Данный проект предназначен для того, чтобы глубже понять каков он - мир геометрических фигур. Благодаря этому проекту учащиеся получат возможность углубить и закрепить свои знания по геометрии, узнать много нового и интересного. Научатся наблюдать и видеть мир вокруг себя. Проект предназначен для того, чтобы геометрия стала ближе и понятнее учащимся, для понимания значимости предмета в практической жизни.
Вложение | Размер |
---|---|
proekt_po_geometrii_geometriya_vokrug_nas_2.docx | 409.44 КБ |
Муниципальное общеобразовательное учреждение
Средняя общеобразовательная школа с. Орловское Саратовской области
Проектная работа по геометрии
по теме
«Геометрия вокруг нас»
Выполнил: ученица 8 класс Астаховой Анастасии
Руководитель: Джакубалиева Ю.В.
2022 г
Содержание
Введение………………………………………………………………….....с.3
Глава 1. Теоретические сведения………………………………......……с.4-7
1.1. История развитии геометрии……….……………………………….с.4-6
1.2. Геометрия в ХХI веке……….……………………………………….с.6-7
Глава 2. Профессии, связанные с геометрией……….………………….с.7-9
2.1. Архитектор……………….....………………………………………...с.7-8
2.2. Инженер……………………………………………………….………...с.8
2.3. Дизайнер……………………………………………….……………...с.8-9
2.4. Конструктор……………………………………….…………………….с.9
Глава 3. Геометрия вокруг нас…………………………………………..с.9-14
3.1. Геометрия в нашем доме……………………………………………с.9-10
3.2. Геометрия архитектура…………………………………………….с.10-12
3.3. Геометрия в природе и космосе………....………………………...с.12-14
3.4. Геометрия у животных…………………………………………….......с.14
Глава 4. Практическая часть……………………………………………….с.15
Заключение………………………………………………………………….с.16
Список литературы ………………………………………………………...с.17
Приложения…………………………………………………………………с.18
Введение
В настоящее время в начальной школе мало уделяется внимания на изучение геометрического материала. Геометрия является очень сложным звеном в математике. Практика показывает, что в среднем звене дети испытывают большие трудности при изучении самостоятельного предмета “Геометрия”. Это связано в первую очередь с тем, что у обучающихся слабо развито пространственное воображение, нет практических навыков в построении геометрических фигур.
В начале XX века великий французский архитектор Ле Корбюзье сказал: «Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг – геометрия». Эти слова очень точно характеризуют и наше время. Мир, в котором мы живем, наполнен геометрией домов и улиц, гор и полей, творениями природы и человека.
Геометрия изучает формы, размеры, взаимное расположение предметов независимо от их свойств: массы, цвета и так далее. Геометрия не только дает представление о фигурах, их свойствах, взаимном расположении, но и учит рассуждать, ставить вопросы, анализировать, делать выводы, то есть логически мыслить.
Данный проект предназначен для того, чтобы глубже понять каков он - мир геометрических фигур. Благодаря этому проекту учащиеся получат возможность углубить и закрепить свои знания по геометрии, узнать много нового и интересного. Научатся наблюдать и видеть мир вокруг себя. Проект предназначен для того, чтобы геометрия стала ближе и понятнее учащимся, для понимания значимости предмета в практической жизни.
Цель работы: исследовать какие геометрические фигуры, тела встречаются вокруг нас. Сделать макет геометрических фигур.
Задачи:
1. Узнать о развитии геометрии,
2. Узнать о геометрии в быту, архитектуре, в природе, у животных и о природных творениях в виде геометрических фигур.
Глава 1. Теоретические сведения.
1.1. История развития геометрии.
Геометрия возникла очень давно, это одна из самых древних наук. Заглянем в прошлое, когда зародилась наука геометрия....
Более двух тысяч лет назад в Древней Греции впервые получили первоначальное развитие, основные представления и обоснования науки геометрии. Этому периоду развития геометрии предшествовала многовековая деятельность сотен поколений наших предков. Первоначальные геометрические представления появились в результате практической деятельности человека и развивались чрезвычайно медленно.
Еще в глубокой древности, когда люди питались только тем, что им удавалось найти и собрать, им приходилось переходить с места на место. В связи с этим они приобретали некоторые представления о расстоянии. Вначале, люди сравнивали расстояние по времени, в течении которого они проходили. Например, если от реки до леса можно было дойти за время от восхода солнца до его захода, то говорили: река от леса находится на расстоянии дня ходьбы.
