Резисторы классифицируются по характеру зависимости величины сопротивления от напряжения, по типу сопротивления, по составу резистивного слоя, и по форме изготовления
Вложение | Размер |
---|---|
rezistory_urok.docx | 532.32 КБ |
Резисторы. Классификации резисторов
Резисторы классифицируются по характеру зависимости величины сопротивления от напряжения, по типу сопротивления, по составу резистивного слоя, и по форме изготовления
По характеру зависимости величины сопротивления от напряжения резисторы подразделяют на линейные (с линейной вольт-амперной характеристикой) и нелинейные (с нелинейной вольт-амперной характеристикой).
Линейные резисторы по типу сопротивления подразделяют на две основные группы: резисторы постоянного сопротивления и резисторы переменного сопротивления. В свою очередь резисторы постоянного сопротивления делятся на проволочные и непроволочные, а резисторы переменного сопротивления на реостаты и потенциометры – рис. 1.1.
Непроволочные резисторы классифицируются по составу резистивного слоя и бывают углеродистые, металлопленочные, металлодиэлектрические, металлоокисные, полупроводниковые и пленочные композиционные.
По форме изготовления резисторы делятся на два класса: проволочные и непроволочные. К проволочным относятся резисторы с проводящими элементами из провода или ленты, к непроволочным относятся резисторы, в которых в качестве проводящих элементов используются специальные объемные структуры физического тела или поверхностные слои, образованные на базовых изоляционных деталях.
По способу защиты от влаги резисторы выполняют незащищенными, лакированными, компаундированными, впрессованными в пластмассу, герметизированными, вакуумными.
По основным конструктивным признакам резистивного элемента на тонкопленочные, объемные, проволочные.
Нелинейные резисторы подразделяют на терморезисторы, варисторы, тензорезисторы, магниторезисторы, позисторы, фоторезисторы и используются в электрических цепях, где требуется изменение величины сопротивления от температуры (терморезисторы и позисторы), напряжения (варисторы), лучистой энергии (фоторезисторы) и других факторов.
В случае, когда требуется регулировать один из параметров электрической цепи по определенному закону, применяют резисторы переменного сопротивления с требуемым законом изменения сопротивления от перемещения его подвижной части.
В некоторых устройствах сопротивление резисторов изменяется по определенному закону под действием температуры, приложенного напряжения, лучистой энергии или других факторов. Например, для компенсации нежелательных изменений параметров электрической цепи используют резистор, величина сопротивления которого меняется от температуры по требуемому закону.
Резисторы, изменяющие сопротивление от приложенного напряжения, используются в стабилизаторах цепей питания, а также в качестве ограничителей тока, резисторы же, сопротивление которых зависит от уровня падающей на них лучистой энергии, применяют в устройствах вместо более сложных и дорогих фотоэлементов.
В зависимости от особенностей назначения промышленностью выпускаются резисторы общего и специального назначения.
Резисторы общего назначения предназначаются для использования в электрических цепях, не требующих от резистора специфических свойств и параметров.
Резисторы специального назначения обладают рядом специфических свойств и параметров. К ним относятся высокоомные (с величинами сопротивлений, превышающими единицы мегоомов), высоковольтные (с допустимыми напряжениями, превышающими сотни вольт), высокочастотные (предназначенные для работы на частотах свыше 10 МГц), прецизионные и полу прецизионные (отличающиеся высокой точностью величины сопротивления и повышенной стабильностью), миниатюрные (обладающие существенно меньшими габаритами, чем резисторы общего назначения и использующиеся при малых уровнях электрической нагрузки) резисторы.
ВЫВОД: существуют разнообразные классификации резисторов, например, классификация по типу сопротивления, по характеру зависимости величины сопротивления от напряжения, по форме изготовления, по способу защиты от влаги, по основным конструктивным признакам резистивного элемента и ряд других. Более подробно классе
Схема замещения резистора чаще всего имеет вид параллельно соединённых сопротивления и ёмкости. Иногда на высоких частотах последовательно с этой цепью включают индуктивность. В схеме замещения сопротивление — основной параметр резистора, ёмкость и индуктивность — паразитные параметры.
