Исследовательская работа по математике
Вложение | Размер |
---|---|
doc222.docx | 248.97 КБ |
prezentatsiya.pptx | 624.67 КБ |
VI районная научно-исследовательская конференция обучающихся обучающихся общеобразовательных организаций Октябрьского муниципального района |
Финансовая математика в задачах ЕГЭ. Решение задач на кредиты |
Исследовательская работа по математике |
Автор работы: Кутепова Анна, ученица 10 класса
Руководитель: Моторина Ольга Робертовна, преподаватель математики «МОУ ОСОШ №1»
с. Октябрьское, 2022 г.
СОДЕРЖАНИЕ
Банковские кредиты и математика 4
Схемы решения экономических задач на кредиты 8
Список информационных источников 22
Введение
В современном, информационно-развитом мире, встречаются люди, которые не умеют правильно распоряжаться своими финансами и контролировать свои доходы и расходы. В этих случаях необходима финансовая грамотность, ведь благодаря данным знаниям мы сможем не только управлять деньгами, правильно инвестировать свои средства, но также будем в безопасности во время сложных жизненных обстоятельств и не потеряем свои доходы. Наша жизнь сегодня настоятельно требует, чтобы каждый человек имел развитое экономическое мышление и был готов к жизни в условиях рыночных отношений. Финансовая грамотность необходима при решении экономических задач в ЕГЭ профильного уровня по математике. Данные задания проверяют практические навыки применения математики в повседневной жизни, навыки построения и исследования математических моделей.
Учащиеся при подходе к итоговой аттестации в 9-х и 11-х классах сталкиваются с проблемой решения задач на проценты, а они есть и в ОГЭ и в ЕГЭ. На данный момент я являюсь ученицей 10 класса. В следующем году мне предстоит сдать ЕГЭ. Я уже ознакомлена с заданиями данного экзамена и знаю, что среди них есть задачи экономической направленности повышенного уровня сложности, которые в курсе старшей общеобразовательной школы не рассматриваются. Для меня стал актуален вопрос о том, каким образом подойти к решению таких задач. Кроме того я выбрала эту тему еще и потому, что в 7 классе мной был выполнен проект «Сам себе финансист: проценты и скидки».В этой исследовательской работе я хочу углубить и расширить свои знания в области финансовой математики. На выбор темы повлияло и то, что в будущем я планирую поступить на экономический факультет ВУЗа.
Тема моей работы: Финансовая математика в экономических задачах ЕГЭ. Решение задач на кредиты.
Гипотеза: Не смотря многообразие типов экономических задач профильного экзамена по математике, их можно классифицировать и вывести единую схему решения.
Цель работы: Изучить основные типы экономических задач на кредиты ЕГЭ по профильной математике и научиться их решать.
Задачи:
Объект исследования: Экономические задачи на кредиты №15 в ЕГЭ.
Предмет исследования: Схемы и алгоритмы решения задач на кредиты.
Методы исследования:
Банковские кредиты и математика
Финансовая математика – раздел прикладной математики, имеющий дело с математическими задачами, связанными с экономическими расчётами.
В единый государственный экзамен по математике (ЕГЭ) профильного уровня экономические задачи были включены в 2015 г. Это задания высокого уровня сложности с практическим содержанием, проверяющее навыки применения математики в повседневной жизни, навыки построения и исследования математических моделей.
Экономические задачи предполагают:
Экономические задачи под номером 15 в ЕГЭ по профильной математике делятся на три основные группы:
Данную работу я посвятила разбору примеров задач первого типа.
Банковский кредит – денежная сумма, предоставляемая банком на определённый срок и на определённых условиях; определённая технология удовлетворения заявленной заёмщикомфинансовой потребности.
Потребность в кредите возникает при оплате значительныхпо стоимости объектов потребления без предварительного накопления достаточных ресурсов, необходимости обеспечения своевременных платежей по товарам, приобретенным в рассрочку, оплате эксклюзивных покупок случайного характера, кассовых разрывах при замене старых объектов потребления на новые, покрытии потерь при наступлении рисков, оплате значительных расходов и т. д.
