от ацетилсалициловой кислоты салициламид в организме с большим трудом подвергается гидролизу.
Салол – сложный эфир салициловой кислоты с фенолом (фенилсалицилат) обладает дезинфицирующими, антисептическими свойствами и употребляется при заболеваниях кишечника.
Замена в бензельном кольце салициловой кислоты одного из водородных атомов на аминогруппу приводит к парааминосалициловой кислоте (ПАСК), которая используется как противотуберкулезный препарат. Распространенными жаропонижающими и болеутоляющими средствами являются производные фенилметилпиразолона – амидопирин и анальгин. Анальгин обладает небольшой токсичностью и хорошими терапевтическими свойствами.
Противомикробные средства
В 30-х годах 20 века широко распространились сульфаниламидные препараты(название произошло от амида сульфаниловой кислоты). В первую очередь это пара-аминобензолсульфамид, или просто сульфаниламид (белый стрептоцид). Это довольно простое соединение – производное бензола с двумя заместителями – сульфамидной группой и аминогруппой. Он обладает высокой противомикробной активностью. Было синтезировано около 10000 различных его структурных модификаций, но лишь около 30 его производных нашли практическое применение в медицине. Существенный недостаток белого стрептоцида – малая растворимость в воде. Но была получена его натриевая соль – стрептоцид, растворимый в воде и применяющийся для инъекций. Сульгин – это сульфаниламид, у которого один атом водорода сульфамидной группы замещен на остаток гуанидина. Он применяется для лечения кишечных инфекционных заболеваний (дизентерии). С появлением антибиотиков бурное развитие химии сульфаниламидов спало, но полностью вытеснить сульфаниламиды антибиотикам не удалось. Механизм действия сульфаниламидов известен. Для жизнедеятельности многих микроорганизмов необходима пара-аминобензойная кислота. Она входит в состав витамина – фолиевой кислоты, которая для бактерий является фактором роста. Без фолиевой кислоты бактерии не могут размножаться. По своей структуре и размерам сульфаниламид близок к пара- аминобензойной кислоте, что позволяет его молекуле занять место последней в фолиевой кислоте. Когда мы вводим в организм, зараженный бактериями, сульфаниламид, бактерии, “не разобравшись”, начинают синтезировать фолиевую кислоту, используя вместо аминобензойной кислоты стрептоцид. В результате синтезируется “ложная” фолиевая кислота, которая не может работать как фактор роста и развитие бактерий приостанавливается. Так сульфаниламиды “обманывают” микробов.
Рубрика: «Химия вокруг нас»
Пища с точки зрения химика
Минеральные вещества
Минеральные вещества не обладают энергетической ценностью, как белки, жиры и углеводы. Однако без них жизнь человека невозможна. Особенно важна их роль в построении костной ткани. Минеральные вещества участвуют в важнейших обменных процессах организма: водно-солевом и кислотно-щелочном. Многие ферментативные процессы в организме невозможны без участия тех или иных минеральных веществ.
Вы когда-нибудь наблюдали, как малыш увлеченно грызет кусок мела или известняка? Что это означает? Всего лишь то, что ребенок самостоятельно, доступными ему средствами, стремится пополнить в организме недостаток кальция. Обычно минеральные вещества делят на две группы. Первая – состоит из макроэлементов, содержащихся в пище в больших количествах. К ним относят кальций, фосфор, магний, натрий, калий, хлор, серу. Вторая – состоит из микроэлементов, концентрация которых в организме невелика. В эту группу входят железо, цинк, йод, фтор, медь, марганец, кобальт, никель.