Такой способ оценки расстояния дошел и до наших дней. Так, на вопрос: «Далеко ли ты живешь от школы?» - можно ответить: «В десяти минутах ходьбы». Это значит, что от дома до школы надо идти 10 минут. С развитием человеческого общества, когда люди научились делать примитивные орудия: каменный нож, молоток, лук, стрелы,- постепенно появилось необходимость измерять длину с большей точностью. Человек стал сравнивать длину рукоятки или длину отверстия молотка со своей рукой или толщиной пальца. Остатки этого способа измерения дошли и до наших дней: примерно сто- двести лет назад холсты измеряли локтем- длиной руки от локтя до среднего пальца. Развитие земледелия, ремесел и торговли вызвали практическую необходимость измерять расстояния и находить площади и объемы различных фигур.
Из истории известно, что примерно 4000 лет назад в долине реки Нил образовалось государство Египет. Правители этого государства- фараоны- установили налоги за земельные участки на тех, кто ими пользовался. В связи с этим требовалось определять размеры площадей участков четырехугольной и треугольной формы.
Река Нил после дождей разливалась и часто меняла свое русло, смывая границы участков. Приходилось исчезнувшие после наводнения границы участков восстанавливать, а для этого их вновь измерять. Выполняли такую работу лица, которые должны были уметь измерять площади фигур. Появилась необходимость изучить приемы измерения площадей. К этому времени и относят зарождение геометрии. Слово « геометрия» состоит из двух слов: «гео», что в переводе на русский язык означает земля, и «метрио» - мерю. Значит, в переводе «геометрия» означает землемерие. В своем дальнейшем развитии наука геометрии шагнула далеко за пределы землемерия и стала важным и большим разделом математики. В геометрии рассматривают формы тел, изучают свойства фигур, их отношения и преобразования.
Как наука, геометрия оформилась к III веку до нашей эры благодаря трудам ряда греческих математиков и философов.
Первым, кто начал получать новые геометрические факты при помощи рассуждений (доказательств), был древнегреческий математик Фалес. Фалес Милетский основатель милетской школы, один из легендарных "семи мудрецов". Фалес в молодости много путешествовал по Египту, имел общение с египетскими жрецами и у них научился многому, в том числе геометрии. Возвратившись на родину, Фалес поселился в Милете, посвятив себя занятиям наукой, и окружил себя учениками, образовавшими так называемую Ионийскую школу. Фалесу приписывают открытие ряда основных геометрических теорем (например, теорем о равенстве углов при основании равнобедренного треугольника, равенстве вертикальных углов и т. п.).
Наиболее удачно была изложена геометрия, как наука о свойствах геометрических фигур, греческим ученым Евклидом (III в. до н. э.) в своих книгах «Начала». Произведение состояло из 13 томов, описанная в этих книгах геометрия получила название «Евклидова». Конечно, геометрия не может быть создана одним ученым. В работе Евклид опирался на труды десятков предшественников и дополнил работу своими открытиями и изысканиями. Сотни раз книги были переписаны от руки, а когда изобрели книгопечатание, то она много раз переиздавалась на языках всех народов и стала одной из самых распространенных книг в мире. В одной легенде говорится, что однажды египетский царь Птолемей I спросил древнегреческого математика, нет ли более короткого пути для понимания геометрии, чем тот, который описан в его знаменитом труде, содержащемся в 13 книгах. Ученый гордо ответил: " В геометрии нет царской дороги". В течение многих веков «Начала» были единственной учебной книгой, по которым молодежь изучала геометрию. Были и другие. Но лучшими признавались «Начала» Евклида. И даже сейчас, в наше время, учебники написаны под большим влиянием «Начал» Евклида.
1.2. Геометрия в ХХI веке.
Посмотрите вокруг - всюду геометрия! Современные здания и космические станции, подводные лодки, интерьеры квартир - всё имеет геометрическую форму. Геометрические знания являются сегодня профессионально значимыми для многих современных специальностей: для дизайнеров и конструкторов, для рабочих и учёных. И уже этого достаточно, чтобы ответить на вопрос: «Нужно ли нам геометрия?»
Недостаток жизненного опыта позволяет некоторым школьникам и даже студентам думать, что больше половины изучаемых предметов абсолютно бесполезны и никогда не пригодятся в жизни. На самом деле, знания могут прийти на помощь в неожиданный момент, и доставать учебники уже не будет времени. Одна из полезнейших наук — геометрия, некоторые виды деятельности без нее немыслимы.
