Развитие генетики теснейшим образом отражается на жизни и здоровье человека - об этом речь в данной работе
Вложение | Размер |
---|---|
genetika_i_ekologiya_ch-ka_fogel_a.doc | 156.5 КБ |
Муниципальное бюджетное образовательное учреждение
Относовская средняя общеобразовательная школа
Вяземского района Смоленской области
Индивидуальный итоговый проект по общей биологии
Генетика и экология человека.
Автор:
обучающаяся 9 класса
Фогель Алена Викторовна
Руководитель:
Сюрина Галина Анатольевна,
учитель биологии и географии
Относово
2019 год
Содержание:
I. Введение: роль генетики в современном мире
II. Основная часть: генетика и экология человека.
1. Развитие генетики как науки.
2. Влияние окружающей среды на наследственность и
изменчивость организмов.
3. Появление и причины мутаций.
4. Наследственные заболевания человека.
5. Лечение наследственных заболеваний.
III. Заключение: генетика - наука будущего.
Генетика по праву может считаться одной из самых важных областей биологии. На протяжении тысячелетий человек пользовался генетическими методами для улучшения домашних животных и возделываемых растений, не имея представления о механизмах, лежащих в основе этих методов. Судя по разнообразным данным, уже 6000 лет назад люди понимали, что некоторые физические признаки могут передаваться от одного поколения другому. Отбирая определенные организмы из природных популяций, и скрещивая их между собой, человек создал улучшенные сорта растений и породы животных, обладающих нужными ему свойствами.
Однако лишь в начале ХХ в. ученые стали осознавать в полной мере важность законов наследственности и её механизмов. Хотя успехи микроскопии позволили установить, что наследственные признаки передаются из поколения в поколение через сперматозоиды и яйцеклетки, оставалось неясным, каким образом мельчайшие частицы протоплазмы могут нести в себе "задатки" того огромного множества признаков, из которых слагается каждый отдельный организм.
Первый действительно научный шаг вперед в изучении наследственности был сделан австрийским монахом Грегором Менделем, который в 1866 г. опубликовал статью, заложившую основы современной генетики. Мендель показал, что наследственные задатки не смешиваются, а передаются от родителей потомкам в виде дискретных (обособленных) единиц. Эти единицы, представлены особей парами, остаются дискретными и передаются последующим поколениям в мужских и женских гаметах, каждая из которых содержит по одной единице из каждой пары. В 1909 г. датский ботаник Иогансен назвал эти единицы "гедам", а в 1912 г. американский генетик Морган показал, что они находятся в хромосомах и назвал их генами. С тех пор генетика достигла больших успехов в объяснении природы наследственности и на уровне организма, и на уровне гена.
Значение генетики для человека очевидно. Можно с полной уверенностью сказать, что, например, в молекулах ДНК клеток человека запрограммирована генетическая информация, контролирующая биологию каждого мира нашей жизни. Это касается здоровья, нормального развития, продолжительности жизни, наследственных болезней, сердечно-сосудистых заболеваний, предрасположенности к тем или иным инфекционным заболеваниям, старости и даже смерти.
Генетика человека - состоит из 3-х основных разделов: медицинская генетика, которая изучает роль наследственности и среды в различных болезнях и характер их наследования; популяционная генетика человека - исследует вопросы распространения разных генов; радиационная генетика человека приобрела огромное значение в связи с широким использованием атомной энергии.
Все большее значение приобретает генетика для медицины. Многие отклонения от нормы и болезни человека обусловлены генетически. Это особенно отчетливо удается установить в тех случаях, когда у человека происходят изменения в числе хромосом. Это нарушение имеет тяжелые последствия. Развивается заболевание, называемое болезнью Дауна. Оно выражается в том, что больной имеет непропорциональную маленькую голову, узкие глазные щели, плоское лицо и резко выраженную умственную отсталость. И кроме этой болезни, изучено свыше ста нарушений в структуре хромосомного набора человека. Все эти наследственные заболевания определяются особенностями генетики.
Я выбрала тему для проекта "Генетика и экология человека" потому, что считаю, что эта тема на сегодняшний день очень актуальна. В наступившем тысячелетии человечество сталкивается с огромными экологическими бедами и их не становится меньше.