Понимание и структурирование данных условия задачи – важный шаг на пути правильного ее решения. Для упорядочивания данных условия задачи я использовала таблицы, хотя это и не единственный способ решения 15-го задания, можно использовать и другие методы: последовательности, прикладные методы. Метод решения текстовых задач с помощью таблиц универсальный, знаком каждому школьнику. С помощью таблицможно выработать единый алгоритм решения большинства банковских задач.
В решениях, представленных в работе задач,мною будут использоваться следующие обозначения:
выплатить кредит
Кредитные операции играют основную роль в деятельности банков. Экономические задачи, конечно, несколько упрощают реальную ситуацию, в жизни банковские операции по кредитам значительно сложнее, тем не менее, именно они дают начальные представления о действиях в мире финансов. При решении экономических задач не обойтись без вычисления процентов, при этом используются «простые» и «сложные проценты». Задачи простые проценты изучаются в школьном курсе математике и включены в тестовую часть заданий профильного экзамена. Вычислять же «сложные проценты» приходится в тех случаях, когда в задаче идет речь о величине, подверженной поэтапному изменению. При этом каждый раз ее изменениесоставляет определенное число процентов от значения, которое эта величина имела на предыдущем этапе.Существуют разные формулы, по которым происходит вычисление сложных процентов. При выдаче кредитов на срок n проценты могут, например, начисляться по формуле:
. Где F – это погашаемая сумма, которую заемщик должен вернуть в банк, а S– начальная сумма, взятая в кредит.
Проанализировав условия задач на кредиты профильного ЕГЭ, я обнаружила, что классифицировать задачи можно разными способами:
По типу платежей задачи ЕГЭ задачами самыми распространенными являются задачи на фиксированный, аннуитетный и дифференцированный платежи.
Фиксированный платеж – это платеж, величина которого четко определена в задаче.
Аннуитетный платеж– это платеж, которыйустанавливается в равной сумме через равные промежутки времени, то есть остаётся постоянным на всём периоде кредитования. Ежемесячный платёж, при аннуитетной схеме погашения кредита состоит из двух частей. Первая часть платежа идёт на погашение процентов за пользование кредитом, авторая часть идёт на погашение суммы долга. Главная особенность таких платежей в том, что вначале ежемесячный платеж практически полностью состоит из суммы процентов, тогда как основной долг заемщика не уменьшается. Постепенно это соотношение выравнивается: если первое времязаемщик гасит в основном проценты, то потом основные средства идут в счет погашения задолженности.
Дифференцированный платеж – это способ ежемесячного платежа по кредиту, при котором размер ежемесячной выплаты по погашению кредита постепенно уменьшается к концу периода кредитования. Ежемесячный платёж, как и при аннуитетной схеме погашения кредита, складывается тоже из двух составляющих. Но в дифференцированной схеме первая часть называется основным платежом, размер которого не изменяется на всём сроке кредитования. Этот платёж идет на погашение основного долга по кредиту. Вторая часть платежа непостоянная, она уменьшается к концу срока кредитования. Данная часть платежа при дифференцированной схеме идет на погашение процентов по кредиту. При дифференцированной схеме погашения кредита, ежемесячный платеж рассчитывается как сумма основного платежа и проценты, начисляемые на оставшийся размер долга. Естественно, что оставшийся размер долга уменьшается к концу срока кредитования, отсюда и получается уменьшение размера ежемесячной выплаты.
Схемы решения экономических задач на кредиты
В практической части своей работы я представляюпримеры решений нескольких задач на кредиты. Это задачи на нахождение: процентной ставки, суммы долга, суммы переплаты, ежегодных (ежемесячных, еженедельных т.д.) выплат, определения срока кредитования.
15-го января планируется взять кредит в банке на сумму 2,4 млн. рублей на 24 месяца. Условия его возврата таковы:
– 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца;
– со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца.
Какую сумму нужно выплатить банку в первые 12 месяцев?
Решение:
Фраза «15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца» — это означает, что каждый месяц мы должны выплачивать часть начального долга + начисленные за этот месяц проценты.
