Необходимость в дробных числах возникла у человека на весьма ранней стадии развития. После охоты людям необходимо было делить убитых животных между собой. Число животных не всегда делилось поровну между охотниками, что привело первобытного человека к понятию о дробном числе.
Наряду с необходимостью считать предметы у людей с древних времён появилась потребность измерять длину, площадь, объём, время и другие величины. Результат измерений не всегда удаётся выразить натуральным числом, приходится учитывать и части употребляемой меры. Исторически дроби возникли в процессе измерения.
Потребность в более точных измерениях привела к тому, что начальные единицы меры начали дробить на 2, 3 и более частей. Более мелкой единице меры, которую получали как следствие раздробления, давали индивидуальное название, и величины измеряли уже этой более мелкой единицей.
В 5 классе на уроках математики мы познакомимся с новыми числами - дробями. Я уже знаю, что такое дробь. Впервые узнал я о дробях на сайте «Учи.ру». С первого знакомства с ними было понятно, что без них не обойтись даже в обычной жизни, так как нам каждый день приходится сталкиваться с проблемой деления целого на части. Этим и обусловлена актуальность выбранной мной темы.
Вложение | Размер |
---|---|
iz_istorii_obyknovennyh_drobey.docx | 270.76 КБ |
Оглавление
Глава I. Понятие дробей………………………………………………………….........
1.1 Обыкновенные дроби…………………………………………………………5-7
1.2 Десятичные дроби……………………………………………………………..7-8
Глава II Из истории обыкновенных и десятичных дробей
2.1 Дроби в Древнем Египте 8-9
2.3 Дроби в Древнем Вавилоне 10-11
Необходимость в дробных числах возникла у человека на весьма ранней стадии развития. После охоты людям необходимо было делить убитых животных между собой. Число животных не всегда делилось поровну между охотниками, что привело первобытного человека к понятию о дробном числе.
Наряду с необходимостью считать предметы у людей с древних времён появилась потребность измерять длину, площадь, объём, время и другие величины. Результат измерений не всегда удаётся выразить натуральным числом, приходится учитывать и части употребляемой меры. Исторически дроби возникли в процессе измерения.
Потребность в более точных измерениях привела к тому, что начальные единицы меры начали дробить на 2, 3 и более частей. Более мелкой единице меры, которую получали как следствие раздробления, давали индивидуальное название, и величины измеряли уже этой более мелкой единицей.
В 5 классе на уроках математики мы познакомимся с новыми числами - дробями. Я уже знаю, что такое дробь. Впервые узнал я о дробях на сайте «Учи.ру». С первого знакомства с ними было понятно, что без них не обойтись даже в обычной жизни, так как нам каждый день приходится сталкиваться с проблемой деления целого на части. Этим и обусловлена актуальность выбранной мной темы.
Цель моей работы изучение истории возникновения дробей.
Задачи:
1. Собрать и систематизировать материал по теме проекта;
2. Проследить историю развития понятия обыкновенной и десятичной дроби;
3. Подготовить презентацию;
4. Сделать плакат.
Основные этапы:
«Без знаний дробей никто не может признаваться знающим арифметику» Цицерон |
Дроби появились в глубокой древности. При разделе добычи, при измерениях величин, да и в других похожих случаях люди встретились с необходимостью ввести дроби.
Древние египтяне уже знали, как поделить 2 предмета на троих, для этого числа -2/3- у них был специальный значок. Между прочим, это была единственная дробь в обиходе египетских писцов, у которой в числителе не стояла единица - все остальные дроби непременно имели в числителе единицу (так называемые основные дроби): 1/2; 1/3; 1/28; ... . Если египтянину нужно было использовать другие дроби, он представлял их в виде суммы основных дробей. Например, вместо 8/15 писали 1/3+1/5. Иногда это бывало удобно. В папирусе Ахмеса есть задача :
"Разделить 7 хлебов между 8 людьми". Если резать каждый хлеб на 8 частей, придётся провести 49 разрезов.
А по-египетски эта задача решалась так: Дробь 7/8 записывали в виде долей: 1/2+1/4+1/8. Значит каждому человеку надо дать полхлеба, четверть хлеба и восьмушку хлеба; поэтому четыре хлеба разрезали пополам, два хлеба- на 4 части и один хлеб на 8 долей, после чего каждому дали его часть.
