Сейчас, на этапе стремительного развития ИКТ-технологий, современные школьники не хотят утруждать себя счетом в уме. Поэтому я сочла важным показать не только то, что сам процесс выполнения действия может быть важным, но и интересным занятием.
Вложение | Размер |
---|---|
interesnye_metody_schyota.docx | 377.11 КБ |
Муниципальное автономное общеобразовательное учреждение «Ликино-Дулевский лицей» |
ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА ПО МАТЕМАТИКЕ
НА ТЕМУ
«Интересные методы быстрого счёта»
Выполнили: ученицы 6б класса
Авдохина Анастасия
Посеина Кристина
Руководитель:
Кабанова Е.Ю.
2019 г.
СОДЕРЖАНИЕ
Введение……………………………………………………………..…………….3
Глава 1. История счета как возникли числа……………………………………..4
Глава 2. Старинные способы умножения
2.1. Русский крестьянский способ умножения …..………….…….……………6
2.2. Таблица умножения на «9» ……………………………………………….....7
2.2. Метод «решетки»…………. ……………………………….…………….....8
2.3. Умножение на пальцах……………………………………….…...………….9
Глава 3. Устный счет – гимнастика ума
3.1. Различные способы сложения и вычитания ……………………………….10
3.2 Различные способы умножения и деления …………………………………11
Заключение………………………………………………………………………..12
Список использованной литературы………...………………………………...13
ВВЕДЕНИЕ
Можно ли представить себе мир без чисел? Без чисел невозможно жить в современном обществе. Развитие любой науки не возможно, если бы не наука о числах.
Сейчас, на этапе стремительного развития ИКТ-технологий, современные школьники не хотят утруждать себя счетом в уме. Поэтому мы сочли важным показать не только то, что сам процесс выполнения действия может быть важным, но и интересным занятием.
Объектом исследования являются алгоритмы счета.
Предметом исследования выступает процесс вычисления.
Цель: изучить нестандартные приемы вычислений и экспериментальным путем выявить причину отказа от использования этих способов при обучении математике современных школьников.
Задачи:
Актуальность данной темы заключается в том, что использование нестандартных приемов в формировании вычислительных навыков помогает сэкономить время на уроке, успешно сдать экзамены по математике.
За простыми действиями сложения, вычитания, умножения и деления скрываются тайны истории математики. Случайно услышанные слова «умножение решеткой», «шахматным способом» заинтриговали вас. Захотелось узнать эти и другие способы вычислений, а также сравнить их с сегодняшними.
Глава I. ИСТОРИЯ СЧЁТА
Подсчитывать предметы люди научились ещё в древнем каменном веке - палеолите, десятки тысяч лет назад. Как это происходило? Сначала люди лишь на глаз сравнивали разные количества одинаковых предметов. Они могли определить, в какой из двух куч больше плодов, в каком стаде больше оленей и т.д. Если одно племя меняло пойманных рыб на сделанные людьми другого племени каменные ножи, не нужно было считать, сколько принесли рыб и сколько ножей. Достаточно было положить рядом с каждой рыбой по ножу, чтобы обмен между племенами состоялся.
Чтобы с успехом заниматься сельским хозяйством, понадобились арифметические знания. Без подсчета дней трудно было определить, когда надо засевать поля, когда начинать полив, когда ждать потомства от животных. Надо было знать, сколько овец в стаде, сколько мешков зерна положено в амбары.
И вот более восьми тысяч лет назад древние пастухи стали делать из глины кружки – по одному на каждую овцу. Чтобы узнать, не пропала ли за день хоть одна овца, пастух откладывал в сторону по кружку каждый раз, когда очередное животное заходило в загон. И только убедившись, что овец вернулось столько же, сколько было кружков, он спокойно шел спать. Но в его стаде были не только овцы – он пас и коров, и коз, и ослов. Поэтому пришлось сделать из глины и другие фигурки. А земледельцы с помощью глиняных фигурок вели учет собранного урожая, отмечая, сколько мешков зерна положено в амбар, сколько кувшинов масла выжато из оливок, сколько соткано кусков льняного полотна. Если овцы приносили приплод, пастух прибавлял к кружкам новые, а если часть овец шла на мясо, несколько кружков приходилось убирать. Так, еще не умея считать, занимались древние люди арифметикой.
Затем в человеческом языке появились числительные, и люди смогли называть число предметов, животных, дней.
Мы и сейчас используем разные неопределённые числительные со значением «много»: «толпа», «стадо», «стая», «куча», «пучок» и другие.
Постепенно люди начали использовать для счёта камешки, палочки, части собственного тела. Вот как известный русский учёный Н.Н. Миклуха–Маклай описывал счёт папуасов: «Папуас загибает один за другим пальцы руки, причём издаёт определённый звук, например «бе, бе, бе…». Досчитав до пяти, он говорит: «Ибон–бе» (рука). Затем он загибает пальцы другой руки, снова повторяя «бе, бе…», пока не дойдёт до «ибон–али» (две руки). Затем он идёт дальше, приговаривая «бе, бе…», пока не дойдёт до «самба–бе» (одна нога) и «самба–али» (две ноги). Если нужно считать дальше, папуас пользуется пальцами рук и ног кого – нибудь другого».