Содержание
Линейные и нелинейные резисторы
Все резисторы делятся на линейные и нелинейные.
Сопротивления линейных резисторов не зависят от приложенного напряжения или протекающего тока.
Сопротивления нелинейных резисторов изменяются в зависимости от значения приложенного напряжения или протекающего тока. Например, сопротивление осветительной лампы накаливания при отсутствии тока в 10-15 раз меньше, чем в режиме освещения. В линейных резистивных цепях форма тока совпадает с формой напряжения, вызвавшего этот ток.
Основные характеристики и параметры резисторов
Определяется по формуле: , где и — сопротивления, измеренные при напряжениях, соответствующих -ной и -ной номинальной мощности рассеяния резистора.[3]
Некоторые характеристики существенны при проектировании устройств, работающих на высоких и сверхвысоких частотах, это:
Обозначение резисторов на схемах
а) обозначение, принятое в России и в Европе
б) принятое в США
По стандартам России условные графические обозначения резисторов на схемах должны соответствовать ГОСТ 2.728-74. В соответствии с ним, постоянные резисторы обозначаются следующим образом:
Обозначение | Описание |
Постоянный резистор без указания номинальной мощности рассеивания | |
Постоянный резистор номинальной мощностью рассеивания 0,05 Вт | |
Постоянный резистор номинальной мощностью рассеивания 0,125 Вт | |
Постоянный резистор номинальной мощностью рассеивания 0,25 Вт | |
Постоянный резистор номинальной мощностью рассеивания 0,5 Вт | |
Постоянный резистор номинальной мощностью рассеивания 1 Вт | |
Постоянный резистор номинальной мощностью рассеивания 2 Вт | |
Постоянный резистор номинальной мощностью рассеивания 5 Вт |
Переменные, подстроечные и нелинейные резисторы обозначаются следующим образом:
Обозначение | Описание |
Переменный резистор (реостат). | |
Переменный резистор, включённый как реостат (ползунок соединён с одним из крайних выводов). | |
Подстроечный резистор, включённый как реостат (ползунок соединён с одним из крайних выводов). | |
Варистор (сопротивление зависит от приложенного напряжения). | |
Термистор (сопротивление зависит от температуры). | |
Фоторезистор (сопротивление зависит от освещённости). |
Цепи, состоящие из резисторов[править | править код]
Основная статья: Последовательное и параллельное соединение
Последовательное соединение резисторов
При последовательном соединении резисторов их сопротивления складываются
Доказательство[показать]
Если , то общее сопротивление равно:
При последовательном соединении резисторов их общее сопротивление будет больше наибольшего из сопротивлений.
Параллельное соединение резисторов
При параллельном соединении резисторов складываются величины, обратные сопротивлению (то есть общая проводимость складывается из проводимостей каждого резистора )
Если цепь можно разбить на вложенные подблоки, последовательно или параллельно включённые между собой, то сначала считают сопротивление каждого подблока, потом заменяют каждый подблок его эквивалентным сопротивлением, таким образом находится общее (искомое) сопротивление.
Доказательство[показать]
Для двух параллельно соединённых резисторов их общее сопротивление равно: .
Если , то общее сопротивление равно:
При параллельном соединении резисторов их общее сопротивление будет меньше наименьшего из сопротивлений.
Смешанное соединение резисторов
Схема состоит из двух параллельно включённых блоков, один из них состоит из последовательно включённых резисторов и , общим сопротивлением , другой из резистора , общая проводимость будет равна , то есть общее сопротивление .
Для расчёта таких цепей из резисторов, которые нельзя разбить на блоки, последовательно или параллельно соединённые между собой, применяют правила Кирхгофа. Иногда для упрощения расчётов бывает полезно использовать преобразование треугольник-звезда и применять принципы симметрии.
Мощность резисторов
Как при параллельном, так и при последовательном соединении резисторов итоговая мощность будет равна сумме мощностей соединяемых резисторов.
Делитель напряжения
Основная статья: Делитель напряжения
Делитель напряжения.
Резистивный делитель напряжения можно представить как два последовательных резистора, называемые плечами, сумма напряжений на которых равна входному напряжению. Плечо между нулевым потенциалом и средней точкой называют нижним: с него обычно снимается выходное напряжение делителя.
