Презентация посвящена законам Кеплера.
Вложение | Размер |
---|---|
kepler.pptx | 164.66 КБ |
Слайд 1
Презентация по физике на тему: Законы К еплера Работа ученика 11 класса ГБОУ СОШ №1465 имени Н.Г. Кузнецова Шопорова Максима Учитель физики Л.Ю. КругловаСлайд 2
Оглавление Краткая биография стр.3 Формулировки стр.4-7 Формулы 8-11 Галерея
Слайд 3
Перед рассказом про законы К еплера, хотелось бы рассказать про их создателя Йоганна Кеплера. Иоганн Кеплер немецкий математик, астроном, механик, оптик и астролог, первооткрыватель законов движения планет Солнечной системы и просто молодец. Р одился в 27 декабря 1571 года, Вейль-дер- Штадт . Интерес к астрономии появился у Кеплера ещё в детские годы, когда его мать показала впечатлительному мальчику яркую комету (1577), а позднее — лунное затмение (1580). Первоначально Кеплер планировал стать протестантским священником, но благодаря незаурядным математическим способностям был приглашён в 1594 году читать лекции по математике в университете города Граца. Так начался путь Кеплера, как ученого. Кеплер выпустил около 15 книг по астрономии. Несомненно Кеплер вложил большой вклад в развитие астрономии как XVI века, так и нынешней, ибо его законы лежат в основе многих теорий. Благодаря исследованиям Кеплера, ученый Бонавентура Кавальери разработал «Метод Неделимых». Завершением этого процесса стало открытие математического анализа. 15 ноября 1630 года Йоганн Кеплер умирает в городе Регенсбург от простуды.
Слайд 4
Законы Кеплера Законы Кеплера — три эмпирических соотношения, интуитивно подобранных Иоганном Кеплером на основе анализа астрономических наблюдений Тихо Браге. Описывают идеализированную гелиоцентрическую орбиту планеты. В рамках классической механики выводятся из решения задачи двух тел предельным переходом / → 0, где , — массы планеты и Солнца соответственно. Законы были открыты в конце 16 века, когда шла борьба между геоцентрической системой Птолемея и гелиоцентрической системой Коперника.
Слайд 5
1 - й закон Кеплера «Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце» Форма эллипса и степень его сходства с окружностью характеризуется отношением е=с / а , где с — расстояние от центра эллипса до его фокуса (половина межфокусного расстояния), а — большая полуось. Величина называется эксцентриситемом эллипса. При с=0 , и, следовательно е=0 , эллипс превращается в окружность.
Слайд 6
2-й закон Кеплера(закон площадей) « Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и планету, описывает равные площади» Применительно к нашей Солнечной системе, с этим законом связаны два понятия: перигелий— ближайшая к Солнцу точка орбиты, и афелий — наиболее удалённая точка орбиты. Таким образом, из второго закона Кеплера следует, что планета движется вокруг Солнца неравномерно, имея в перигелии большую линейную скорость, чем в афелии. Каждый год в начале января Земля, проходя через перигелий, движется быстрее, поэтому видимое перемещение Солнца по эклиптике к востоку также происходит быстрее, чем в среднем за год. В начале июля Земля, проходя афелий, движется медленнее, поэтому и перемещение Солнца по эклиптике замедляется. Закон площадей указывает, что сила, управляющая орбитальным движением планет, направлена к Солнцу.
Слайд 7
Третий закон Кеплера (гармонический закон) «Квадраты периодов обращения планет вокруг Солнца относятся, как кубы больших полуосей орбит планет» Справедливо не только для планет, но и для их спутников . Ньютон установил, что грав. п ритяжение планеты определенной массы зависит только от расстояния до неё, а не от других свойств, таких, как состав или температура. Он показал также, что третий закон Кеплера не совсем точен — в действительности в него входит и масса планеты. Поскольку движение и масса оказались связаны, эту комбинацию гармонического закона Кеплера и закона тяготения Ньютона используют для определения массы планет и спутников, если известны их орбиты и орбитальные периоды.
Слайд 8
Формулы к законам Кеплера Первый закон: е=с\а – расстояние от центра до эллипса.
Слайд 9
2-й закон По определению угловой момент L точечной частицы с массой m и скоростью v записывается в виде: . где r — радиус-вектор частицы а p=mv — импульс частицы. Площадь, заметаемая радиус-вектором r за время dt из геометрических соображений равна , где представляет собой угол между направлениями и . По определению . В результате мы имеем . Продифференцируем обе части уравнения по времени поскольку векторное произведение параллельных векторов равно нулю. Заметим, что F всегда параллелен r , поскольку сила радиальная, и p всегда параллелен v по определению. Таким образом можно утверждать, что |L| , а следовательно и пропорциональная ей скорость заметания площади ds\ dt — константа.
Слайд 10
2-ой закон Кеплера Второй закон Кеплера утверждает, что радиус-вектор обращающегося тела заметает равные площади за равные промежутки времени. Если теперь мы возьмём очень малые промежутки времени в момент, когда планета находится в точках A и B (перигелий и афелий), то мы сможем аппроксимировать площадь треугольниками с высотами, равными расстоянию от планеты до Солнца, и основанием, равным произведению скорости планеты на время .
Слайд 11
, где Т1 и Т2 - периоды обращения двух планет вокруг Солнца, а а1 и а2 — длины больших полуосей их орбит . Третий закон Кеплера не совсем точен — в действительности в него входит и масса планеты : ,где М-масса солнца, а м1 и м2- массы планет
Слайд 12
Галерея Первый закон Второй закон
Сочини стихи, Машина
Рисуем "Осенний дождь"
Злая мать и добрая тётя
Браво, Феликс!
Агния Барто. Сережа учит уроки