Похожие способы счёта применяли и другие народы. Так возникли нумерации, основанные на счёте пятёрками, десятками, двадцатками.
Глава II. СТАРИННЫЕ СПОСОБЫ ВЫЧИСЛЕНИЯ
В 2007 году Марк Вишня, которому тогда было 2,5 года, поразил всю страну своими интеллектуальными способностями. Юный участник шоу «Минута славы» без труда считал в уме многозначные числа, опережая при вычислениях родителей и жюри, которые пользовались калькуляторами. Уже в два года он освоил таблицу косинусов и синусов, а также некоторые логарифмы.
Большинство таких людей обладает прекрасной памятью и имеют дарование. Но некоторые из них никакими способностями к математике не обладают. Они знают секрет! А секрет этот в том, что они хорошо усвоили приемы быстрого счёта, запомнили несколько специальных формул. Однако бельгийский служащий, который за 30 секунд по предложенному ему многозначному числу, полученному от умножения некоторого числа само на себя 47 раз, называет это число (извлекает корень 47–ой степени из многозначного числа), добился таких потрясающих успехов в счёте в результате многолетней тренировки.
Итак, многие «счётчики–феномены» пользуются особыми приемами быстрого счёта и специальными формулами. Значит, мы тоже можем пользоваться некоторыми из этих приёмов.
2.1. РУССКИЙ КРЕСТЬЯНСКИЙ СПОСОБ УМНОЖЕНИЯ
В России несколько веков назад среди крестьян некоторых губерний был распространен способ, который не требовал знание всей таблицы умножения. Надо было лишь уметь умножать и делить на 2. Этот способ получил название КРЕСТЬЯНСИЙ (существует мнение, что он берет начало от египетского).
Пример: умножим 47 на 35,
2.2. Таблица умножения на «9»
Следующий способ был замечен мною, когда я учила таблицу умножения на 9.
1*9=9
2*9=18
3*9=27
4*9=36 и т.д.
Вглядитесь внимательно. Сумма цифр полученного числа всегда равна 9. На первом месте (в числе десятков) в ответе будет стоять цифра на один меньше множителя, не равного 9. По такому приему можно запомнить таблицу умножения на «9».
Движение пальца – это еще один из способов помочь памяти: с помощью пальцев рук запомнить таблицу умножения на 9. Положив обе руки рядом на стол, по порядку занумеруем пальцы обеих рук следующим образом: первый палец слева обозначим 1, второй за ним обозначим цифрой 2, затем 3, 4… до десятого пальца, который означает 10. Если надо умножить на 9 любое из первых девяти чисел, то для этого, не двигая рук со стола, надо приподнять вверх тот палец, номер которого означает число, на которое умножается девять; тогда число пальцев, лежащих налево от поднятого пальца, определяет число десятков, а число пальцев, лежащих справа от поднятого пальца, обозначает число единиц полученного произведения (убедитесь в этом самостоятельно).
2.3. МЕТОД «РЕШЕТКИ»
Выдающийся арабский математик и астроном Абу Абдалах Мухаммед Бен Мусса аль – Хорезми жил и работал в Багдаде. Учёный работал в Доме мудрости, где были библиотека и обсерватория, здесь работали почти все крупные арабские учёные.
Сведений о жизни и деятельности Мухаммеда аль – Хорезми очень мало. Сохранились лишь две его работы – по алгебре и по арифметике. В последний из этих книг даны четыре правила арифметических действий, почти такие же, что используются в наше время.
2 | 5 | ||
1 | 1 2 | 3 0 | 6 |
5 | 0 6 | 1 5 | 3 |
7 | 5 |
В своей «Книге об индийском счете» учёный описал способ, придуманный в Древней Индии, а позже названный «МЕТОДОМ РЕШЁТКИ». Этот метод даже проще, чем применяемый сегодня.
Пример: умножим 25 и 63.
Начертим таблицу, в которой две клетки по длине и две по ширине запишем одно число по длине другое по ширине. В клетках запишем результат умножения данных цифр, на их пересечении отделим десятки и единицы диагональю. Полученные цифры сложим по диагонали, и полученный результат можно прочитать по стрелке (вниз и вправо).
Мною рассмотрен простой пример, однако, этим способом можно умножать любые многозначные числа.
2.4. УМНОЖЕНИЕ НА ПАЛЬЦАХ
Древние египтяне были очень религиозны и считали, что душу умершего в загробном мире подвергают экзамену по счёту на пальцах. Уже это говорит о том значении, которое придавали древние этому способу выполнения умножения натуральных чисел (он получил название ПАЛЬЦЕВОГО СЧЕТА).
