В работе рассматриваются приемы быстрого счета, показывается роль приемов быстрого счета в практической деятельности.
Вложение | Размер |
---|---|
Приемы быстрого счета | 341.5 КБ |
Российская Федерация
Ямало-Ненецкий автономный округ
Муниципальное образование город Новый Уренгой
Научно-исследовательская работа
«Как считать быстро и правильно?»
Направление: математика
Выполнил: Киселев Антон Григорьевич,
МБОУ СОШ №5,
6 класс
Руководитель: Смирнова Наталья Васильевна,
МБОУ СОШ № 5,
учитель математики
2012 год
Содержание
1. Введение………………………………………………………………………………....3
2. Основная часть……………………………………………………………………..........4
Сбор и статистическая обработка данных……………………………………….4
Приемы быстрого счета…………………………………………….………..........5
3. Заключение……………………………………………………………………………....7
4. Список литературы………..………………………………………………………….....9
Приложение I……………………………………………………………………………...10
Приложение II...………………………………………………………………….………..11
Приложение III…………………………………………………………………………….14
Как считать быстро и правильно?
Введение
Во все времена математика была и остается одним из основных предметов в школе, потому что математические знания необходимы всем людям. Не каждый школьник, обучаясь в школе, знает, какую профессию он выберет в будущем, но каждый понимает, что математика необходима для решения многих жизненных задач: расчеты в магазине, оплата за коммунальные услуги, расчет семейного бюджета и т.д. Кроме того, всем школьникам необходимо сдавать экзамены в 9-м классе и в 11-м классе, а для этого, обучаясь с 1-го класса, необходимо качественно осваивать математику и прежде всего, нужно научиться считать.
Актуальность моего исследования состоит в том, что в наше время все чаще на помощь ученикам приходят калькуляторы, и все большее количество учеников не может считать устно. А ведь изучение математики развивает логическое мышление, память, гибкость ума, приучает человека к точности, к умению видеть главное, сообщает необходимые сведения для понимания сложных задач, возникающих в различных областях деятельности современного человека. Поэтому в своей работе я хочу показать, как можно считать быстро и правильно и что процесс выполнения действий может быть не только полезным, но и интересным занятием.
Цель: изучить приемы быстрого счета, показать необходимость их применения для упрощения вычислений.
В соответствии с поставленной целью были определены задачи:
Исследовать, применяют ли школьники приемы быстрого счета.
Изучить приемы быстрого счета, которые можно использовать, упрощая вычисления.
Составить памятку для учащихся 5-6 классов для применения приемов быстрого счета.
Объект исследования: приемы быстрого счета.
Предмет исследования: процесс вычислений.
Гипотеза исследования: если показать, что применение приемов быстрого счета, облегчает вычисления, то можно добиться того, что повысится вычислительная культура учащихся, и им будет легче решать практические задачи.
При выполнении работы были использованы следующие приемы и методы: опрос (анкетирование), анализ (статистическая обработка данных), работа с источниками информации, практическая работа, наблюдения.
Данная работа относится к прикладным исследованиям, т.к. в ней показывается роль применения приемов быстрого счета для практической деятельности.
Основная часть
Сбор и статистическая обработка данных
Умеете ли вы считать? Вопрос, пожалуй, даже обидный для человека старше трехлетнего возраста. Кто не умеет считать? Каждый ответит, что для этого, особого искусства не требуется. И будет прав. Но вопрос – как считать? Можно считать на калькуляторе, можно считать столбиком в тетради, а можно считать устно, используя приемы быстрого счета. Я очень быстро считаю устно, практически никогда не решаю столбиком, письменно, все потому, что знаю и применяю различные приемы быстрого счета. Из моих одноклассников мало кто умеет считать быстро устно и мне захотелось выяснить, а знают ли они приемы быстрого счета, если нет, то помочь им освоить эти приемы, с этой целью составить для них памятку с приемами быстрого счета.
Для начала, я провел анкетирование в 6-х классах нашей школы. Задавал ребятам простые вопросы. Зачем вообще нужно уметь считать? При изучении каких школьных предметов требуется правильный счет? Знают ли они приемы быстрого счета? Хотели бы научиться быстро считать устно? (Приложение I).
В опросе приняли участие 61 человек. Проанализировав результаты, я сделал вывод, что большинство учеников считает, что умение считать пригодится в жизни и необходимо в школе, особенно при изучении математики, физики, химии, информатики и технологии. Приемы быстрого счета знают несколько учеников и почти все хотели бы научиться быстро считать. (Результаты анкетирования отражены в диаграммах) (Приложение II).
Проведя статистическую обработку данных, я сделал вывод, что не все учащиеся знают приемы быстрого счета, поэтому необходимо сделать для учеников 5-6-х классов памятки с приемами быстрого счета, чтобы использовать их при выполнении вычислений.
Приемы быстрого счета.