Я постараюсь подробно раскрыть два понятия - генетика и экология человека, а затем показать, чем же они связаны друг с другом, ведь кажется, что это совсем несовместимые понятия, которые и рядом поставить нельзя. Когда генетика стала развиваться, как наука, понятие "экология", "экологический кризис", "экология человека" не существовало. А сегодня экология проникла в генетику и играет в ней существенную роль. Видообразование, известные и неизвестные заболевания растений и животных, человека - всё это генетика и экология вместе взятые. Ведь экология и связанные с ней проблемы стали самыми грозными проблемами после ядерной войны и влияют на генетические изменения, происходящие в молекулах ДНК.
Генетика знает теперь, что такое ген и как он работает и когда, и почему дает сбой. За свою историю человечество накопило очень много патологических признаков, мутагенов, которые вызывают наследственные заболевания.
Ежегодно в мире рождается около 1,5 млн. детей с тяжелыми наследственными болезнями, например, 150 тыс. с болезнью Дауна (только у нас в стране таких рождается 5-6 тыс. в год). Из детей, умерших до года, 30% погибают от наследственных болезней. Детская слепота в 70% и глухонемота в 50% случаев обусловлены наследственными факторами.
Сейчас перед генетиками стоит самая главная задача - профилактика наследственных заболеваний, и одним из направлений профилактики является экологическое направление, связанное с охраной окружающей среды, с ЗОЖ (т.е. экологии человека), с генетическим направлением быта человека. Необходимо удалять из окружающей среды мутагены, которые вызывают заболевания. В генетике разрабатывают методы, с помощью которых можно выявить мутагенную активность различных химических веществ на клетке человека, растений и животных. В будущем будет широко изучаться даже лекарства, и что они могут выявить у человека.
Уже сейчас проводятся работы по изучению влияния активных химических соединений на организм человека и на его потомство. Главная задача генетиков и экологов в этом направлении - уменьшить груз мутаций, накопленный за тысячелетия существования Homo-Sapiens - человека разумного.
В ходе своего исследования темы, я попытаюсь сделать вывод, что генетика и экология человека очень тесно переплелись между собой в современной науке и практике и ещё более тесно сольются в дальнейшей жизни. Остается надеяться, что это слияние послужит на благо всего человечества и даст возможность миру предотвратить грозные явления - странные и страшные болезни, спасет от голода и сделает ещё много-много хорошего. Может быть, благодаря развитию генетики, люди третьего тысячелетия станут намного счастливее.
Изучение наследственности уже давно было связано с представлением о ее корпускулярной природе. В 1866 г. Мендель высказал предположение, что признаки организмов определяются наследуемыми единицами, которые он назвал "элементами". Позднее их стали называть "факторами" и, наконец, генами; было показано, что гены находятся в хромосомах, с которыми они и передаются от одного поколения к другому.
Несмотря на то, что уже многое известно о хромосомах и структуре ДНК, дать определение гена очень трудно, пока удалось сформулировать только три возможных определения гена:
а) ген как единица рекомбинации.
На основании своих работ по построению хромосомных карт дрозофилы Морган выяснил, что ген - это наименьший участок хромосомы, который может быть отделен от примыкающих к нему участков в результате кроссинговера. Согласно этому определению, ген представляет собой крупную единицу, специфическую область хромосомы, определяющую тот или иной признак организма;
б) ген как единица мутирования.
В результате изучения природы мутаций было установлено, что изменения признаков возникают вследствие случайных спонтанных изменений в структуре хромосомы, в последовательности оснований или даже в одном основании. В этом смысле можно было сказать, что ген - это одна пара комплементарных оснований в нуклеотидной последовательности ДНК, т.е. наименьший участок хромосомы, способный претерпеть мутацию.
в) ген как единица функции.
Поскольку было известно, что от генов зависят структурные, физиологические и биохимические признаки организмов, было предложено определять ген как наименьший участок хромосомы, обусловливающий синтез определенного продукта.
Исследования Г. Менделя и его законы.