№ мес. | Начальная сумма, млн. руб. | Сумма начисленных процентов, млн. руб. | Выплата, млн. руб. | Конечная сумма, млн. руб. |
1 | ||||
2 | ||||
3 | ||||
12 | ||||
24 | … | … | … | 0 |
Первая сумма = (т. е. половина взятой заемщиком суммы). Для удобства вычисления суммы вынесем за скобки множитель , тогда получим:
Ответ: 1 866 000 рублей
Примеры задач банка ЕГЭ на определение величины выплаты:
1. В июле планируется взять кредит в банке на сумму 28 млн. рублей на некоторыйсрок (целое число лет). Условия его возврата таковы:
– каждый январь долг возрастает на 25% по сравнению с концом предыдущего года;
– с февраля по июнь каждого года необходимо выплатить часть долга;
– в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июльпредыдущего года.
Чему будет равна общая сумма выплат после полного погашения кредита, если наибольший годовой платёж составит 9 млн. рублей?
2. В июле планируется взять кредит в банке на сумму 9 млн. рублей на некоторый срок(целое число лет). Условия его возврата таковы:
– каждый январь долг возрастает на 25% по сравнению с концом предыдущего года;
– с февраля по июнь каждого года необходимо выплатить часть долга;
– в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июльпредыдущего года.
Чему будет равна общая сумма выплат после полного погашения кредита, если наименьший годовой платёж составит 1,25 млн. рублей?
В июле планируется взять кредит на сумму 6409000 рублей. Условия его возврата таковы:
- Каждый январь долг возрастает на 12,5% по сравнению с концом предыдущего года.
- С февраля по июнь каждого года необходимо выплатить некоторую часть долга.
Сколько рублей нужно платить ежегодно, чтобы кредит был полностью погашен двумя равными платежами.
Решение:
№ года | Начальная сумма, руб. | Сумма долга после начисления процентов, руб. | Выплата, руб. | Конечная сумма, руб. |
1 год | x | |||
2 год | x |
Ответ: 3817125 руб.
Примеры задач банка ЕГЭна определение ежегодной (ежемесячной) выплаты:
– каждый январь долг возрастает на 20% по сравнению с концом предыдущего года;
– с февраля по июнь каждого года необходимо выплатить некоторую часть долга.
Сколько рублей нужно платить ежегодно, чтобы кредит был полностью погашен четырьмя равными платежами (то есть за 4 года)?
15-го января планируется взять кредит в банке на шесть месяцев в размере . Условия его возврата таковы:
– 1-го числа каждого месяца долг увеличивается напо сравнению с концом предыдущего месяца, где – целое число;
– со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей:
Дата | |||||||
Долг (млн. руб.) |
Найдите наибольшее значение, при котором общая сумма выплат будет меньше 1,2 млн. рублей.
Решение:
Начальная сумма, млн. руб. | Сумма долга после начисления процентов,млн. руб. | Выплата, млн. руб. | Конечная сумма,млн. руб. | |
1 | ||||
Учитывая, что общая сумма выплат меньше 1,2 млн. руб., составим и решим неравенство:
Ответ: 7%
Примеры задач банка ЕГЭна определение величины процента ставки кредита:
– 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r – целое число;
– со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; – 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.
Дата | 15.01 | 15.02 | 15.03 | 15.04 | 15.05 | 15.06 | 15.07 |
Долг (в млн. руб.) | 1 | 0,9 | 0,8 | 0,7 | 0,6 | 0,5 | 0 |
Найдите наименьшее значение r, при котором общая сумма выплат будет больше 1,2 млн. рублей.
– каждый январь долг возрастает на r % по сравнению с концом предыдущего года;
– с февраля по июнь каждого года необходимо выплатить часть долга;
– в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.
Найдите r, если известно, что наибольший годовой платёж по кредиту составит не более 1,4 млн. рублей, а наименьший – не менее 0,6 млн рублей.
В июле 2020 года планируется взять кредит в банке на некоторую сумму. Условия его возврата таковы:
– каждый январь долг увеличивается на 30% по сравнению с концом предыдущего года;
– с февраля по июнь каждого года необходимо выплатить одним платежом часть долга.
Сколько рублей планируется взять в банке, если известно, что кредит будет полностью погашен тремя равными платежами (то есть за три года) и общая сумма выплат после полного погашения кредита на 156 060 рублей больше суммы, взятой в кредит?
Решение:
№ года | Начальная сумма, руб. | Сумма долга после начисления процентов, руб. | Выплата, руб. | Конечная сумма, руб. |
Определим величину ежегодной выплаты, решив уравнение относительно x:
Известно, что сумма трех выплат на 156060 руб. больше суммы кредита:
Ответ: 239 400руб.