Изучив литературу по данной теме [1], [2], [3], [4], [5], мною был сделан отбор, из множества приемов быстрого счета, я выбрал приемы умножения и деления, которые просты в понимании и применении для любого ученика. Эти приемы я и включил в памятку (Приложение III), которая будет полезна для учеников 5-6-х классов.
Умножение и деление числа на 4.
Чтобы умножить число на 4, нужно его дважды умножить на 2.
Например:
26·4=(26·2)·2=52·2=104;
417·4=(417·2)·2=834·2=1668.
Чтобы разделить число на 4, нужно его дважды разделить на 2.
Например:
324:4=(324:2):2=162:2=81.
Умножение и деление числа на 5.
Чтобы умножить число на 5, нужно его умножить на 10 и разделить на 2.
Например:
236·5=(236·10):2=2360:2=1180.
Чтобы разделить число на 5, нужно умножить 2 и разделить на 10, т.е. отделить запятой последнюю цифру.
Например:
236:5=(236·2):10=472:10=47,2.
Умножение числа на 1,5.
Чтобы умножить число на 1,5, нужно к исходному числу прибавить его половину.
Например:
34·1,5=34+17=51;
146·1,5=146+73=219.
Умножение числа на 9.
Чтобы умножить число на 9, нужно к нему приписать 0 и отнять исходное число.
Например:
72·9=720-72=648.
Умножение на 25 числа, делящегося на 4.
Чтобы умножить на 25 число, делящееся на 4, нужно его разделить на 4 и получившееся число умножить на 100.
Например:
124·25=(124:4)·100=31·100=3100.
Умножение двузначного числа на 11
При умножении двузначного числа на 11, нужно между цифрой единиц и цифрой десятков вписать сумму этих цифр, причем, если сумма цифр больше 10, то единицу нужно прибавить к старшему разряду (первой цифре).
Например:
23·11=253, т.к. 2+3=5, поэтому между 2 и 3 ставим цифру 5;
57·11=627, т.к. 5+7=12, цифру 2 ставим между 5 и 7, а к 5 прибавляем 1, вместо 5 пишем 6.
Умножение двузначного числа на 101.
Для того, чтобы число умножить на 101, нужно приписать данное число к самому себе.
Например:
34·101 = 3434.
Поясним, 34·101 = 34·100+34·1=3400+34=3434.
Возведение в квадрат двузначного числа, оканчивающегося на 5.
Чтобы возвести в квадрат двузначное число, оканчивающееся на 5, нужно цифру десятков умножить на цифру, большую на единицу, и к полученному произведению приписать справа число 25.
Например:
352=1225, т.е. 3·4=12 и к 12 приписываем 25, получаем 1225.
Возведение в квадрат двузначного числа, начинающегося на 5.
Для возведения в квадрат двузначного числа, начинающегося на пять, нужно прибавить к 25 вторую цифру числа и приписать справа квадрат второй цифры, причем если квадрат второй цифры – однозначное число, то перед ним надо приписать цифру 0.
Например:
522= 2704, т.к. 25+2=28 и 22=04;
582= 3364, т.к. 25+8=33 и 82=64.
Заключение
Немецкого ученого Карла Гаусса называли королем математиков. Его математическое дарование проявилось уже в детстве. Однажды в школе (Гауссу было 10 лет) учитель предложил классу сложить все числа от 1 до 100. Пока он диктовал задание, у Гаусса уже был готов ответ. На его грифельной доске было написано: 101·50=5050. Как он вычислил? Очень просто – он применил прием быстрого счета, он складывал первое число с последним, второе с предпоследним и т.д. таких сумм всего 50 и каждая равна 101, поэтому он смог почти мгновенно дать правильный ответ. 1+2+…+50+51+...+99+100=(1+100)+(2+99)+…+(50+51)=101·50=5050. Этот пример, лучше всего показывает, что можно считать быстро и правильно практически устно всем школьникам, для этого всего лишь нужно знать приемы быстрого счета.
Результаты своей работы я оформил в памятку, которую предложу всем своим одноклассникам, также размещу её на школьном тематическом стенде «Это интересно!». Возможно, что с первого раза не у всех получится быстро, с ходу выполнять вычисления с применением этих приемов, даже если сначала не получится использовать прием, показанный в памятке, ничего страшного, просто нужна постоянная вычислительная тренировка. Она и поможет приобрести полезные навыки быстрого счета.
Проведя статистическую обработку данных, были получены следующие результаты:
Уметь считать нужно, потому, что это пригодится в жизни, считают 93% учащихся, чтобы хорошо учиться в школе – 72%, чтобы быстро решать – 61%, чтобы быть грамотным – 34% и не обязательно уметь считать – всего 3%.
Навыки хорошего счета необходимы при изучении математики, считают 100% учащихся, а также при изучении физики – 90%, химии – 80%, информатики – 44%, технологии – 36%.
Приемы быстрого счета знают 16% (много приемов), 25% (несколько приемов), не знают приемов быстрого счета – 59% учащихся.
Применяют приемы быстрого счета 21% учащихся, иногда применяют – 15%.