Грегор Мендель родился в Моравии в 1822 г. В 1843 г. он поступил в монастырь августинцев в Брюние (ныне Брно, Чехословакия), где принял духовный сан. Позже он отправился в Вену, где провел два года, изучая в университете естественную историю и математику, после чего в 1853 г. вернулся в монастырь. Такой выбор предметов, несомненно, оказал существенное влияние на его последующие работы по наследованию признаков у гороха. Будучи в Вене, Мендель заинтересовался процессом гибридизации растений и, в частности, разными типами гибридных потомков и их статистическими соотношениями. Эти проблемы и явились предметом научных исследований Менделя, которые он начал летом 1856 г.
Успехи, достигнутые Менделем, частично обусловлены удачным выбором объекта для экспериментов - гороха огородного (Pisum sativum). Мендель удостоверился, что по сравнению с другими этот вид обладает следующими преимуществами:
1) имеется много сортов, четко различающихся по ряду признаков;
2) растения легко выращивать,
3) репродуктивные органы полностью прикрыты лепестками, так что растение обычно самоопыляется; поэтому его сорта размножаются в чистоте, т.е. их признаки из поколения в поколение остаются неизменными;
4) возможно искусственное скрещивание сортов, и оно дает вполне плодовитых гибридов. Из 34 сортов гороха Мендель отобрал 22 сорта, обладающие четко выраженными различиями по ряду признаков, и использовал их в своих опытах со скрещиванием. Менделя интересовали семь главных признаков: высота стебля, форма семян, окраска семян, форма и окраска плодов, расположение и окраска цветков.
И до Менделя многие ученые проводили подобные эксперименты на растениях, но ни один из них не получил таких точных и подробных данных; кроме того, они не смогли объяснить свои результаты с точки зрения механизма наследственности. Моменты, обеспечившие Менделю успех, следует признать необходимыми условиями проведения всякого научного исследования и принять их в качестве образца. Условия эти можно сформулировать следующим образом:
1) проведения предварительных исследований для ознакомления с экспериментальным объектом;
2) тщательное планирование всех экспериментов, с тем чтобы всякий раз внимание было сосредоточено на одной переменной, что упрощает наблюдение;
3) строжайшее соблюдение всех методик, с тем чтобы исключить возможность введения переменных, искажающих;
5) получение достаточного количества данных, чтобы их можно было считать статистически достоверными.
Как писал Мендель, "достоверность и полезность всякого эксперимента определяются пригодностью данного материала для тех целей, в которых он используется".
Следует, однако, отметить, что в выборе экспериментального объекта Менделю кое в чем было просто полезно: в наследовании отобранных им признаков не было ряда более сложных особенностей, открытых позднее, таких как неполное доминирование, зависимость более чем от одной пары генов, сцепление генов.
Наследование при моногибридном скрещивании и закон расщепления.
Для своих первых экспериментов Мендель выбирал растения двух сортов, четко различавшихся по какому-либо признаку, например по расположению цветков: цветки могут быть распределены по всему стеблю (пазушные) или находится на конце стебля (верхушечные). Растения, различающиеся по одной паре артериальных признаков, Мендель выращивал на протяжении ряда поколений. Семена от пазушных цветков всегда давали растения с пазушными цветками, а семеня от верхушечных цветков - растения с верхушечными цветками. Таким образом, Мендель убедился, что выбранные им растения размножаются в чистоте (т.е. без расщепления потомства) и пригодны для проведения опытов по гибридизации (экспериментальных скрещиваний).
Его метод состоял в следующем: он удалял у ряда растений одного сорта пыльники до того, как могло произойти самоопыление. Эти растения Мендель называл "женскими. Пользуясь кисточкой, он наносил на рыльца этих "женских" цветков пыльцу из пыльников растений другого сорта, затем он надевал на искусственно опыленные цветки маленькие колпачки, чтобы на их рыльца не могла попасть пыльца с других растений. Мендель проводил различные скрещивания - переносил пыльцевые зерна как с пазушных цветков на верхушечные, так и с верхушечных на пазушные. Во всех случаях из семян, собранных от полученных гибридов, вырастали растения с пазушными цветками. Этот признак - "пазушные цветки", наблюдаемый у растений первого гибридного поколения, Мендель назвал доминантным. Позднее, в 1902 г., Бэтсон и Сондерс стали обозначать первое поколение гибридного потомства символом F1. Ни у одного из растений F1 не было верхушечных цветков.