Но складывать такие дроби было неудобно. Ведь в оба слагаемых могут входить одинаковые доли, и тогда при сложении появится дробь вида 2/n. А таких дробей египтяне не допускали. Поэтому, папирус Ахмеса начинается с таблицы, в которой все дроби такого вида от 2/5 до 2/99 записаны в виде суммы долей.
Умели египтяне также умножать и делить дроби. Но для умножения приходилось умножать доли на доли, а потом, быть может, снова использовать таблицу. Ещё сложнее обстояло с делением.
В древнем Вавилоне предпочитали наоборот, - постоянный знаменатель, равный 60-ти. Шестидесятеричными дробями, унаследованными от Вавилона, пользовались греческие и арабские математики и астрономы. Но было неудобно работать над натуральными числами, записанными по десятичной системе, и дробями, записанными по шестидесятеричной. А работать с обыкновенными дробями было уже совсем трудно. Поэтому голландский математик Симон Стевин предложил перейти к десятичным дробям
Интересная система дробей была в Древнем Риме. Она основывалась на делении на 12 долей единицы веса, которая называлась асс. Двенадцатую долю асса называли унцией. А путь, время и другие величины сравнивали с наглядной вещью- весом. Например, римлянин мог сказать, что он прошел семь унций пути или прочел пять унций книги. При этом, конечно, речь шла не о взвешивании пути или книги. Имелось в виду, что пройдено 7/12 пути или прочтено 5/12 книги. А для дробей, получающихся сокращением дробей со знаменателем 12 или раздроблением двенадцатых долей на более мелкие, были особые названия.
Даже сейчас иногда говорят:"Он скрупулёзно изучил этот вопрос." Это значит, что вопрос изучен до конца, что не одной самой малой неясности не осталось. А происходит странное слово "скрупулёзно" от римского названия 1/288 асса - "скрупулус". В ходу были и такие названия: "семис"- половина асса, "секстанс"- шестая его доля, "семиунция"- половина унции, т.е. 1/24 асса и т.д. Всего применялось 18 различных названий дробей. Чтобы работать с дробями, надо было помнить для этих дробей таблицу сложения и таблицу умножения. Поэтому римские купцы твёрдо знали, что при сложении триенса (1/3 асса) и секстанса получается семис, а при умножении беса (2/3 асса) на сескунцию (2/3 унции, т.е.1/8 асса) получается унция. Для облегчения работы составлялись специальные таблицы, некоторые из которых дошли до нас.
Современную систему записи дробей с числителем и знаменателем создали в Индии. Только там писали знаменатель сверху, а числитель - снизу, и не писали дробной черты.
Развитие промышленности и торговли, науки и техники требовали все более громоздких вычислений, которые с помощью десятичных дробей легче было выполнять. Широкое применение десятичные дроби получили в XIX веке после введения тесно связанной с ними метрической системы мер и весов. Например, в нашей стране в сельском хозяйстве и промышленности десятичные дроби и их частный вид – проценты – применяются намного чаще, чем обыкновенные дроби.
Исторически дроби возникли в процессе измерения.
В основе любого измерения всегда лежит какая-то величина (длина, объем, вес и т.д.). Потребность в более точных измерениях привела к тому, что начальные единицы меры начали дробить на 2, 3 и более частей. Более мелкой единице меры, которую получали как следствие раздробления, давали индивидуальное название, и величины измеряли уже этой более мелкой единицей. Так возникали первые конкретные дроби как определенные части каких-то определенных мер.
Уже несколько тысячелетий человечество пользуется дробными числами, а вот записывать их удобнымидесятичными знаками оно додумалось значительно позже.
Примерно в III веке н.э. десятичный счет распространился на меры массы и объема. Тогда и было создано понятие о десятичной дроби, сохранившей, однако метрологическую форму. Например, в Китае в Х веке существовали следующие меры массы: 1лан = 10 цянь = 102 фэнь = 103 ли = 104 хао = 105 сы = 106 хо. Целую часть стали отделять от дробной особым иероглифом«дянь» (точка).
