Правильные многоугольники
Вложение | Размер |
---|---|
pravilnye_mnogougolniki_kuleshov.pptx | 365.12 КБ |
Слайд 1
Правильные многоугольникиСлайд 2
Правильный многоугольник Определение : выпуклый многоугольник называется правильным, если у него все стороны и все углы равны. Правильный треугольник Квадрат Правильный шестиугольник Правильный восьмиугольник
Слайд 3
Окружность, описанная около правильного многоугольника Около всякого правильного многоугольника можно описать окружность и притом только одну. О R
Слайд 4
Окружность, вписанная в правильный многоугольник В любой правильный многоугольник можно вписать окружность и притом только одну. О r
Слайд 5
Следствия Следствие1. Вписанная окружность касается сторон правильного многоугольника в их серединах. Следствие2. Центры окружностей вписанной в правильный многоугольник и описанной около него совпадают. Эта точка называется центром правильного многоугольника. О R r
Слайд 6
Основные формулы Вычисление угла правильного многоугольника: Площадь правильного многоугольника: Сторона правильного многоугольника: Радиус вписанной окружности:
Слайд 7
Применение формул Для правильного треугольника Для правильного четырехугольни-ка (квадрата) Для правильного шестиугольника
Слайд 8
Длина окружности
Слайд 9
Представим. Что мы разрезаем окружность и «распрямляем» ее в нить. Длина получившегося в этом случае отрезка и есть длина окружности.
Слайд 10
Представим. Что мы разрезаем окружность и «распрямляем» ее в нить. Длина получившегося в этом случае отрезка и есть длина окружности. Длина окружности обозначается буквой C .
Слайд 12
n = 4
Слайд 13
n = 6
Слайд 14
n = 8
Слайд 17
История числа пи началась в Древнем Египте. Площадь круга диаметром d египетские математики определяли как (d-d/9) 2 , т.е. в древнем Египте В священной книге джайнизма (одной из древнейших религий, существовавших в Индии и возникшей в VI в. до н.э.) имеется указание, из которого следует, что число пи в то время принимали равным , что даёт дробь 3,162...
Слайд 18
Архимед в III в. до н.э. обосновал в своей небольшой работе "Измерение круга" три положения: всякий круг равновелик прямоугольному треугольнику, катеты которого соответственно равны длине окружности и её радиусу; площади круга относятся к квадрату, построенному на диаметре, как 11 к 14 ; отношение любой окружности к её диаметру меньше 3 1/7 и больше 3 10/71 .
Слайд 19
В первой половине XV в. обсерватории Улугбека , возле Самарканда , астроном и математик ал-Каши вычислил "пи" с 16 десятичными знаками. Он сделал 27 удвоений числа сторон многоугольников и дошёл до многоугольника, имеющего 3*2 28 углов. Ал-Каши произвёл уникальные расчёты, которые были нужны для составления таблицы синусов с шагом в 1' . Эти таблицы сыграли важную роль в астрономии. Только через 250 лет после ал-Каши его результат был превзойдён.
Слайд 20
Первым ввёл обозначение отношения длины окружности к диаметру современным символом английский математик У.Джонсон в 1706 г. В качестве символа он взял первую букву греческого слова "periferia" , что в переводе означает "окружность" . Гордый Рим трубил победу Над твердыней Сиракуз; Но трудами Архимеда Много больше я горжусь. Надо нынче нам заняться, Оказать старинке честь, Чтобы нам не ошибаться, Чтоб окружность верно счесть, Надо только постараться И запомнить все как есть Три — четырнадцать — пятнадцать — девяносто два и шесть!..
Слайд 21
= 3, 1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989… Какое бы сочетание цифр мы бы ни выдумали — оно непременно встретится в знаках числа p, то есть можно ожидать появление любой наперед заданной последовательности цифр
Слайд 22
= 3, 1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989… Например, самые распространенные расстановки встретились в следующих по счету цифрах: 01234567891 — начиная с 26852899245-й
Слайд 23
= 3, 1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989… Например, самые распространенные расстановки встретились в следующих по счету цифрах: 01234567890 — начиная с 41952536161-й
Слайд 24
= 3, 1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989… Если в знаках числа пи вы поищите дату своего рождения или номер телефона, то обязательно найдете
Слайд 25
= 3, 1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989… Есть гипотезы, предполагающие, что в числе пи скрыта любая информация, которая когда-либо была или будет доступна людям.
Слайд 26
где - градусная мера угла где - радианная мера угла
Слайд 27
Площадь круга
Слайд 28
Какая геометрическая фигура называется кругом? Часть плоскости, ограниченная окружностью.
Слайд 30
A 1 A 2 A 3 A n R n r n S ’ S S ’ < S n < S
Слайд 32
Круговой сектор Часть круга, ограниченная двумя радиусами и дугой, соединяющий концы этих радиусов
Слайд 33
Интересные факты Отношение длины основания Великой Пирамиды к ее высоте, разделенное пополам, дает знаменитое число "пи" . Возможно, оно намеренно зашифровано в размерах Пирамиды Хеопса, причем с более точным значением, чем его знал великий Архимед, живший позже на 2000 лет!
Слайд 34
Интересные факты Лидером по тупым законам по праву может считаться Американский штат Индиана. Там на ряду с законами запрещающими носить усы людям часто прибегающим к поцелуям, продавать молоко в винных магазинах и перекрашивать в другой цвет птиц и животных, действует закон о том, что на территории штата число . следует считать равным 4
Слайд 35
Интересные факты Помните бородатый анекдот про школьного военрука: число равно 3,14, но в военное время может достигать четырех
Слайд 36
Интересные факты Во времена развитого социализма цена продукта практически использовалась как его обозначение. Наиболее популярные сорта водки 1 р.49 коп.( чекушка) и 2 р.87 коп. ( поллитра) знал каждый ребенок. Удивительной неожиданностью стало открытие, что первое число, возведенное в степень второго, дает число 1,49 2,87
Астрономический календарь. Июнь, 2019
Рисуем кактусы акварелью
Лев Николаевич Толстой. Индеец и англичанин (быль)
Старинная английская баллада “Greensleeves” («Зеленые рукава»)
Заколдованная буква