, где - коэффициент передачи .
Если R = 9R1, то UWY = 0,1UWE, (коэффициент передачи ,то есть произойдёт деление входного напряжения в 10 раз).
Классификация резисторов]
Три резистора разных номиналов для поверхностного монтажа (SMD), припаянные на печатную плату
Резисторы являются элементами электронной аппаратуры и могут применяться как дискретные компоненты или как составные части интегральных микросхем. Дискретные резисторы классифицируются по назначению, виду ВАХ,R по способу защиты и по способу монтажа, характеру изменения сопротивления, технологии изготовления[4].
По назначению:
По характеру изменения сопротивления:
Постоянные резисторы (для навесного монтажа). | Переменный резистор. | Подстроечные резисторы. | Прецизионный многооборотный подстроечный резистор. |
По способу защиты от влаги:
По способу монтажа:
По виду вольт-амперной характеристики:
По виду используемых проводящих элементов[5]:
Проволочный резистор с отводом. | Плёночный угольный резистор (часть защитного покрытия удалена для демонстрации токопроводного слоя). |
По виду применяемых материалов:
Резисторы общего и специального назначения
Переменный резистор и резисторы с мощностью рассеивания 25 и 10 Вт
Промышленностью выпускаются резисторы общего и специального назначения. Резисторы общего назначения используют в качестве анодных нагрузок радиоламп и делителей в цепях питания, элементов фильтров, регуляторов громкости и тембра, в цепях формирования импульсов, в измерительных приборах невысокой точности. В эту группу входят постоянные резисторы, сопротивление которых фиксируется при изготовлении, и переменные, сопротивление которых можно плавно менять в определенных пределах. Сопротивление резисторов общего назначения лежит в пределах от 10 Ом до 10 Мом, а номинальная мощность рассеивания - от 0,125 до 100 Вт.
К резисторам специального назначения, обладающим рядом специфических свойств и параметров, относят высокоомные, высоковольтные, высокочастотные, прецизионные, полу прецизионные.
Резисторы, выпускаемые промышленностью
SIP(single inline-package)-резисторная сборка
Выпускаемые промышленностью резисторы одного и того же номинала имеют разброс сопротивлений. Значение возможного разброса определяется точностью резистора. Выпускают резисторы с точностью 20%, 10%, 5%, и т. д. вплоть до 0,01%[8]. Номиналы резисторов не произвольны: их значения выбираются из специальных номинальных рядов, наиболее часто из номинальных рядов E6 (20%), E12 (10%) или E24 (для резисторов с точностью до 5%), для более точных резисторов используются более точные ряды (например E48).
Резисторы, выпускаемые промышленностью, характеризуются также определённым значением максимальной рассеиваемой мощности (выпускаются резисторы мощностью 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 5 Вт) (согласно ГОСТ 24013-80 и ГОСТ 10318-80 советской радиотехнической промышленностью выпускались резисторы следующих номиналов мощностей, в Ваттах: 0,01, 0,025, 0,05, 0,062, 0,125, 0,5, 1, 2, 3, 4, 5, 8, 10, 16, 25, 40, 63, 100, 160, 250, 500)
[9]
Маркировка резисторов с проволочными выводами[править | править код]
Резистор-перемычка | Преци-зионный резистор | Резистор типа МЛТ[10] | Термо-резистор NTC |
Варианты цветовой маркировки с 4 и 5 полосками
Резисторы, в особенности малой мощности — мелкие детали, резистор мощностью 0,125 Вт имеет длину несколько миллиметров и диаметр порядка миллиметра. Прочитать на такой детали номинал с десятичной запятой трудно, поэтому при указании номинала вместо десятичной точки пишут букву, соответствующую единицам измерения (К — для килоомов; М — для мегоомов; E, R или без указания единиц — для единиц Ом). Кроме того, любой номинал отображается максимум тремя символами. Например, 4K7 обозначает резистор сопротивлением 4,7 кОм, 1R0 — 1 Ом, М12 — 120 кОм (0,12 МОм) и т. д. Однако в таком виде наносить номиналы на маленькие резисторы сложно, и для них применяют маркировку цветными полосами.