Полную теорию десятичных дробей дал узбекский ученый Джемшид Гиясэддин ал-Каши в книге " Ключ к арифметике", изданной в 1424 году, в которой он показал запись дроби в одну строку числами в десятичной системе и дал правила действия с ними. Ученый пользовался несколькими способами написания дроби: то он применял вертикальную черту, то чернила черного и красного цветов.В конце XVI века мысль записывать дробные числа десятичным знакам пришла некому Симону Стевину из Фландрии. В своей книге "Десятая" (1585 г.) он излагает теорию десятичных дробей и предлагает писать цифры дробного числа в одну строку с цифрами целого числа, при этом нумеруя их.
В древнем Египте пользовались только простейшими дробями, у которых числитель равен единице (те, которые мы называем «долями»). Математики называют такие дроби аликвотными (от лат. aliquot – несколько). Так же используется название основные дроби или единичные дроби.
Египтяне ставили иероглиф
(ер, «[один] из» или ре, рот) над числом для обозначения единичной дроби в обычной записи, а в священных текстах использовали линию. К примеру:
Египтяне использовали только две дроби не являющиеся долями – две трети и три четверти. Эти дроби часто встречались в вычислениях. Для них существовали специальные символы, был специальный знак и для дроби 1/2.
Римляне пользовались, в основном, только конкретными дробями, которые заменяли абстрактные части подразделами используемых мер. Эта система дробей основывалась на делении на 12 долей единицы веса, которая называлась асс. Так возникли римские двенадцатеричные дроби, т.е. дроби у которых знаменатель всегда был двенадцать. Двенадцатую долю асса называли унцией. Вместо 1\12 римляне говорили «одна унция», 5\12 – «пять унций» и т.д. Три унции назывались четвертью, четыре унции – третью, шесть унций – половиной.
А путь, время и другие величины сравнивали с наглядной вещью- весом. Например, римлянин мог сказать, что он прошел семь унций пути или прочел пять унций книги. При этом, конечно, речь шла не о взвешивании пути или книги. Имелось в виду, что пройдено 7/12 пути или прочтено 5/12 книги. А для дробей, получающихся сокращением дробей со знаменателем 12 или раздроблением двенадцатых долей на более мелкие, были особые названия. Всего применялось 18 различных названий дробей. Например, в ходу были такие названия:
“скрупулус” - 1/288 асса,
”семис”- половина асса,
“секстанс”- шестая его доля,
“семиунция”- половина унции, т.е. 1/24 асса и т.д.
Чтобы работать с такими дробями, надо было помнить для этих дробей таблицу сложения и таблицу умножения. Поэтому римские купцы твёрдо знали, что при сложении триенса (1/3 асса) и секстанса получается семис, а при умножении беса (2/3 асса) на сескунцию ( 2/3 унции, т.е.1/8 асса) получается унция. Для облегчения работы составлялись специальные таблицы, некоторые из которых дошли до нас.
Унция обозначалась чертой - ,половина асса (6 унций) – буквой S (первой в латинском слове Semis-половина). Эти два знака служили для записи любой двенадцатеричной дроби, каждая из которых имела свое название. Например, 7\12 записывались так: S-.
Из более 500 тыс. глиняных табличек, найденных археологами при раскопках в Древней Месопотамии, около 400 содержат математические сведения. Большинство из них расшифрованы и позволяют составить довольно ясное представление о поразительных алгебраических и геометрических достижениях вавилонских учёных.
О времени и месте рождения математики мнения разнятся. Многочисленные исследователи этого вопроса приписывают создание её различным народам и приурочивают к разным эпохам. Единой точки зрения на этот счёт не было ещё у древних греков, среди которых особенно была распространена версия, что геометрию придумали египтяне, а арифметику — финикийские купцы, которые нуждались в подобных знаниях для торговых расчётов. Геродот в «Истории» и Страбон в «Географии» отдавали приоритет финикийцам. Платон и Диоген Лаэрций родиной и арифметики, и геометрии считали Египет. Таково же и мнение Аристотеля, полагавшего, что математика зародилась благодаря наличию досуга у тамошних жрецов.