Макроэлементы
Кальций непосредственно участвует в самых сложных процессах, например таких, как свертывание крови, поддержание необходимого равновесия между возбуждением и торможением коры головного мозга, расщепление резервного полисахарида – гликогена, поддержание должного кислотно-щелочного равновесия внутри организма и нормальной проницаемости стенок кровеносных сосудов. Кроме того, длительный недостаток кальция в пище нежелательно сказывается на возбудимости сердечной мышцы и ритме сокращений сердца. Рацион взрослого человека должен содержать от 0,8 до 1 г кальция. Больше всего кальция (120 %) содержится в молоке и молочных продуктах, например в сыре около 1000 % (% – это миллиграмм вещества на 100 г продукта, условно принимаемого за 100%). Почти 80% всей потребности в кальции удовлетворяется молочными продуктами. Однако в некоторых растительных продуктах содержатся вещества, уменьшающие всасывание кальция. К их числу относятся фитиновые кислоты в злаковых и щавелевая кислота в щавеле и шпинате. В результате взаимодействия этих кислот с кальцием образуются нерастворимые фитаты и оксалаты кальция (соли фитиновой и щавелевой кислот соответственно), которые затрудняют всасывание и усвоение этого элемента. Пища, богатая жирами, также замедляет усвоение кальция. Среди овощей и фруктов высоким содержанием кальция отличаются фасоль, хрен, зелень петрушки, репчатый лук, урюк и курага, яблоки, сушеные персики, груши, сладкий миндаль. При склонности организма к повышенной свертываемости крови и образованию тромбов в кровеносных сосудах количество продуктов, богатых кальцием, в рационе должно быть снижено.
Фосфор входит в состав фосфопротеидов, фосфолипидов, нуклеиновых кислот. Соединения фосфора принимают участие в важнейших процессах обмена энергии. Аденозинтрифосфорная кислота (АТФ) и креатинфосфат являются аккумуляторами энергии, с их превращениями связаны мышление и умственная деятельность, жизнеобеспеченность организма. Потребность в фосфоре для взрослых составляет 1200 мг в день. Относительно много фосфора содержат, %: рыба – 250, хлеб – 200, мясо – 180, еще больше фасоль – 540, горох – 330, овсяная, перловая и гречневая крупы – 320–350, сыр – 500–600. Основное количество фосфора человек потребляет с молоком и хлебом. Обычно усваивается 50–90% фосфора. Если человек употребляет растительные продукты, то в этом случае фосфора поглощается меньше, поскольку он в значительной части находится там в виде трудно усваиваемой фитиновой кислоты. Для правильного питания важно не только абсолютное содержание фосфора, но и соотношение его с кальцием, которое считается оптимальным для взрослого человека – 1:1,5. При избытке фосфора может происходить выведение кальция из костей, а при избытке кальция развивается мочекаменная болезнь.
Магний участвует в формировании костей, регуляции работы нервной ткани, обмене углеводов и энергетическом обмене. По данным Института питания РАМН, потребность в магнии для взрослых – 400 мг в день. Почти половина этой нормы удовлетворяется хлебом и крупяными изделиями. В хлебе содержится 85 % магния, овсяной крупе – 116, ячневой – 96, фасоли – 103 %. Из других источников питания следует отметить орехи – 170–230 % и большинство овощей – 10–40 % магния. В молоке и твороге содержится относительно мало магния – 14 и 23 % соответственно. Однако в отличие от растительных продуктов магний находится в них в легко усвояемой форме – в виде цитрата магния (магниевой соли лимонной кислоты). В связи с этим молочные продукты, потребляемые в значительных количествах, являются существенным источником магния для организма человека. При нормальном питании организм, как правило, полностью обеспечивается магнием. Однако следует помнить, что избыток магния снижает усвояемость кальция. Оптимальное соотношение кальция и магния 1:0,5, что обеспечивается обычным подбором пищевых продуктов. При этом следует учитывать, что больше всего магния содержат продукты растительного происхождения, особенно пшеничные отруби, соевая мука, сладкий миндаль, горох, пшеница, абрикосы, белокочанная капуста.