На цветки растений F1 Мендель надел колпачки (чтобы не допустить перекрестного опыления) и дал им возможность самоопыляться. Семена, собранные с растений F1, были пересчитаны и высажены следующей весной для получения второго гибридного поколения, F2,, (поколение F2 - это всегда результат инбридинга в поколение F1, в данном случае самоопыления). Во втором гибридном поколении, у одних растений образовались пазушные цветки, а у других - верхушечные. Иными словами, признак "верхушечные цветки", отсутствовавший в поколении F1, вновь появился в поколении F2. Мендель рассудил, что этот признак присутствовал в поколении F1 в скрытом виде, но не смог проявиться, поэтому он назвал его рецессивным. Из 858 растений, полученных Менделем в F2, у 651 были пазушные цветки, а у 207-верхушечные.
Мендель провел ряд аналогичных опытов, используя всякий раз одну пару альтернативных признаков.
Во всех случаях анализ результатов показал, что отношение доминантных признаков к рецессивным в поколении F2 составляло примерно 3:1.
Приведенный выше пример типичен для всех экспериментов Менделя, в которых изучалось наследование одного признака (моногибридные скрещивания).
На основании этих аналогичных результатов Мендель сделал следующие выводы:
1. Поскольку исходные родительские сорта размножались в чистоте (не расщеплялись), у сорта с пазушными цветками должно быть два "пазушных" фактора, а у сорта с верхушечными цветками - два "верхушечных" фактора.
2. Растения F1 содержали по одному фактору, полученному от каждого из родительских растений через гаметы.
3. Эти факторы в F1 не сливаются, а сохраняют свою индивидуальность.
4. "Пазушный" фактор доминирует над "верхушечным" фактором, который рецессивен. Разделение пары родительских факторов при образовании гамет (так что в каждую гамету попадает лишь один из них) известно под названием первого закона Менделя, или закона расщепления. Согласно этому закону, признаки данного организма детерминируются парами внутренних факторов. В одной гамете может быть представлен лишь один из каждой пары таких факторов.
Теперь мы знаем, что эти факторы, детерминирующие такие признаки, как расположение цветка, соответствуют участкам хромосомы, называемым геном.
Описанные выше эксперименты, проводившиеся Менделем при изучении наследования одной пары альтернативных признаков, служат примером моногибридного скрещивания.
Влияние среды.
Главный фактор, детерминирующий любой фенотипический признак, это генотип. Генотип организма определяется в момент оплодотворения, но степень последующей экспрессии этого генетического потенциала в значительной мере зависит от внешних факторов, воздействующих на организм во время его развития. Так, например, использованный Менделем сорт гороха с длинным стеблем обычно достигал высоты 180 см. Однако для этого ему необходимы были соответствующие условия - освещение, снабжение водой и хорошая почва. При отсутствии оптимальных условий (при наличии лимитирующих факторов) ген высокого стебля не мог в полной мере проявить свое действие.
Эффект взаимодействия генотипа и факторов среды продемонстрировал датский генетик Иогансен. В ряде экспериментов на карликовой фасоли он выбирал из каждого поколения самоопыляющихся растений самые тяжелые и самые легкие семена и высаживал их для получения следующего поколения. Повторяя эти эксперименты на протяжении нескольких лет, он обнаружил, что в пределах "тяжелой" и "легкой" селекционной линии семена мало различались по среднему весу, тогда как средний вес семян из разных линий сильно различался. Это позволяет считать, что на фенотипическое проявление признака оказывают влияние, как наследственность, так и среда. На основании этих результатов можно определить непрерывную фенотипическую изменчивость как "кумулятивный эффект варьирующих факторов среды, воздействующих на вариабельный генотип". Кроме того, эти результаты показывают, что степень наследуемости данного признака определяется в первую очередь генотипом. Что касается развития таких чистых человеческих качеств, как индивидуальность, темперамент и интеллект, то, судя по имеющимся данным, они зависят как от наследственных, так и от средовых факторов, которые, взаимодействуя в различной степени у разных индивидуумов, влияют на окончательное выражение признака. Именно эти различия в тех и других факторах создают фенотипические различия между индивидуумами.
Мы пока еще не располагаем данными, которые твердо указывали бы на то, что влияние каких-то из этих факторов всегда преобладает, однако среда никогда не может вывести фенотип за пределы, детерминированные генотипом.