Без знания геометрии невозможно построить дом или отремонтировать квартиру. Например, при установке стропил на крышу понадобится формула расчета высоты треугольника, особенно, если крыша несимметричная. Без этого нельзя будет рассчитать длину перекладин, а также узнать количество кровельного материала. Чтобы посчитать количество блоков или кирпичей для стены, плиток для ремонта ванной комнаты, досок для пола — необходимы знания формул площади поверхности, а для объемных покрытий, например, утеплителей — формул объема. Для разработки системы вентиляции, обогрева, канализации или водоснабжения в доме или квартире потребуется расчет внутреннего объема труб, а это невозможно сделать без формулы площади круга. Конечно, можно доверить это профессионалам — но без знания геометрии будет невозможно даже разобраться в чертежах и проверить качество работы. Вообще, чертежи встречаются даже далекому от них человеку на протяжении всей жизни. Это чертеж дома или план ремонта, чертежи деталей на заводе, знать которые нужно не только конструктору и технологу, но и токарю, сварщику, контролеру, менеджерам отделов закупок и продаж. С чертежами непременно столкнется автолюбитель, который захочет провести ремонт своей машины.
Геометрия присутствует практически во всех сферах нашей жизни: нас окружают круглые, квадратные, прямоугольные, треугольные, сферические, кубические, цилиндрические, конические и другие объекты.Обычно мы не задумываемся о том, почему объекты имеют ту или иную форму, а ее выбор далеко не случаен.
Одна из самых распространенных форм – это окружность и то, что ею ограничено, то есть круг. Вы, наверное, не задумывались, почему трубы – круглые в сечении? Одна из причин в том, что окружность – это замкнутая дуга с постоянной шириной. По этой причине, например, люки не проваливаются вниз, что приводило бы к несчастным случаям, а будь они квадратной или прямоугольной формы, это стало бы неизбежным.
Еще одно свойство окружности: из всех замкнутых кривых заданной длины круг покрывает наибольшую площадь. Это объясняет тот факт, что природа часто использует круг и его объемный эквивалент – сферу. Природа всегда останавливает выбор на самых стабильных формах, минимально расходующих энергию.
Глава 2. Профессии, связанные с геометрией.
2.1. Архитектор.
Архитектура – это музыка, застывшая в камне. На мой взгляд, самая “геометрическая профессия” – архитектор. Архитектура - одна из наиболее всеобъемлющих областей человеческой деятельности, занимающаяся организацией пространства и времени и решающая любые пространственные и временные задачи, от разработки стратегий развития агломераций до дизайна дверных ручек. Перед тем как построить жилое здание, проектируют будущую постройку на чертежах в уменьшенном масштабе. Архитектор придумывает основную концепцию здания, его облик, увязывает воедино все нюансы. Задача архитектора — спроектировать сооружение, максимально отвечающее потребностям заказчика.
2.2. Инженер.
Еще одна немаловажная профессия - инженер. Инженер-строитель - это производитель работ, т.е. прораб, он руководит общестроительными работами, монтажом конструкций, осуществляет контроль над качеством.
В проектных организациях инженеры выполняют работы по комплексному проектированию: архитектурной, конструктивной части (электроснабжение, отопление и вентиляция, водопровод и канализация, слаботочные системы — телефон, пожарная сигнализация, теленаблюдение и др.). Кроме того, разрабатывают генеральные планы проектируемых комплексов, куда входят дороги, земляные работы, организация строительства. Направление деятельности строителей очень широкое — кроме возведения зданий, производственных комплексов, фабрик, они проектируют мосты, гидротехнические сооружения, плотины, дамбы и т. д.
2.3. Дизайнер
Дизайн - это творческая деятельность, целью которой является определение формальных качеств изделий промышленности. Эти качества включают и внешние черты изделия, но главным образом те структурные взаимосвязи, которые превращают изделие в единое целое, как с точки зрения потребителя, так и с точки зрения изготовителя. Быть дизайнером это означает быть творческой личностью. Для этого те, кто решил выбрать эту профессию, отправляются на специальные курсы подготовки, куда обязательно будут входить изучение черчения, геометрии и других специальных программ, которые пригодятся будущему специалисту.
2.4. Конструктор.