Примеры задач банка ЕГЭна определение суммы кредита:
– каждый январь долг увеличивается на 20% по сравнению с концом предыдущего года;
– с февраля по июнь каждого года необходимо выплатить одним платежом часть долга.
Сколько рублей будет выплачено банку, если известно, что кредит будет полностью погашен четырьмя равными платежами (то есть за четыре года)?
– каждый январь долг увеличивается на 10% по сравнению с концом предыдущего года;
– с февраля по июнь каждого года необходимо выплатить одним платежом часть долга.
Сколько рублей планируется взять в банке, если известно, что кредит будет полностью погашен тремя равными платежами (то есть за три года) и общая сумма выплат после полного погашения кредита на 40 980 рублей больше суммы, взятой в кредит?
В июле планируется взять кредит в банке на сумму 5 млн. рублей на некоторый срок (целое число лет). Условия его возврата таковы:
– каждый январь долг возрастает на 20% по сравнению с концом предыдущего года;
– с февраля по июнь каждого года необходимо выплатить часть долга;
– в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.
На сколько лет планируется взять кредит, если известно, что общая сумма выплат после его полного погашения составит 7,5 млн. рублей?
Решение:
«В июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года» — это означает, что каждый год мы должны выплачивать часть начального долга + начисленные за этот год проценты .
№ года | Начальная сумма, руб. | Сумма долга после начисления процентов, руб. | Выплата, руб. | Конечная сумма, руб. |
1 | ||||
2 | ||||
n |
Сложим все платежи, чтобы определить общую сумму выплат по кредиту:
Сложив все слагаемые , получим . У оставшихся слагаемых есть общий множитель общий множитель , тогда имеем:
Выражение в скобках – арифметическая прогрессия.Найдём её сумму по формуле:
Подставим полученную сумму в выражение для нахождения общей выплаты:
Вместо буквенных символов подставим известные нам значения величин и найдем n:
Ответ: 4 года
Примеры задач банка ЕГЭна нахождение срокавыплаты кредита:
– каждый январь долг возрастает на 25% по сравнению с концом предыдущего года;
– с февраля по июнь каждого года необходимо выплатить часть долга; – в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.
На сколько лет планируется взять кредит, если известно, что общая сумма выплат после его полного погашения составит 24,5 млн. рублей?
– каждый январь долг возрастает на 25% по сравнению с концом предыдущего года;
– с февраля по июнь каждого года необходимо выплатить часть долга; – в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года.
На сколько лет планируется взять кредит, если известно, что общая сумма выплат после его полного погашения составит 38 млн. рублей?
Заключение
Подводя итоги своей работы, целью которой было познакомиться с типами задач с экономическим содержанием и научиться решать задачи на кредиты, я считаю, что мне удалось достичь этой цели, хотя есть еще к чему стремиться, так как предстоит изучить и задачи других видов.
Проанализировав условия и решения банковских задач, я пришла к заключению, что в большинстве случаев схему решения можно использовать таблицу такого вида:
Долг | Выплата | Остаток |
… | … | … |
В ходе своего исследования, разбирая примеры задач и решая задачи самостоятельно, я заметила, что:
Моя гипотеза о том, что, несмотря на сложность и многообразие типов экономических задач их можно классифицировать и вывести единую схему решения, подтвердилась. Я убедилась в ее истинности на примере изучения задач на кредиты.Работу по изучению экономических задач буду продолжать и дальше, так как впереди экзамен по профильной математике и, кроме того, считаю, что решение таких задач позволило мне лучше разобраться в базовых понятиях банковских процессов, что будет полезно мне в моей будущей профессии.
Думаю, что эта работа будет полезна ученикам 10 и 11 класса, учителям для подготовки к ЕГЭ профильного уровня по математике. В ходе работы мною была создана презентация с примерами задач на кредиты и их подробными решениями. Эту презентацию можно предложить ребятам для самостоятельной подготовки, кроме решенных примеров она содержит задачи из банка ЕГЭ по математике.