Источники изменчивости.
Необходимо ясно представлять себе, что взаимодействие между дискретной и непрерывной изменчивостью и средой делает возможным существование двух организмов с идентичным фенотипом. Механизм репликации ДНК при митозе столь близок к совершенству, что возможности генетической изменчивости у организмов с бесполым размножением очень малы. Поэтому любая видимая изменчивость у таких организмов почти наверное обусловлена воздействиями внешней среды. Что же касается организмов, размножающихся половым путем, то у них есть широкие возможности для возникновения генетических различий. Практически неограниченными источниками генетической изменчивости служат два процесса, происходящие во время мейоза:
1. Постоянный обмен генами между гомологичными хромосомами, который может происходить в профазе 1 мейоза. Он создает новые группы сцепления, т.е. служит важным источником генетической рекомбинации аллелей.
2. Ориентация пар гомологичных хромосом в экваториальной плоскости веретена деления в метафазе I мейоза определяет направление, в котором каждый член пары будет перемещаться в анафазе I. Эта ориентация носит случайный характер. Во время метафазы II пары хроматид опять - таки ориентируется случайным образом, и этим определяется, к какому из двух противоположных полюсов направится та или иная хромосома во время анафазы II. Случайная ориентация и последующее независимое расхождение хромосом делают возможным большое число различных хромосомных комбинаций в гаметах, число это можно подсчитать.
Третий источник изменчивости при половом размножении - это то, что слияние мужских и женских гамет, приводящие к объединению двух гаплоидных наборов хромосом в диплоидном ядре зиготы, происходит совершенно случайным образом (во всяком случае, в теории); любая мужская гамета потенциально способна слиться с любой женской гаметой.
Эти три источника генетической изменчивости и обеспечивают постоянную "перетасовку" генов, лежащую в основе происходящих все время генетических изменений. Среда оказывает воздействие на весь ряд получающихся таким образом фенотипов, и те из них, которые лучше всего приспособлены к данной среде, преуспевают. Это ведет к изменениям частот аллелей и генотипов в популяции. Однако эти источники изменчивости не порождают крупных изменений в генотипе, которые необходимы, согласно эволюционной теории, для возникновения новых видов. Такие изменения возникают в результате мутаций.
3. Появление и причины мутаций.
Что такое мутации.
Мутацией называют изменение количества или структуры ДНК данного организма. Мутация приводит к изменению генотипа, которое может быть унаследовано клетками, происходящими от мутантной клетки в результате митоза или мейоза. Мутирование может вызывать изменения каких-либо признаков в популяции. Мутации, возникшие в половых клетках, передаются следующим поколениям организмов, тогда как мутации в соматических клетках наследуются только дочерними клетками, образовавшимися путем митоза, и такие мутации называют соматическими.
Мутации, возникающие в результате изменения числа или макроструктуры хромосом, известны под названием хромосомных мутаций или хромосомных перестроек. Иногда хромосомы так сильно изменяются, что это можно увидеть под микроскопом. Но термин "мутация" используют, главным образом для обозначения изменения структуры ДНК в одном локусе, когда происходит так называемая генная, или точечная, мутация.
Представление о мутации как о причине внезапного появления нового признака, было впервые выдвинуто в 1901 г. голландским ботаником Гуго де Фризом, изучавшим наследственность у энотеры Oenothera lamarckiana. Спустя 9 лет Т. Морган начал изучать мутации у дрозофилы, и вскоре при участии генетиков всего мира у нее было идентифицировано более 500 мутаций.
Генные мутации.
Внезапные спонтанные изменения фенотипа, которые нельзя связать с обычными генетическими явлениями или микроскопическими данными о наличии хромосомных изменений, можно объяснить только изменениями в структуре отдельных генов. Генная, или точечная (поскольку она относится к определенному генному локусу), мутация - результат изменения нуклеотидной последовательности молекулы ДНК в определенном участке хромосомы. Такое изменение последовательности оснований в данном гене воспроизводится при транскрипции в структуре р - РНК и приводит к изменению последовательности аминокислот в полипептидной цепи, образующейся в результате трансляции на рибосомах.