Натрий участвует в образовании желудочного сока, регулирует выделение почками многих продуктов обмена веществ, активирует ряд ферментов слюнных желез и поджелудочной железы, а также более чем на 30% обеспечивает щелочные резервы плазмы крови. Кроме того, ионы натрия способствуют набуханию коллоидов тканей, это задерживает воду в организме. Содержание природного натрия в пищевых продуктах относительно невелико – 15–80 %; его потребляют не более 0,8 г в день. Но обычно взрослый человек «съедает» натрия больше – 4–6 г в день, в том числе около 2,4 г натрия с хлебом и 1–3 г при подсаливании пищи. Основное количество натрия – около 80% – организм получает при поглощении продуктов с добавлением поваренной соли. В древности человек не добавлял соль в пищу. Поваренную соль в питании начали использовать примерно в последние две тысячи лет, сначала как вкусовую приправу, а затем и как консервирующее средство. Однако до сих пор многие народности Африки, Азии и Севера прекрасно обходятся без пищевой соли. Потребность в натрии существует, но она невелика – около 1 г в день и в основном удовлетворяется обычной диетой без добавления пищевой соли (0,8 г в день). Однако потребность в этом макроэлементе существенно возрастает при сильном потоотделении в жарком климате или при больших физических нагрузках. Вместе с тем установлена прямая зависимость между избыточным потреблением натрия и гипертонией. С наличием натрия в организме связывают также способность тканей удерживать воду. В связи с этим избыточное потребление поваренной соли перегружает почки; при этом страдает и сердце. Вот почему при заболеваниях почек и сердца рекомендуется резко ограничить потребление соли. Для большинства людей совершенно безвредно 4 г натрия в день. Другими словами, помимо 0,8 г естественного натрия можно потреблять еще 3,2 г натрия, т. е. 8 г поваренной соли.
Калий – внутриклеточный элемент, регулирующий кислотно-щелочное равновесие крови; участвует в передаче нервных импульсов и активирует работу ряда ферментов. Считается, что калий обладает защитным действием против нежелательного действия избытка натрия и нормализует давление крови. По этой причине в некоторых странах предложено выпускать поваренную соль с добавлением хлорида калия. В большинстве продуктов содержание калия колеблется в пределах 150–170 %. Заметно больше его лишь в бобовых, например в горохе – 870, фасоли – 1100 %. Много калия содержится в картофеле – 570, яблоках и винограде – около 250 %. Ежедневная потребность взрослого человека в калии составляет 2500–5000 мг и удовлетворяется обычным рационом за счет картофеля, которого в нашей стране потребляется относительно много.
Хлор участвует в образовании желудочного сока, формировании плазмы; активирует ряд ферментов. Естественное содержание хлора в пищевых продуктах колеблется в пределах 2–160 %. Рацион без добавления поваренной соли содержал бы около 1,6 г хлора. Основное его количество (до 90%) взрослые получают с поваренной солью. Потребность в хлоре (около 2 г в день) с избытком удовлетворяется обычным рационом, содержащим 7–10 г хлора; из них около 4 г мы получаем с хлебом и 1,5–4,6 г при подсаливании пищи поваренной солью. Малосоленая пища рекомендуется при ревматизме, гнойных процессах в легких, ожирении, сахарном диабете, аллергических состояниях, переломах костей и, как уже отмечалось, заболеваниях сердечно-сосудистой системы и почек. Кроме того, малосоленая пища полезна при заболеваниях поджелудочной железы, печени и желчевыводящих путей, некоторых болезнях желудка, а также в тех случаях, когда в лечебно-профилактических целях назначаются гормональные препараты.
Сера в организме человека – непременная составная часть клеток, ферментов, гормонов, в частности инсулина, вырабатываемого поджелудочной железой, и серосодержащих аминокислот. Довольно много ее в нервной, соединительной и костной тканях. Считается, что суточный пищевой рацион взрослого здорового человека должен содержать 4–5 г серы. Такое ее количество обычно обеспечивает правильно организованное питание, которое включает мясо, куриное яйцо, овсяную и гречневую крупы, хлебобулочные изделия, молоко, сыры, бобовые и капусту.
Примечание. Продолжение статьи читайте в следующем номере Журнала.
Рубрика: «Химия – сестра логики»
Кроссворд «Теория электролитической диссоциации»
1. Вещества, которые в расплаве или в водном растворе не распадаются на ионы и не проводят электрический ток.
К неэлектролитам относится большинство органических соединений, вещества, в молекулах которых имеются ковалентные неполярные связи.
2. Вещества, которые в водном растворе лишь частично диссоциируют на ионы.