Конструктор осуществляет конструкторское и технологическое проектирование, разрабатывает и внедряет инновационные технологические процессы производства, разрабатывает технологические конструкции различного назначения, отдельные их элементы и части, цехи. Проводит исследования в области конструирования с использованием новых разработок, достижений различных областей науки. Для того чтобы стать конструктором, необходимо изучать технику, механику, физику, алгебру, геометрию, химию... И обладать такими качествами как: высокая концентрация и устойчивость внимания, логика, технический склад ума.
Глава 3. Геометрия вокруг нас.
3.1. Геометрия в нашем доме.
Мы приходим домой и здесь вокруг нас сплошная геометрия. Начиная с коридора, повсюду прямоугольники: стены, потолок и пол, зеркала и фасады шкафов, даже коврик у двери и тот прямоугольный. А сколько кругов! Это рамки фотографий, крышка стола, подносы и тарелки.
Любой предмет изготовленный человеком берёшь в руки и видишь, что в нём «живёт» геометрия.
Стены, пол и потолок являются прямоугольниками (не будем обращать внимания на проёмы окон и дверей). Комнаты, кирпичи, шкаф, железобетонные блоки, напоминают своей формой прямоугольный параллелепипед. Посмотрим на паркетный пол. Планки паркета - прямоугольники или квадраты. Плитки пола в ванной, метро, на вокзалах чаще бывают правильными шестиугольниками или восьмиугольниками, между которыми уложены небольшие квадратики.
Многие вещи напоминают окружность - обруч, кольцо, дорожка вдоль арены цирка. Арена цирка, дно стакана или тарелки имеют форму круга. Фигура, близкая к кругу, получится, если разрезать поперек арбуз. Нальем в стакан воду. Её поверхность имеет форму круга. Если наклонить стакан, чтобы вода не выливалась, тогда край водной поверхности станет эллипсом. А у кого-то есть столы в виде круга, овала или очень плоского параллелепипеда.
Со времени изобретения гончарного круга люди научились делать круглую посуду - горшки, вазы. На геометрический шар похожи арбуз, глобус, разные мячи (футбольный, волейбольный, баскетбольный, резиновый). Поэтому, когда у футбольных болельщиков до матча спрашивают, с каким счетом он кончится, они часто отвечают: "Не знаем - мяч круглый". Ведро имеет форму усеченного конуса, у которого верхнее основание больше нижнего. Впрочем, ведро бывает и цилиндрической формы. Вообще, цилиндров и конусов в окружающем нас мире очень много: трубы парового отопления, кастрюли, бочки, стаканы, абажур, кружки, консервная банка, круглый карандаш, бревно и др.
3.2. Геометрия и архитектура.
Наука и искусство шли с давних времён до настоящего времени рука об руку. Геометрия и архитектура вместе зародились, развивались и совершенствовались: от простейших жилых конструкций и негласных правил до тщательно спроектированных шедевров и чётких законов. Прочность, красоту и гармонию зданий во все времена обеспечивала геометрия. В архитектуре городов её правила соединились с потребностями и фантазией человека. Прямоугольные строения устойчивы и многофункциональны, поэтому на улицах их больше чем других. Пирамиды уступают им в практичности, но выглядят более эффектно. Их возводят в исключительных случаях. Платоновыми и архимедовыми телами люди разбавляют ставшие привычными архитектурные формы. Проектирование зданий, принимающих вид этих многогранников, – в большинстве случаев сложная задача. Конечно, говорить о соответствии архитектурных форм геометрическим фигурам можно только приближенно, отвлекаясь от мелких деталей. В архитектуре используются почти все геометрические фигуры. Выбор использования той или иной фигуры в архитектурном сооружении зависит от множества факторов: эстетичного внешнего вида здания, его прочности, удобства в эксплуатации. Эстетические особенности архитектурных сооружений изменялись в ходе исторического процесса и воплощались в архитектурных стилях. Стилем принято называть совокупность основных черт и признаков архитектуры определенного времени и места. Геометрические формы, свойственные архитектурным сооружениям в целом и их отдельным элементам, также являются признаками архитектурных стилей.
Архитектура в наши дни имеет все более необычный характер. Здания становятся самых разных форм . Многие здания украшаются колоннами и лепнинами. Геометрические фигуры различной формы можно увидеть в постройке конструкциях мостов. Самые «молодые» здания- это небоскребы , подземные сооружения с модернизированным дизайном. Такие здания проектируются с использованием архитектурных пропорций.
Дом приблизительно имеет вид прямоугольного параллелепипеда. В современной архитектуре смело используются самые разные геометрические формы. Многие жилые дома, общественные здания украшаются колоннами.