Существуют различные типы генных мутаций, связанных с добавлением, выпадением или перестановкой оснований в гене. Это дупликации, вставки, деления, инверсии или замены оснований. Во всех случаях они приводят к изменению нуклеотидной последовательности, а часто и к образованию измененного полипептида.
Генные мутации, возникающие в гаметах или в будущих половых клетках, передаются всем клеткам потомков и могут влиять на дальнейшую судьбу популяции. Соматические генные мутации, происходящие в организме, наследуются только теми клетками, которые образуются из мутантной клетки путем митоза. Они могут оказать воздействие на тот организм, в котором они возникли, но со смертью особи исчезают из генофонда популяции. Соматические мутации, вероятно, возникают очень часто и остаются незамеченными, но в некоторых случаях при этом образуется клетки с повышенной скоростью роста и деления. Эти клетки могут дать начало опухолям, либо доброкачественным, которые не оказывают особого влияния на весь организм, либо злокачественным, что приводит к раковым заболеваниям.
Эффекты генных мутаций чрезвычайно разнообразны. Большая часть мелких генных мутаций фенотипически не проявляется, поскольку они рецессивны, однако известен ряд случаев, когда изменение всего лишь одного гена, приводит к мутации. Одним из примеров служит серповидно - клеточная анемия - заболевание, вызываемое у человека заменой основания в одном из генов, ответственных за синтез гемоглобина. Молекула дыхательного пигмента гемоглобина у взрослого человека состоит из четырех полипептидных цепей (двух альфа- и двух бета- цепей), к которым присоединены четыре других группы гена. От структуры полипептидных цепей зависит способность молекулы гемоглобина переносить кислород. Изменение последовательности оснований в триплете, кодирующем одну определенную аминокислоту из 146, входящих в состав бета - цепей, приводит к синтезу аномального гемоглобина серповидных клеток (HЬS). Последовательности аминокислот в нормальных и аномальных бета - цепях различаются тем, что в одной точке аномальных цепей гемоглобина S глутаминовая кислота замещена валином.
В результате такого, казалось бы, незначительного изменения, гемоглобин S кристаллизуется при низких концентрациях кислорода, а это в свою очередь приводит к тому, что в венозной крови эритроциты с таким гемоглобином деформируются (из округлых становятся серповидными) и быстро разрушаются. Физиологический эффект мутации состоит в развитии острой анемии и снижении количества кислорода, переносимого кровью. Анемия не только вызывает физическую слабость, но и может привести к нарушениям деятельности сердца и почек и к ранней смерти людей, гомозиготных по мутантному аллелю. В гетерозиготном состоянии этот аллель вызывает значительно меньший эффект: эритроциты выглядят нормальными, а аномальный гемоглобин составляет только около 40%. У гетерозигот развивается анемия лишь в слабой форме, а зато в тех областях, где широко распространена малярия, особенно в Африке и Азии, носители аллеля серповидно - клеточности невосприимчивы к этой болезни. Это объясняется тем, что ее возбудитель - малярийный плазмодий - не может жить в эритроцитах, содержащих аномальный гемоглобин.
Значение мутаций.
Хромосомные и генные мутации оказывают разнообразное воздействие на организм. Во многих случаях эти мутации летальны, так как нарушают развитие. У человека, например, около 20% беременностей заканчиваются естественным выкидышем в сроки до 12 недель, и в половине таких случаев можно обнаружить хромосомные аномалии. В результате некоторых хромосомных мутаций определенные гены могут оказаться вместе, и их общий эффект может привести к появлению какого-либо "благоприятного" признака. Кроме того, сближение некоторых генов друг с другом делает менее вероятным их разделение в результате кроссинговера, а в случае благоприятных генов это создает преимущество.
Генная мутация может привести к тому, что в определенном локусе окажется несколько аллелей. Это увеличивает как гетерозиготность данной популяции, так и ее генофонд, и ведет к усилению внутрипопуляционной изменчивости. Перетасовка генов, как результат кроссинговера, независимого распределения, случайного оплодотворения и мутаций может повысить непрерывную изменчивость, но ее эволюционная роль часто оказывается преходящей, так как возникающие при этом изменения могут быстро сгладиться вследствие "усреднения". Что же касается генных мутаций, то некоторые из них увеличивают дискретную изменчивость, и это может оказать на популяцию более глубокое влияние. Большинство генных мутаций рецессивны по отношению к "нормальному" аллелю, который, успешно выдержав отбор на протяжении многих поколений, достиг генетического равновесия с остальным генотипом. Будучи рецессивным, мутантные аллели могут оставаться в популяции в течение многих поколений, пока им не удается встретиться, т.е. оказаться в гомозиготном состоянии и проявится в фенотипе. Время от времени могут возникать и доминантные мутантные аллели, которые немедленно дают фенотипический эффект.