Для резисторов с точностью 20% используют маркировку с тремя полосками, для резисторов с точностью 10% и 5% — маркировку с четырьмя полосками, для более точных резисторов — с пятью или шестью полосками. Первые две полоски всегда означают первые два знака номинала. Если полосок 3 или 4, третья полоска означает десятичный множитель, то есть степень десятки, которая умножается на число, состоящее из двух цифр, указанное первыми двумя полосками. Если полосок 4, последняя указывает точность резистора. Если полосок 5, третья означает третий знак сопротивления, четвёртая — десятичный множитель, пятая — точность. Шестая полоска, если она есть, указывает температурный коэффициент сопротивления (ТКС). Если эта полоска в 1,5 раза шире остальных, то она указывает надёжность резистора (доля отказов в процентах на 1000 часов работы).
Иногда встречаются резисторы с 5 полосами, но стандартной (5 или 10%) точностью. В этом случае первые две полосы задают первые знаки номинала, третья — множитель, четвёртая — точность, а пятая — температурный коэффициент.
Шесть резисторов разных номиналов и точности
Металлопленочный резистор маркированный 6 цветными полосками
Цветовая кодировка резисторов | |||||
Цвет | как число | как десятичный множитель | как точность в % | как ТКС в ppm/°C | как % отказов |
серебристый | — | 1·10−2 = «0,01» | 10 | — | — |
золотой | — | 1·10−1 = «0,1» | 5 | — | — |
чёрный | 0 | 1·100 = 1 | — | — | — |
коричневый | 1 | 1·101 = «10» | 1 | 100 | 1 % |
красный | 2 | 1·10² = «100» | 2 | 50 | 0,1 % |
оранжевый | 3 | 1·10³ = «1000» | — | 15 | 0,01 % |
жёлтый | 4 | 1·104 = «10 000» | — | 25 | 0,001 % |
зелёный | 5 | 1·105 = «100 000» | 0,5 | — | — |
синий | 6 | 1·106 = «1 000 000» | 0,25 | 10 | — |
фиолетовый | 7 | 1·107 = «10 000 000» | 0,1 | 5 | — |
серый | 8 | 1·108 = «100 000 000» | 0,05 | — | — |
белый | 9 | 1·109 = «1 000 000 000» | — | 1 | — |
отсутствует | — | — | 20 % | — | — |
Пример
Допустим, на резисторе имеются четыре полосы: коричневая, чёрная, красная и золотая. Первые две полоски дают 1 0, третья 100, четвёртая даёт точность 5 %, итого — резистор сопротивлением 10·100 Ом = 1 кОм, с точностью ±5 %.
Металло-плёночный резистор | Углеродистый плёночный резистор | Устройство объёмного углеродистого резистора | Устройство плёночного углеродистого резистора |
Запомнить цветную кодировку резисторов нетрудно: после чёрной 0 и коричневой 1 идёт последовательность цветов радуги. Так как маркировка была придумана в англоязычных странах, голубой и синий цвета не различаются.
Также для облегчения запоминания можно воспользоваться мнемоническим правилом: «Часто Каждый Красный Охотник Желает Знать, Сколько Фазанов Село в Болоте».
Для облегчения различные разработчики программного обеспечения создают программы, которые определяют сопротивление резистора.
Поскольку резистор — симметричная деталь, может возникнуть вопрос: «Начиная с какой стороны читать полоски?» Для четырёх полосной маркировки обычных резисторов с точностью 5 и 10% вопрос решается просто: золотая или серебряная полоска всегда стоит в конце. Для трёхполосного кода первая полоска стоит ближе к краю резистора, чем последняя. Для других вариантов важно, чтобы получалось значение сопротивления из номинального ряда, если не получается, нужно читать наоборот (для резисторов МЛТ-0,125 производства СССР с 4 полосками первой является полоска, нанесённая ближе к краю; обычно она находится на металлическом стаканчике вывода, а остальные три — на более узком керамическом теле резистора). В резисторах Panasonic с пятью полосами резистор располагается так, чтобы отдельно стоящая полоска была справа, при этом первые 2 полоски определяют первые два знака, третья полоса — степень множителя, четвёртая полоса — допуск, пятая полоса — область применения резистора. Особый случай использования цветовой маркировки резисторов — перемычки нулевого сопротивления. Они обозначаются одной чёрной (0) полоской по центру (использование таких резистор подобных перемычек вместо дешёвых кусков проволоки объясняется желанием производителей сократить расходы на перенастройку сборочных автоматов).