Список информационных источников
Слайд 1
Финансовая математика в экономических задачах ЕГЭ . Решение задач на кредиты Автор работы: Кутепова Анна, ученица 10 класса Руководитель: Моторина Ольга Робертовна, учитель математикиСлайд 2
Гипотеза: Не смотря на многообразие типов экономических задач профильного экзамена по математике, их можно классифицировать и вывести единую схему решения. Цель работы: Изучить основные типы экономических задач на кредиты ЕГЭ по профильной математике и научиться их решать.
Слайд 3
Объект исследования : Экономические задачи на кредиты №15 в ЕГЭ по математике. Предмет исследования: Схемы и алгоритмы решения задач на кредиты. Методы исследования: Изучение и анализ литературы и интернет-источников по данной теме. Математическое моделирование Классификация Анализ
Слайд 4
Задачи: Изучить теоретические аспекты решения экономических задач. Познакомиться с прототипами экономических задач, представленных в открытом банке заданий ЕГЭ. Создать обучающую презентацию по различным типам задач на кредиты.
Слайд 5
Банковские кредиты и математика Финансовая математика — раздел прикладной математики, имеющий дело с математическими задачами, связанными с экономическими расчётами. Банковский кредит – денежная сумма, предоставляемая банком на определённый срок и на определённых условиях; определённая технология удовлетворения заявленной заемщиком финансовой потребности.
Слайд 6
Экономические задачи предполагают Умение работать с процентами, частями и долями. Владение понятием «Математическая модель». Умение строить математическую модель задачи. Владение вычислительными навыками. Умение применять математические методы для решения содержательных задач из различных областей науки и практики. Умение интерпретировать полученный результат, учитывать реальные ограничения.
Слайд 7
Основные группы экономических задач в ЕГЭ Задачи на кредиты Задачи на вклады и ценные бумаги Задачи на оптимальный выбор
Слайд 8
Обозначения, используемые в решениях: S – сумма вклада (кредита) r – годовая/месячная процентная ставка k – число, показывающее во сколько раз увеличивается сумма S банком , k = 1+0,01r n – необходимое количество лет/месяцев, за которое необходимо выплатить кредит X – выплата F – сумма, которую в итоге нужно вернуть в банк или получить спустя время n P – переплата , P= F-S
Слайд 9
Сложные проценты При выдаче кредитов на срок n величина возвращаемой банку суммы может, например, определятся по формуле: . Где F – это погашаемая сумма которую заемщик должен вернуть в банк, а S – начальная сумма, взятая в кредит.
Слайд 10
Фиксированный платеж – это платеж, величина которого четко определена в задаче. Аннуитетный платеж — это платеж, который устанавливается в равной сумме через равные промежутки времени, то есть остаётся постоянным на всём периоде кредитования.
Слайд 11
Дифференцированный платеж –– вариант ежемесячного платежа по кредиту, когда размер ежемесячного платежа по погашению кредита постепенно уменьшается к концу периода кредитования.
Слайд 12
Задача на определение величины выплаты / дифференцированные платежи 15-го января планируется взять кредит в банке на сумму 2,4 млн. рублей на 24 месяца. Условия его возврата таковы: – 1-го числа каждого месяца долг возрастает на 3% по сравнению с концом предыдущего месяца; – со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; – 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца. Какую сумму нужно выплатить банку в первые 12 месяцев?
Слайд 13
Решение:
Слайд 14
Первая сумма = (т. е. половина взятой заемщиком суммы). Для удобства вычисления суммы вынесем за скобки множитель тогда получим: где в скобках арифметическая прогрессия, у которой Ответ: 1 866 000 рублей
Слайд 15
Примеры задач банка ЕГЭ на определение величины выплаты В июле планируется взять кредит в банке на сумму 28 млн. рублей на некоторый срок (целое число лет). Условия его возврата таковы: – каждый январь долг возрастает на 25% по сравнению с концом предыдущего года; – с февраля по июнь каждого года необходимо выплатить часть долга; – в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года. Чему будет равна общая сумма выплат после полного погашения кредита, если наибольший годовой платёж составит 9 млн. рублей ? В июле планируется взять кредит в банке на сумму 9 млн. рублей на некоторый срок (целое число лет). Условия его возврата таковы: – каждый январь долг возрастает на 25% по сравнению с концом предыдущего года; – с февраля по июнь каждого года необходимо выплатить часть долга; – в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года. Чему будет равна общая сумма выплат после полного погашения кредита, если наименьший годовой платёж составит 1,25 млн. рублей?