Окружность как геометрическая фигура всегда привлекала к себе внимание художников, архитекторов. В неповторимом архитектурном облике Санкт-Петербурга восторг и удивление вызывает "чугунное кружево" - садовые ограды, перила мостов и набережных, балконные решетки и фонари. Четко просматриваемое на фоне фасада зданий летом, в изморози зимой, оно придает особое очарование городу. Особую воздушность придают воротам Таврического дворца (созданного в конце ХIII в. архитектором Ф.И. Волковым) окружности сплетенные в орнамент. Торжественность и устремленность ввысь - такой эффект в архитектуре зданий достигается использованием арок, представляющих дуги окружностей. Это видим на здании Главного штаба. (Санкт-Петербург). Архитектура православных церквей включает в себя как обязательные элементы купола, арки, округлые своды, что зрительно увеличивает пространство, создает эффект полета, легкости.
А как красив Московский Кремль. Прекрасны его башни! Сколько интересных геометрических фигур положено в их основу! Например, Набатная башня. На высоком параллелепипеде стоит параллелепипед поменьше, с проемами для окон, а ещё выше воздвигнута четырехугольная усечённая пирамида. На ней расположены четыре арки, увенчанные восьмиугольной пирамидой. Геометрические фигуры различной формы можно узнать и в других замечательных сооружениях, возведенных русскими зодчими.
Геометрическая форма сооружения настолько важна, что бывают случаи, когда в имени или названии здания закрепляются названия геометрических фигур. Так, здание военного ведомства США носит название Пентагон, что означает пятиугольник. Связано это с тем, что, если посмотреть на это здание с большой высоты, то оно действительно будет иметь вид пятиугольника. На самом деле только контуры этого здания представляют пятиугольник. Само же оно имеет форму многогранника.
3.3. Геометрия в природе и космосе.
До сих пор рассматривали некоторые геометрические формы, созданные руками человека. Но ведь в самой природе очень много замечательных геометрических форм. Необыкновенно красивы и разнообразны многоугольники, созданные природой.
Кристалл соли имеет форму куба. Кристаллы горного хрусталя напоминают отточенный с двух сторон карандаш. Алмазы чаще всего встречаются в виде октаэдра, иногда куба. Существуют и многие микроскопические многоугольники. В микроскоп можно увидеть, что молекулы воды при замерзании располагаются в вершинах и центрах тетраэдров. Атом углерода всегда соединен с четырьмя другими атомами тоже в форме тетраэдра. Одна из самых изысканных геометрических фигур падает на нас с неба в виде снежинок.
Обычная горошина имеет форму шара. И это неспроста. Когда стручок гороха созреет и лопнет, горошины упадут на землю и благодаря своей форме покатятся во все стороны, захватывая всё новые территории. Горошины кубической или пирамидальной формы так и остались бы лежать возле стебля. Шаровую форму принимают капельки росы, капли ртути из разбитого градусника, капли масла, оказавшиеся в толще воды… Все жидкости в состоянии невесомости обретают форму шара. Отчего шар так популярен? Это объясняется одним замечательным свойством: на изготовление шара расходуется значительно меньше материала, чем на сосуд любой другой формы того объёма. Поэтому, если вам нужен вместительный мешок, а ткани не хватает, шейте его в форме шара. Шар - единственное геометрическое тело, у которого наибольший объём заключен в наименьшую оболочку.
Фигура, близкая к кругу, получится, если разрезать пополам апельсин, арбуз. Дугу можно увидеть после дождя на небе - радугу. Некоторые деревья, одуванчики, отдельные виды кактусов имеют сферическую форму. В природе многие ягоды имеют форму шара, например, смородина, крыжовник, черника. Двойной спиралью закручена молекула ДНК. Ураган закручивается по спирали, спирально плетёт свою паутину паук.Другими интересными фигурами, которые мы можем повсеместно увидеть в природе, являются фракталы. Фракталы — это фигуры, составленные из частей, каждая из которых подобна целой фигуре.Деревья, молния, бронхи и кровеносная система человека имеют фрактальную форму, идеальными природными иллюстрациями фракталов называют также папоротники и капусту брокколи. Трещины на камне: фрактал в макро.