Это замечание следует за пассажем о том, что в каждой цивилизации сначала рождаются практические ремёсла, затем искусства, служащие удовольствию, и лишь затем науки, направленные на познание. Евдем, ученик Аристотеля, как и большинство его предшественников, также считал родиной геометрии Египет, а причиной её появления — практические потребности землемерия. В своём совершенствовании геометрия проходит, по Евдему, три этапа: зарождение практических навыков землемерия, появление практически ориентированной прикладной дисциплины и превращение её в теоретическую науку. Судя по всему, два первых этапа Евдем относил к Египту, а третий — к греческой математике. Правда, он всё же признавал, что теория вычисления площадей возникла из решения квадратных уравнений, имевших вавилонское происхождение.
В первых учебниках математики (VII в.) дроби называли долями, позднее «ломаными числами». В русском языке слово дробь появилось в VIII веке, оно происходит от глагола «дробить» — разбивать, ломать на части. При записи числа использовалась горизонтальная черта.
В старых руководствах есть следующие названия дробей на Руси:
1/2 - половина, полтина
1/3 – треть
1/4 – четь
1/6 – полтреть
1/8 - полчеть
1/12 –полполтреть
1/16 - полполчеть
1/24 – полполполтреть (малая треть)
1/32 – полполполчеть (малая четь)
1/5 – пятина
1/7 - седьмина
1/10 – десятина.
Использовалась в России земельная мера четверть и более мелкая –получетверть, которая называлась осьмина. Это были конкретные дроби, единицы для измерения площади земли, но осьминой нельзя было измерить время или скорость и др. Значительно позднее осьмина стала означать отвлеченную дробь 1/8, которой можно выразить любую величину.
Моя работа состоит из двух глав. Мной были изучены и обработаны материалы 3 источников, среди которых учебная, научная и энциклопедическая литература, Интернет-сайт. Мною подготовлена презентация, сделанная в редакторе Power Point, выпущенным продуктом стал плакат.
Работая над проектом, я узнал много нового и интересного. Познакомился с первыми дробями, которыми оперировали люди. Узнал новые для меня имена учёных, которые внесли свой вклад в развитие учения о дробях. Мне было очень интересно работать над этим проектом. Я знаю, что существуют различные дроби, например: правильные и неправильные, периодические и непериодические, а может быть существуют еще какие-нибудь дроби . Это и будет продолжением моего следующего проекта.
Литература
1. Бородин А.И. Из истории арифметики. Головное издательство «Вища школа»-К., 2006.- 57 с;
2. Глейзер Г. И. История математики в школе: IV-VI кл. Пособие для учителей. – М.: Просвещение, 2001.- 61 с;.
3. https://ru.wikipedia.org/wiki/ Дробь_(математика)— свободной энциклопедии.
ПРИЛОЖЕНИЕ № 1
к приказу МОУ
«Средняя общеобразовательная
школа №3 п.Советский» РМЭ
Фамилия, имя, класс Григорьев Максим, 5 г
Название проекта «Возникновение обыкновенных и десятичных дробей»
В начале проекта | В ходе проекта | В конце проекта | |
Что мне уже известно по теме проекта? | Мне стали известны обыкновенные и десятичные дроби. | Мне стали известны дроби из разных стран и миров. | Мне стало известно, где и как возникли обыкновенные и десятичные дроби. |
Что предстоит узнать, работая в проекте? | Где? Как? Возникли обыкновенные и десятичные дроби. | Историю обыкновенных и десятичных дробей. | |
Чему мне предстоит научиться? | Мне предстоит научиться создавать информационный проект. | Исправлять ошибки входе проекта. | Создавать информационные , творческие работы. |
Умею ли находить ошибки и их исправлять? | Нет. | Да умею. | Да умею. |
Могу ли я научить своего товарища тому, что у меня получается? | Нет | Да | |
Чему я научился, работая в проекте? | Работать в Документе Microsoft Office Word , Microsoft PowerPoint 2010. |
Плакат
Солнечная система. Взгляд со стороны
Любимое яичко
Фокус-покус! Раз, два,три!
Как Снегурочке раскатать тесто?
Северное сияние