Слайд 16
Задача на определение ежегодной (ежемесячной) выплаты / аннуитетные платежи В июле планируется взять кредит на сумму 6409000 рублей. Условия его возврата таковы: - Каждый январь долг возрастает на 12,5% по сравнению с концом предыдущего года - С февраля по июнь каждого года необходимо выплатить некоторую часть долга Сколько рублей нужно платить ежегодно, чтобы кредит был полностью погашен двумя равными платежами .
Слайд 17
Решение: Составим таблицу:
Слайд 18
Ответ: 3817125 руб. Учитывая, что конечная сумма после уплаты долга во второй год, стала равной нулю, составим и решим уравнение относительно x :
Слайд 19
Примеры задач банка ЕГЭ на определение ежегодной (ежемесячной) выплаты В июле планируется взять кредит на сумму 8052000 рублей. Условия его возврата таковы: – каждый январь долг возрастает на 20% по сравнению с концом предыдущего года; – с февраля по июнь каждого года необходимо выплатить некоторую часть долга. Сколько рублей нужно платить ежегодно, чтобы кредит был полностью погашен четырьмя равными платежами (то есть за 4 года)? В июле планируется взять кредит на сумму 4026000 рублей. Условия его возврата таковы: – каждый январь долг возрастает на 20% по сравнению с концом прошлого года. – с февраля по июнь каждого года необходимо выплатить некоторую часть долга. На сколько рублей больше придется отдать в случае, если кредит будет полностью погашен четырьмя равными платежами (то есть за 4 года) по сравнению со случаем, если кредит будет полностью погашен двумя равными платежами (то есть за 2 года)?
Слайд 20
Определение величины процента ставки кредита / долг, убывающий согласно таблице в условие задачи 15-го января планируется взять кредит в банке на шесть месяцев в размере . Условия его возврата таковы: – 1-го числа каждого месяца долг увеличивается на по сравнению с концом предыдущего месяца, где – целое число; – со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; – 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей: Дата 15.01 15.02 15.03 15.04 15.05 15.06 15.07 Долг (млн. руб.) 1 0,6 0,4 0,3 0,2 0,1 0 Найдите наибольшее значение, при котором общая сумма выплат будет меньше 1,2 млн. рублей.
Слайд 21
Месяц Начальная сумма, руб. Сумма долга после начисления процентов, руб. Выплата, руб. Конечная сумма, руб. 1 Решение: Составим таблицу:
Слайд 22
Ответ: 7% Учитывая, что общая сумма выплат меньше 1,2 млн. руб., сложив данные столбца выплат, составим и решим неравенство относительно k : Зная, что По условию r – целое число, значит:
Слайд 23
Пример задачи банка ЕГЭ на определение величины процента ставки кредита: 15-го января планируется взять кредит в банке на шесть месяцев в размере 1 млн. рублей. Условия его возврата таковы: – 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r – целое число; – со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; – 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей. Дата 15.01 15.02 15.03 15.04 15.05 15.06 15.07 Долг (млн. руб.) 1 0,9 0,8 0,7 0,6 0,5 0 Найдите наименьшее значение r , при котором общая сумма выплат будет больше 1,2 млн. рублей.
Слайд 24
Задача на определение суммы кредита / аннуитетные платежи В июле 2020 года планируется взять кредит в банке на некоторую сумму. Условия его возврата таковы: – каждый январь долг увеличивается на 30% по сравнению с концом предыдущего года; – с февраля по июнь каждого года необходимо выплатить одним платежом часть долга. Сколько рублей планируется взять в банке, если известно, что кредит будет полностью погашен тремя равными платежами (то есть за три года) и общая сумма выплат после полного погашения кредита на 156 060 рублей больше суммы, взятой в кредит?