Маркировка SMD-резисторов[править | править код]
SMD резистор-перемычка | SMD резистор 10 кОм, 1% | SMD-резисторная сборка 4,7 кОм | SMD резистор 390 Ом |
Устройство SMD резистора
Резисторы нулевого сопротивления (перемычки на плате) кодируются одной цифрой «0» или тремя («000»). Иногда нули имеют прямоугольную форму.
Кодирование 3 или 4 цифрами
например 102 — это 10•10² Ом = 1 кОм
например 1002 — это 100•10² Ом = 10 кОм
1кОм=1000Ом
Кодирование цифра-цифра-буква (JIS-C-5201)
Ряд E96, точность 1 %.
Мантисса m значения сопротивления кодируется 2 цифрами (см. таблицу), степень при 10 кодируется буквой.
Примеры: 09R = 12,1 Ом; 80E = 6,65 МОм; все 1 %.
код | m | код | m | код | m | код | m | код | m | код | m | |||||
01 | 100 | 17 | 147 | 33 | 215 | 49 | 316 | 65 | 464 | 81 | 681 | |||||
02 | 102 | 18 | 150 | 34 | 221 | 50 | 324 | 66 | 475 | 82 | 698 | |||||
03 | 105 | 19 | 154 | 35 | 226 | 51 | 332 | 67 | 487 | 83 | 715 | |||||
04 | 107 | 20 | 158 | 36 | 232 | 52 | 340 | 68 | 499 | 84 | 732 | |||||
05 | 110 | 21 | 162 | 37 | 237 | 53 | 348 | 69 | 511 | 85 | 750 | |||||
06 | 113 | 22 | 165 | 38 | 243 | 54 | 357 | 70 | 523 | 86 | 768 | |||||
07 | 115 | 23 | 169 | 39 | 249 | 55 | 365 | 71 | 536 | 87 | 787 | |||||
08 | 118 | 24 | 174 | 40 | 255 | 56 | 374 | 72 | 549 | 88 | 806 | |||||
09 | 121 | 25 | 178 | 41 | 261 | 57 | 383 | 73 | 562 | 89 | 825 | |||||
10 | 124 | 26 | 182 | 42 | 267 | 58 | 392 | 74 | 576 | 90 | 845 | |||||
11 | 127 | 27 | 187 | 43 | 274 | 59 | 402 | 75 | 590 | 91 | 866 | |||||
12 | 130 | 28 | 191 | 44 | 280 | 60 | 412 | 76 | 604 | 92 | 887 | |||||
13 | 133 | 29 | 196 | 45 | 287 | 61 | 422 | 77 | 619 | 93 | 909 | |||||
14 | 137 | 30 | 200 | 46 | 294 | 62 | 432 | 78 | 634 | 94 | 931 | |||||
15 | 140 | 31 | 205 | 47 | 301 | 63 | 442 | 79 | 649 | 95 | 953 | |||||
16 | 143 | 32 | 210 | 48 | 309 | 64 | 453 | 80 | 665 | 96 | 976 |
Кодирование буква-цифра-цифра[править | править код]
Ряды E24 и E12, точность 2 %, 5 % и 10 %. (Ряд E48 не используется).
Степень при 10 кодируется буквой (так же, как для 1%-х сопротивлений, см. список выше), мантисса m значения сопротивления и точность кодируются 2 цифрами (см. таблицу).
