В данном проекте раскрываются необходимось и значимость параллельных прямых в жизни
Вложение | Размер |
---|---|
parallelnye_pryamye.doc | 354.5 КБ |
Муниципальное бюджетное общеобразовательное учреждение
школа-интернат № 3 «Технологии традиционных промыслов народов Севера»
694240 Сахалинская область, г. Поронайск, ул. Торфяная, 23 тел. 8 (42431) 4 – 14 – 83 mail:pc_school_3idn@mail.ruОГРН 1026500915968; ИНН6507004589
ПРОЕКТ ПО МАТЕМАТИКЕ (ГЕОМЕТРИЯ)
«Параллельные прямые»
г. Поронайск 2019 г.
Тема моего проекта: «Параллельные прямые».
Цель: показать необходимость и значимость параллельных прямых.
Задачи: 1. Изучить историю возникновения параллельных прямых.
2. Рассмотреть применение параллельных прямых в жизни.
3. Сделать сравнительный анализ аксиомы параллельных прямых Евклида и Лобачевского.
Гипотеза:
Без параллельных прямых невозможна наша жизнь!
Для решения поставленных задач и проверки исходных положений применяются следующие методы исследования: анализ научной литературы; наблюдения, беседы, тесты.
На уроках геометрии мало времени дается на изучение параллельных прямых. Отсюда возникает проблема - недостаток информации по теме «параллельные прямые» в школьном курсе математики.
В жизни мы часто встречаемся с понятиями параллельные прямые.
Название параллельных прямых произошло от греческого слова «параллелой», которое означает «рядом идущие».
Рассмотрим разные определения параллельных прямых Евклида и Посидония. А теперь то современное определение, которое используем мы.
Для обозначения параллельности двух прямых древнегреческие математики использовали знак «=». Однако когда в 18в. этот знак стал использоваться как знак равенства, параллельность стали обозначать с помощью знака «//». И если прямые а и в параллельны, то мы будем записывать это так: а//в.
Мы привыкли слышать и видеть, что параллельные прямые никогда не пересекаются!
Действительно ли невозможно пересечение параллельных прямых?
Быть может существует точка пересечения параллельных прямых?
Попытаемся ответить на эти вопросы.
В жизни мы часто встречаемся с понятием параллельности.
При строительстве зданий строго учитывается понятие параллельности.
Самый наглядный пример параллельности прямых - железнодорожное полотно.
Еще одним примером применения понятия параллельных прямых, является эскалатор.
Все эти устройства помогают нам в повседневной жизни. Если бы не было параллельных прямых, то например, произошло крушение поезда или замыкание проводов и нет электричества. Но свойства параллельных прямых используется гораздо шире.
Но с другой стороны мы столкнулись со странным явлением: устремляя взгляд далеко в бесконечность, можно увидеть пересечение параллельных прямых!
В чем же дело? Чтобы ответить на этот вопрос обратимся к великим ученым.
Но сначала мы обратились к учащимся 7 класса. С ними провели эксперимент «Иллюзии зрения». Учащимся задали вопрос: везде ли на картинках параллельные прямые? Результаты опроса таковы: участвовали 20 человек из них: 11 – 55% считают параллельно, 9 -45% нет.
Вывод: в геометрии истинность каждого утверждения необходимо доказывать, нельзя полагаться только на наблюдения.
Положительный момент: благодаря зрительным искажениям существует живопись.
При изучении геометрии мы опираемся на ряд аксиом. Аксиомы – это положения, которые применяются в качестве исходных. В развитии геометрии важную роль сыграла аксиома, которая в «Началах» Евклида называлась пятым постулатом.
Многие математики, начиная с древних времен, предпринимали попытки доказать пятый постулат Евклида используя другие аксиомы. Однако эти попытки каждый раз оказывались неудачными.
И стояла геометрия Евклида,
Как египетская чудо-пирамида.
Строже выдумать строение невозможно,
Лишь одна была в ней глыба ненадёжна.
Аксиома называлась «параллели».
Разгадать её загадку не сумели.
В конце 18в. у некоторых ученых возникла мысль о невозможности доказать пятый постулат. Огромную роль в решении этого непростого вопроса сыграл великий русский математик Николай Иванович Лобачевский.
И подумал Лобачевский:
« Но ведь связана с природой аксиома!
Мы природу понимаем по-земному.
Во Вселенной расстоянья неземные,
Могут действовать законы там иные!
Параллельные пойдут непараллельно!
Там, где звёздный мир раскинулся без края, -
Аксиома параллели - там другая!».
И Евклид и Лобачевский говорят об одном и том же: о параллельных прямых. Но у одного из них параллельные прямые не пересекаются, а другой говорит о существовании точки пересечения параллельных прямых.
И оба они по своему правы!
Евклид рассматривает параллельность на плоскости.
Лобачевский видит плоскость в пространстве (именно поэтому его геометрию называют воображаемой).
Изучив вопросы по данной теме мы пришли к выводам:
Несмотря на все кажущиеся странности, геометрия Лобачевского является настоящей геометрией нашего мира, и Евклидова является только её составной частью. Но в пределах ежедневных измерений Евклидова геометрия дает ничтожно малые ошибки, и мы пользуемся именно ею.
Хочу закончить свое выступление такими словами: «Было бы легче остановить Солнце, легче сдвинуть Землю, чем свести параллели к схождению…».
Таким образом, цель достигнута, задачи решены.
Спасибо за внимание.
Юрий Алексеевич Гагарин
Заколдованная буква
Барсучья кладовая. Александр Барков
Невидимое письмо
Зимовье зверей