Орбиты планет - окружности, центром которых является Солнце. Спиральная галактика. Один из самых геометрически ясных феноменов Солнечной системы — странный «островок стабильности» на штормовом Северном полюсе Сатурна, имеющий четкую форму шестиугольника. Геометрия может помочь больше узнать о космосе и космических телах. Например, древнегреческий ученый Эратосфен с помощью геометрии измерил длину окружности земного шара. Есть много и других интересных опытов благодаря которым мы все больше и больше узнаем о космосе с помощью геометрии. Представьте себе космический корабль, который приближается к какой-то планете. Системы астронавигации корабля состоят из телескопов с фотоэлементами, радиолокаторов, вычислительных устройств. Пользуясь ими, космонавты определяют углы, под которыми видны различные небесные тела, и вычисляют расстояния до них. Штурман экипажа установил расстояние до планеты. Однако ещё неизвестно, над какой точкой поверхности планеты корабль находится. Ведь этим расстоянием, как радиусом, можно очертить в пространстве целую сферу, шар, и корабль может быть в любом месте его поверхности. Это и есть первая поверхность положения, которую можно сравнить – хотя и условно – с улицей из нашего “земного” примера. Но если штурман определит расстояние до другой планеты и вычертит второй шар, пересекающийся с первым, положение корабля уточнится. Вспомните: пересечение двух сфер даёт окружность. Где-то на этой окружности и должен находиться корабль. Третье измерение – относительно ещё одной планеты – отметит на окружности уже две точки, одна из которых и есть место корабля.
3.4. Геометрия у животных.
Принцип экономии хорошо «усвоили» животные. Сохраняя тепло, на холоде они спят, свернувшись в клубочек, поверхность тела уменьшается, и тепло лучше сохраняется. По этим же причинам северные народы строили круглые дома. Животные, конечно, же геометрию не изучали, но природа наделила их талантом строить себе дома в форме геометрических тел. Многие птицы — воробьи, крапивники, лирохвосты — строят свои гнёзда в форме полу шара. Есть архитекторы и среди рыб: в пресных водах живет удивительная рыба колюшка. В отличие от многих своих соплеменников она живет в гнезде, которое имеет форму шара. Но самые искусные геометры — пчёлы. Они строят соты из шестиугольников. Любая ячейка в сотах окружена шестью другими ячейками. А основание, или донышко, ячейки представляет собой трехгранную пирамиду. Такая форма выбрана неспроста. В правильный шестиугольник поместится больше меда, а зазоры между ячейками будут наименьшими! Разумная экономия усилий и строительных материалов.
Глава 4. Практическая часть.
Моей практической частью является сделать макет геометрических фигур. В ходе работы мне понадобились — ножницы, бумага А3, клей, линейка и шаблоны. Сперва я измерила длину, высоту и ширину каждой части фигуры. Вырезала шаблон и склеила по частям. Геометрические фигуры готовы.
Заключение
В своей проектной работе я исследовала, какие геометрические фигуры и тела окружают нас, и убедилась, сколько самых разнообразных геометрических линий и поверхностей использует человек в своей деятельности - при строительстве различных зданий, мостов, машин, в транспорте. Пользуются им не из простой любви к интересным геометрическим фигурам, а потому, что свойства этих геометрических линий и поверхностей позволяют с наибольшей простотой решать разнообразные технические задачи.
Природные творения не просто красивы, их форма целесообразна, то есть наиболее удобна. А человеку остается только учиться у природы - самого гениального изобретателя.
Следует отметить до начала работы над темой, не замечала или мало задумывалась о геометрии окружающего нас мира, теперь же не только смотрю или восхищаюсь творениями человека или природы. Из всего сказанного я сделала вывод, что геометрия в нашей жизни на каждом шагу и играет очень большую роль. Она нужна не только для того, чтобы называть части строений или формы окружающего нас мира. С помощью геометрии мы можем решить многие задачи и ответить на многие вопросы.
Список литературы:
1. Шарыгин И.Ф., Еранжиева Л.Н. Наглядная геометрия: учебное пособие для учащихся 5-6 классов.-М. : Дрофа,2002.
2.Энцеклопедический словарь юного натуралиста/ сост.А.Г Рогожкин. – М. : Педагогика,1981.
3.Энциклопедия для детей. Математика. – М. : Аванта +, 2003.Т, 11.
4.http: //ilib.mccme.ru/djvu/geometry/geom_ rapsodiya.htm/ - Левитин К.Ф. Геометрическая рапсодия.
5. bibliofond.ru
Приложение 1
Самодельный телефон
Басня "Две подруги"
Выбери путь
Туманность "Пузырь" в созвездии Кассиопея
Заяц-хваста