Примеры:
2 % | 5 % | 10 % | |||||
код | m | код | m | код | m | ||
01 | 100 | 25 | 100 | 49 | 100 | ||
02 | 110 | 26 | 110 | 50 | 120 | ||
03 | 120 | 27 | 120 | 51 | 150 | ||
04 | 130 | 28 | 130 | 52 | 180 | ||
05 | 150 | 29 | 150 | 53 | 220 | ||
06 | 160 | 30 | 160 | 54 | 270 | ||
07 | 180 | 31 | 180 | 55 | 330 | ||
08 | 200 | 32 | 200 | 56 | 390 | ||
09 | 220 | 33 | 220 | 57 | 470 | ||
10 | 240 | 34 | 240 | 58 | 560 | ||
11 | 270 | 35 | 270 | 59 | 680 | ||
12 | 300 | 36 | 300 | 60 | 820 | ||
13 | 330 | 37 | 330 | ||||
14 | 360 | 38 | 360 | ||||
15 | 390 | 39 | 390 | ||||
16 | 430 | 40 | 430 | ||||
17 | 470 | 41 | 470 | ||||
18 | 510 | 42 | 510 | ||||
19 | 560 | 43 | 560 | ||||
20 | 620 | 44 | 620 | ||||
21 | 680 | 45 | 680 | ||||
22 | 750 | 46 | 750 | ||||
23 | 820 | 47 | 820 | ||||
24 | 910 | 48 | 910 |
где Отсюда эффективное напряжение шума на резисторе будет где — ширина полосы частот в которой производится измерение. Чем больше сопротивление резистора, тем больше эффективное напряжение шума пропорциональное квадратному корню из сопротивления, также, эффективное напряжение шума пропорционально корню из температуры.
Даже при абсолютном нуле температур у резисторов, составленных из квантовых точечных контактов, будет иметься шум, обусловленный Ферми-статистикой. Устраним путём последовательного и параллельного включения нескольких контактов.
Уровень шума реальных резисторов выше. В шуме реальных резисторов также всегда присутствует компонент, интенсивность которого пропорциональна обратной частоте, то есть так называемый шум типа 1/f или «розовый шум». Этот шум возникает из-за множества причин, одна из главных — перезарядка ионов примесей, на которых локализованы электроны.
Шумы резисторов также возрастают при прохождении через них тока.
В переменных резисторах имеются так называемые «механические» шумы, возникающие при работе подвижных контактов.
Неисправности резисторов
Пробитый резистор
Основным критерием работоспособности постоянных резисторов считают стабильность их сопротивления. Для переменных резисторов более важным критерием работоспособности является сохранение нормальной регулировочной функции. Допустимые критические изменения сопротивления зависят от вида и назначения аппаратуры, а также места резисторов в схеме.
Причина отказов и их характер связаны с конструктивными особенностями резисторов и специфичны для каждого типа. Наиболее характерными причинами отказов из-за неправильного применения резисторов являются:
Содержание
Визуально определить значение сопротивления резистора не представляется возможным. Ввиду очень малых размеров резисторов, полностью написать их номинал на корпус не предоставляется возможным. Поэтому и применяют маркировку резисторов, которая бывает кодовой, и цветовой, цифро-буквенной.
Цифробуквенная маркировка резисторов
Самым простым в части оценки является советский резистор, номинал его мощности наносится прямо на корпусе маркировкой МЛТ-1 и так далее, где единица измерения – это мощность, а МЛТ – это вид наиболее ходовые в свое советское время резисторы а эта сокращение означает что резистор М- металлопленочный, Л- лакированный, Т-термоустойчивый. Мощность таких резисторов зависит от их размеров, чем больше размеры резистора – тем большую мощности он способен рассеять. Эти резисторы уже вымирающий вид, найти их можно в старой радиоэлектронной технике.
Для резисторов МЛТ типа единицей измерения сопротивления, как и у других выступают Омы, обозначаются они как R и E. Точный размер мощности обозначает дополнительной буквой «К» – килоомы или буквой «М» — мегаомы, система измерения здесь достаточно проста. Например, 33E – это 33 Ома, а 47К – это 47 кОм, соответственно 1М2 – 1.2 Мегаом и так далее.
Если стоит только цифра без буквы, то они означают что это сопротивление в Ом, а допуск при таком обозначении равен 20%. К примеру, если написано число 10, значит перед вами резистор с сопротивлением на 10 Ом, а допуск равен 20%.