Умножали на пальцах однозначные числа от 6 до 9. Для этого на одной руке вытягивали столько пальцев, насколько первый множитель превосходил число 5, а на второй делали то же самое для второго множителя. Остальные пальцы загибали. После этого брали столько десятков, сколько вытянуто пальцев на обеих руках, и прибавляли к этому числу произведение загнутых пальцев на первой и второй руке.
Пример: 8 ∙ 9 = 72
Позже пальцевой счёт усовершенствовали – научились показывать с помощь пальцев числа до 10000.
Итак, рассмотренные нами старинные способы умножения показывают, что используемый в школе алгоритм умножения натуральных чисел - не единственный и известен он был не всегда.
Однако, он достаточно быстр и наиболее удобен.
Глава III. УСТНЫЙ СЧЕТ – ГИМНАСТИКА УМА
3.1. РАЗЛИЧНЫЕ СПОСОБЫ СЛОЖЕНИЯ И ВЫЧИТАНИЯ
СЛОЖЕНИЕ
Основное правило для выполнения сложения в уме звучит так:
Чтобы прибавить к числу 9, прибавьте к нему 10 и отнимите 1;чтобы прибавить 8, прибавьте 10 и отнимите 2; чтобы прибавить 7, прибавьте10 и отнимите 3 и т.д. Например:
56+8=56+10-2=64;
65+9=65+10-1=74.
СЛОЖЕНИЕ В УМЕ ДВУЗНАЧНЫХ ЧИСЕЛ
Если цифра единиц в прибавляемом числе больше 5, то число необходимо округлить в сторону увеличения, а затем вычесть ошибку округления из полученной суммы. Если же цифра единиц меньше, то прибавляем сначала десятки, а потом единицы. Например:
34+48=34+50-2=82;
27+31=27+30+1=58.
ВЫЧИТАНИЕ
Чтобы вычесть два числа в уме, нужно округлить вычитаемое, а затем подкорректируйте полученный ответ.
56-9=56-10+1=47;
436-87=436-100+13=349.
ВЫЧИТАНИЕ ЧИСЛА МЕНЬШЕ 100 ИЗ ЧИСЛА БОЛЬШЕ 100
Если вычитаемое меньше 100, а уменьшаемое больше 100, но меньше 200, есть простой способ вычислить разность в уме.
134-76=58
76 на 24меньше 100. 134 на 34 больше 100. Прибавим 24 к 34 и получим ответ: 58.
152-88=64
88 на 12 меньше 100,а 152 больше 100 на 52, значит
152-88=12+52=64
3.2. РАЗЛИЧНЫЕ СПОСОБЫ УМНОЖЕНИЯ И ДЕЛЕНИЯ
УМНОЖЕНИЕ НА 1,5
Чтобы умножить число на 1,5, нужно к исходному числу прибавить его половину. Например:
;
.
УМНОЖЕНИЕ НА 9
Чтобы умножить число на 9, к нему приписывают 0 и отнимают исходное число. Например:
;
.
УМНОЖЕНИЕ НА 11
1 способ. Чтобы число умножить на 11, к нему приписывают 0 и прибавляют исходное число. Например:
;
.
2 способ. Если хочешь умножить число на 11, то поступай так: запиши число, которое нужно умножить на 11, а между цифрами исходного числа вставь сумму этих цифр. Если сумма получается двузначное число, то 1 прибавляем к первой цифре исходного числа. Например:
Такой способ подходит только для умножения двузначных чисел.
ЗАКЛЮЧЕНИЕ
Мы вступили в новое тысячелетие! Грандиозные открытия и достижения человечества. Мы много знаем, многое умеем. Кажется чем-то сверхъестественным, что с помощью чисел и формул можно рассчитать полёт космического корабля, «экономическую ситуацию» в стране, погоду на «завтра», описать звучание нот в мелодии. Нам известно высказывание древнегреческого математика, философа, жившего в IV веке д.н.э. – Пифагора– «Всё есть число!».
Согласно философскому воззрению этого учёного и его последователей, числа управляют не только мерой и весом, но также всеми явлениями, происходящими в природе, и являются сущностью гармонии, царствующей в мире, душой космоса.
Описывая старинные способы вычислений и современные приёмы быстрого счёта, мы попытались показать, что как в прошлом, так и в будущем, без математики, науки созданной разумом человека, не обойтись.
Изучение старинных способов вычислений показало, что это арифметические действия были трудными и сложными из-за многообразия способов и их громоздкости выполнения.
Современные способы вычислений просты и доступны всем.
При знакомстве с научной литературой обнаружила более быстрые и надежные способы вычислений.
Возможно, что с первого раза у многих не получится быстро, с ходу выполнять эти или другие подсчеты. Пусть сначала не получится использовать прием, показанный в работе. Не беда. Нужна постоянная вычислительная тренировка. Из урока в урок, из года в год. Она поможет приобрести полезные навыки устного счета.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
Ель
Два Мороза
Цветущая сакура
Рисуем пшеничное поле гуашью
Солдатская шинель