Хотели бы узнать приемы быстрого счета 93% учащихся.
Выводы:
Знание приемов быстрого счета позволяет упрощать вычисления, экономить время, развивает логическое мышление и гибкость ума.
В школьных учебниках практически нет приемов быстрого счета, поэтому результат данной работы – памятка для быстрого счета будет очень полезной для учащихся 5-6 классов.
4. Список литературы
Виленкин Н.Я. Математика: учебник для 5 кл. – Издательство «Просвещение», 2008
Кордемский Б.А., Ахадов А.А. Удивительный мир чисел: Книга учащихся,- М. Просвещение, 1986г.
Нагибин Ф.Ф., Канин Е.С. Математическая шкатулка: Пособие для учащихся 4—8 кл. сред. шк. — 5-е изд. — М.: Просвещение, 1988.
Билл Хэндли «Считайте в уме как компьютер», Минск, Попурри, 2009г.
Минских Е.М. «От игры к знаниям», М., «Просвещение», 1982г.
Борзенко В.И., Горелов А.Г. Требования к исследовательским работам по математике// Журнал «Исследовательская работа школьников», 2005.№3.с.63-64
Черемных Г.В. Художественное оформление результатов исследовательской работы// Журнал «Исследовательская работа школьников», 2005.№3.с.65-82
Анкета
1. Зачем нужно уметь считать?
а) пригодится в жизни, например, считать деньги;
б) чтобы хорошо учиться в школе;
в) чтобы быстро решать;
г) чтобы быть грамотным;
д) не обязательно уметь считать.
2. Перечисли, при изучении каких школьных предметов тебе понадобится правильно считать?
а) математика; б) физика; в) химия; г) технология; д) музыка; е) физическая культура; ж) ОБЖ; з) информатика; и) география; к) русский язык; л) литература.
3. Знаешь ли ты приемы быстрого счета?
а) да, много; б) да, несколько; в) нет, не знаю.
4. Применяешь ли ты при вычислениях приемы быстрого счета?
а) да; б) нет.
5. Хотели бы вы узнать приемы быстрого счета, чтобы быстро считать?
а) да; б) нет.
Приложение II
Зачем нужно уметь считать?
При изучении каких школьных предметов тебе понадобится правильно считать?
Знаешь ли ты приемы быстрого счета?
Применяешь ли ты приемы быстрого счета?
Хотели бы вы узнать приемы быстрого счета, чтобы быстро решать?
Приложение III
Памятка быстрого счета
Умножение и деление числа на 4. Чтобы умножить число на 4, нужно его дважды умножить на 2. Например: 26·4=(26·2)·2=52·2=104; 417·4=(417·2)·2=834·2=1668. Чтобы разделить число на 4, нужно его дважды разделить на 2. Например: 324:4=(324:2):2=162:2=81. | Умножение и деление числа на 5. Чтобы умножить число на 5, нужно его умножить на 10 и разделить на 2. Например: 236·5=(236·10):2=2360:2=1180. Чтобы разделить число на 5, нужно умножить 2 и разделить на 10, т.е. отделить запятой последнюю цифру. Например: 236:5=(236·2):10=472:10=47,2. | Умножение двузначного числа на 11 При умножении двузначного числа на 11, нужно между цифрой единиц и цифрой десятков вписать сумму этих цифр, причем, если сумма цифр больше 10, то единицу нужно прибавить к старшему разряду (первой цифре). Например: |
Умножение числа на 9. Чтобы умножить число на 9, нужно к нему приписать 0 и отнять исходное число. Например: 72·9=720-72=648. | Умножение на 25 числа, делящегося на 4. Чтобы умножить на 25 число, делящееся на 4, нужно его разделить на 4 и получившееся число умножить на 100. Например: 124·25=(124:4)·100=31·100=3100. | Умножение числа на 1,5. Чтобы умножить число на 1,5, нужно к исходному числу прибавить его половину. Например: 34·1,5=34+17=51; 146·1,5=146+73=219. |
Умножение двузначного числа на 101. Для того, чтобы число умножить на 101, нужно приписать данное число к самому себе. Например: 34·101 = 3434. Поясним, 34·101 = 34·100+34·1=3400+34=3434. | Возведение в квадрат двузначного числа, оканчивающегося на 5. Чтобы возвести в квадрат двузначное число, оканчивающееся на 5, нужно цифру десятков умножить на цифру, большую на единицу, и к полученному произведению приписать справа число 25. 352=1225, т.е. 3·4=12 и к 12 приписываем 25, получаем 1225. | Возведение в квадрат двузначного числа, начинающегося на 5. Для возведения в квадрат двузначного числа, начинающегося на пять, нужно прибавить к 25 вторую цифру числа и приписать справа квадрат второй цифры, причем если квадрат второй цифры – однозначное число, то перед ним надо приписать цифру 0. Например: |
Как нарисовать небо акварелью
Мороз и заяц
Композитор Алексей Рыбников
Астрономический календарь. Май, 2019
Заповеди детства и юности