Слайд 25
№ года Начальная сумма, руб. Сумма долга после начисления процентов, руб. Выплата, руб. Конечная сумма, руб. Решение: Составим таблицу:
Слайд 26
Известно, что сумма трех выплат на 156060 руб. больше суммы кредита, учитывая это найдем S : Ответ : 239 400 руб. Учитывая, что конечная сумма после уплаты долга в третий год , стала равной нулю, определим величину ежегодной выплаты, составив и решив уравнение относительно x :
Слайд 27
Примеры задач банка ЕГЭ на определение суммы кредита В июле 2020 года планируется взять кредит в банке на сумму 419 375 рублей. Условия его возврата таковы: – каждый январь долг увеличивается на 20% по сравнению с концом предыдущего года; – с февраля по июнь каждого года необходимо выплатить одним платежом часть долга. Сколько рублей будет выплачено банку, если известно, что кредит будет полностью погашен четырьмя равными платежами (то есть за четыре года)? В июле 2020 года планируется взять кредит в банке на некоторую сумму. Условия его возврата таковы: – каждый январь долг увеличивается на 10% по сравнению с концом предыдущего года; – с февраля по июнь каждого года необходимо выплатить одним платежом часть долга. Сколько рублей планируется взять в банке, если известно, что кредит будет полностью погашен тремя равными платежами (то есть за три года) и общая сумма выплат после полного погашения кредита на 40 980 рублей больше суммы, взятой в кредит?
Слайд 28
Нахождение количества лет (месяцев) выплаты кредита / дифференцированные платежи В июле планируется взять кредит в банке на сумму 5 млн. рублей на некоторый срок (целое число лет). Условия его возврата таковы: – каждый январь долг возрастает на 20% по сравнению с концом предыдущего года; – с февраля по июнь каждого года необходимо выплатить часть долга; – в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года. На сколько лет планируется взять кредит, если известно, что общая сумма выплат после его полного погашения составит 7,5 млн. рублей?
Слайд 29
Решение: Составим таблицу:
Слайд 30
№ года Начальная сумма, руб. Сумма долга после начисления процентов, руб. Выплата, руб. Конечная сумма, руб. 1 2 n
Слайд 31
Сложим все ежегодные платежи, чтобы определить общую сумму выплат по кредиту: Сложив в этой сумме все слагаемые , получим . У оставшихся слагаемых есть общий множитель общий множитель , тогда имеем: Выражение в скобках – арифметическая прогрессия. Найдём её сумму по формуле: Подставим полученную сумму в выражение для нахождения общей выплаты:
Слайд 32
Вместо буквенных символов подставим известные нам значения величин и найдем n : Ответ: 4 года
Слайд 33
Примеры задач банка ЕГЭ на нахождение срока выплаты кредита В июле планируется взять кредит в банке на сумму 14 млн. рублей на некоторый срок (целое число лет). Условия его возврата таковы: – каждый январь долг возрастает на 25% по сравнению с концом предыдущего года; – с февраля по июнь каждого года необходимо выплатить часть долга; – в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года. На сколько лет планируется взять кредит, если известно, что общая сумма выплат после его полного погашения составит 24,5 млн. рублей? В июле планируется взять кредит в банке на сумму 16 млн. рублей на некоторый срок (целое число лет). Условия его возврата таковы: – каждый январь долг возрастает на 25% по сравнению с концом предыдущего года; – с февраля по июнь каждого года необходимо выплатить часть долга; – в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года. На сколько лет планируется взять кредит, если известно, что общая сумма выплат после его полного погашения составит 38 млн. рублей?
Слайд 34
Заключение Долг Выплата Остаток … … … … … …
Слайд 35
Список информационных источников Лукашин Ю.П. Финансовая математика / Московский международный институт эконометрики, информатики, финансов и права. - М., 2003. https://kpsu.ru/upload/medialibrary/606/606fd86fd3cd2272b6f1f3f1b0e4f96c.pdf https://ru.wikipedia.org https://ege.sdamgia.ru/ http://fipi.ru/ Курс лекций по финансовой математике https://lfirmal.com/predmet-finansovaya-matematika/ Материалы для подготовки к ЕГЭ по математике https://www.time4math.ru/ege
Слайд 36
Финансовая математика в экономических задачах ЕГЭ . Решение задач на кредиты Автор работы: Кутепова Анна, ученица 10 класса Руководитель: Моторина Ольга Робертовна, учитель математики
Слайд 37
СПАСИБО ЗА ВНИМАНИЕ
Как напиться обезьяне?
Зимний лес в вашем доме
Сладость для сердца
Знакомимся с плотностью жидкостей
Прыжок (быль). Л.Н.Толстой