Примеры цифро-буквенной маркировки резисторов
3E9И или 3R9 означает что сопротивления 3,9 Ом, допуск 5%
2К2И означает что сопротивления 2,2 кОм, допуск 5%
5К1С означает что сопротивления 5,1 кОм, допуск 10%
Цветовая маркировка резисторов
Цветовая маркировка немного упростила процесс маркировки в масштабах массового производства, но также и запутала некоторых радиолюбителей, но на самом деле все просто.
Стартовой точкой отчета принято считать золотую полоску или же серебряную – это начальное звено, и оно не считается, необходимо повернуть сориентировать таким образом, чтобы цветные полоски начинались с левой стороны.
Далее считывает номер по полоскам:
Третья полоса в штрих коде имеет немного иное значение – она отмеряет количество нулей, которые необходимо добавить к полученному значению. Следовательно, черный – 0, коричный – 1 ноль (0), красный – 2 нуля (00) и так далее.
Чтобы упростить себе подсчеты можно воспользоваться программой, на компьютере которая называется Резистор 2.2 (ссылка на скачивание программы во вложении). Она упростит подсчеты и автоматически покажет мощность резистора при вводе всех полосок. Либо же воспользоваться калькулятором цветовой маркировки резистора прямо онлайн.
Резисторы для выводного монтажа.
Фрагмент печатной платы Commodore 64 (звуковой чип MOS 6581), выполненной монтажом в отверстия. Сверху видны выводные резисторы (R), ферритовые фильтры (FB) и конденсаторы (C).
Монтаж в отверстия, сквозной монтаж, выводной монтаж или монтаж ТНТ компонентов (англ. Through-hole Technology, THT — технология монтажа в отверстия) — технология установки выводных компонентов и электронных узлов на печатные платы (ПП), при которой выводы компонентов монтируются в сквозные отверстия ПП. Технология постепенно уступает место поверхностному монтажу, однако продолжает применяться в изделиях большой электрической мощности и при больших механических нагрузках (например, для монтажа крупных разъёмов). Также в некоторых случаях монтаж в отверстия оказывается экономически выгоднее, например, при использовании дешевых алюминиевых электролитических конденсаторов, поверхностно монтируемые аналоги которых ненадёжны, а их замена на дорогие танталовые конденсаторы не всегда оправдана.
При использовании данной технологии ключевым является предварительная подготовка выводов компонентов (формовка и обрезка с помощью специального оборудования). Компоненты фиксируются на плате с помощью подклейки или особого профиля формовки выводов. Пайка, как правило, выполняется ручным паяльником или на установках автоматической пайки волной либо с помощью установок селективной пайки. В некоторых случаях обрезка выводов выполняется после пайки.
Способы монтажа
Технология установки THT-компонентов относительно проста, хорошо отработана, допускает ручные и автоматизированные методы сборки, хорошо обеспечена сборочным оборудованием и технологическим оснащением.
Существуют автоматы установки компонентов в отверстия[1], а также специальные устройства захвата компонентов — грипперы для автоматов поверхностного монтажа, позволяющие выполнять установку компонентов с выводами, монтируемыми в отверстия. Однако данное оборудование в настоящее время не распространено, и установка компонентов в отверстия выполняется преимущественно вручную. После выполнения монтажа компонентов в отверстие рекомендуется проводить контроль качества пайки.
Области применения
В силовых устройствах, блоках питания, высоковольтных схемах мониторов и других устройств и областях, в которых из-за повышенных требований к надежности большую роль играют традиции, доверие проверенному, например, Авионика, автоматика АЭС и т.п
Качество пайки
При разработке печатных плат необходимо учитывать толщину выводов используемых компонентов. Поскольку качество выводных компонентов зависит от зазора между выводом компонента и стенками металлизированного отверстия. Зазор должен обеспечивать капиллярность, обеспечивающую втягивание припоя в полость между выводом и стенкой металлизированного отверстия ПП, обеспечивать проникновение флюса и выход газов при пайке.
Фотографии кратера Королёва на Марсе
Рисуем подснежники гуашью
Весенние чудеса
Есть в осени первоначальной...
Ласточка