В растворах слабых электролитов непрерывно протекают процессы распада молекул на ионы и объединение ионов в молекулы.
3. Отрицательно заряженные ионы.
4. Полный или частичный распад молекул растворённого вещества на ионы в результате взаимодействия с растворителем.
Обусловливает ионную проводимость растворов электролитов. Диссоциация является обратимым процессом.
5. Отношение числа распавшихся на ионы молекул к общему числу растворённых молекул.
6. Положительно заряженные ионы.
7. Жидкие твёрдые вещества, в которых в сколько-нибудь заметных концентрациях присутствуют ионы, способные перемещаться и проводить электрический ток.
К электролитам относятся кислоты, основания и почти все соли.
8. Электрически заряженные частицы, образующиеся из атомов (молекулы) в результате потери или присоединения одного или нескольких электронов.
Соли, молекулы кислот и оснований в водном растворе распадаются на положительно и отрицательно заряженные частицы – ионы.
9. Вещества, которые при растворении в воде полностью или почти полностью диссоциируют на ионы.
В растворах сильных электролитов преобладает процесс распада веществ на ионы. К сильным электролитам относятся соли, многие минеральные кислоты, основания щелочных и щелочноземельных металлов.
Рубрика «Поэтическая страница»
Электролитическая диссоциация
Истина всегда проста:
Щелочь, соль и кислота
Пропускают ток всегда,
Если их раствор – вода.
Почему же кислород,
Спирт, глюкоза и азот,
Растворенные в воде,
Не пропустят ток нигде?
Потому что вещества –
Неживые существа,
И зависят свойства их,
Сложных и совсем простых,
От строения частиц,
Микромира без границ.
А раствор, где ток бурлит,
Назван был электролит.
* * *
Связь химическую тут
В честь ионов назовут,
Как положено, ионной.
Ток не любит жизни сонной.
Любит он, хитрец коварный,
Где силен союз полярный.
Например, хлор–водород.
Связь полярна, ковалентна,
Но приходит свой черед
Для удачного момента,
И разрушена вся связь.
Это водные ионы,
Презирая все законы,
Как бы в шутку и резвясь,
Разорвали все на части,
И пошел, пошел распад
На ионы разной масти,
Разных знаков, говорят.
* * *
Ни к чему овации
Для диссоциации.
Так процесс был назван тот,
Где распад произойдет.
Посвящается Д. И. Менделееву
Всему присущ порядок и закон,
Какой бы не пришлось касаться темы.
Коснемся химии, и тут уж не резон не знать периодической системы.
Как просто все! Казалось бы во сне открытья совершать, куда уж проще!
И символы откуда-то извне на белого листа ложатся площадь.
Всем кажется, что все само собой.
И все молчат, а жизнь взирает немо,
Как двадцать лет повязан был судьбой ум человека и его проблема!
Как фонари, пронзающие тьму, слова и мысли долго пламенели.
И тайной, неизвестной никому, проникся в озаренье Менделеев!!!
Рубрика: «Страница отзывов и предложений»
Уважаемые читатели этого Журнала, на этой странице Вы можете оставлять свои отзывы и предложения
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
В создании Журнала принимали участие
Директор Журнала: Рогожина Надежда Александровна – учитель химии
Редактор Журнала: Довнар Алексей
Вниманию читателей!!!
1.Уважаемые читатели этого Журнала, огромная просьба при пользовании журналом обращаться с ним бережно. Помните, что помимо Вас будут пользоваться и другие читатели данным Журналом.
2. При заполнении страницы отзывы и предложения, просьба, указывать свои имя и фамилию, если эту страницу заполняет взрослый человек, то имя, отчество и фамилию. В последующих номерах нашего Журнала мы будем публиковать ваши отзывы и предложения.
3. Создатели Журнала просят прощения у читателей за то, что не были выпущены все номера Журнала по техническим причинам редакции.
С уважением, Создатели Журнала
Лев Николаевич Толстой. Индеец и англичанин (быль)
Всему свой срок
Ель
«Яндекс» открыл доступ к нейросети "Балабоба" для всех пользователей
Ребята и утята