4. Наследственные заболевания человека.
Известное общее положение о единице внутреннего и внешнего в развитии и существовании нормального и больного организмов не теряет своего значения применительно к наследственным, передающимся, от родителей к детям, болезням, как бы ни казались такие болезни заранее детерменированными, патологическими наследственными задатками. Однако это положение требует более детального разбора, поскольку оно не столь однозначно по отношению к разным формам наследственных болезней, и в тоже время применимо в определенной степени даже к таким формам патологии, которые кажутся обусловленными только болезнетворными факторами внешней среды. Наследственность и среда оказываются этиологическими факторами или играют роль в патогенезе любого заболевания человека, но доля их участия при каждой болезни своя, причем, чем больше доля одного фактора, тем меньше другого. Все формы патологии с этой точки зрения можно разделить на четыре группы, между которыми нет резких границ.
Первую группу составляют собственно наследственные болезни, у которых этиологическую роль играет патологический ген, роль среды заключается в модификации лишь проявлений заболеваний. В эту группу входят моногенно обусловленные болезни, такие, как например, финилкетонурия, гемофилия, а также хромосомные болезни.
Вторая группа - это тоже наследственные болезни, обусловленные патологической мутацией, однако для их проявление необходимо специфическое воздействие среды. В некоторых случаях такое "проявляющее" действие среды очень наглядно, и с исчезновением действия средового фактора, клинические проявления становятся менее выраженными. Таковы проявления недостаточности гемоглобина HЬS у его гетерозиготных носителей при пониженном парциальном давлении кислорода. В других случаях, например, при подагре, для проявления патологического гена необходимо длительное неблагоприятное воздействие среды (особенности питания).
Третью группу составляет подавляющее число распространенных болезней, особенно болезней зрелого и преклонного возраста (гипертоническая болезнь, язвенная болезнь желудка, большинство злокачественных образований и др.). Основным этиологическим фактором в их возникновении служит неблагоприятное воздействие среды, однако, реализация действия фактора зависит от индивидуальной генетически детерминируемой предрасположенности организма, в связи с чем эти болезни называют мультифакториальными, или болезнями с наследственным предрасположением. Необходимо отметить, что разные болезни с наследственным предрасположением неодинаковы по относительной роли наследственности и среды. Среди них можно было бы выделить болезни со слабой, умеренной и высокой степенью наследственного предрасположения.
Четвертая группа болезней - это сравнительно немногие формы патологии, в возникновении которых исключительную роль играет фактор среды. Обычно это экспериментальный средовой фактор, по отношению к действию которого организм не имеет средств защиты (травмы, особо опасные инфекции). Генетические факторы в этом случае играют роль в течении болезни, влияют на ее исход.
Хромосомные болезни.
Рассмотрим более подробно все четыре группы хромосомных болезней.
К хромосомным болезням относят формы патологии, которые клинически выражаются множественными пороками развития, а в качестве генетической основы имеют отклонения от нормального содержания в клетках организма количества хромосомного материала, т. е. обусловлены геномными или хромосомными мутациями.
Большинство хромосомных болезней являются спорадическими, возникающими заново вследствие геномной (хромосомной) мутации в гамете здорового родителя, или в первых делениях зиготы, а не наследуемым в поколениях, что связано с высокой смертностью больных в дорепродуктивном периоде. Фенотипическую основу хромосомных болезней составляют нарушения раннего эмбрионального развития. Поэтому патологические изменения складываются еще в перинатальном периоде развития организма, и либо обусловливают гибель эмбриона или плода, либо создают основную клиническую картину заболевания уже у новорожденного. Роль хромосомной патологии в перинатальной гибели эмбрионов или плодов у человека велика. В среднем около 40% диагностируемых спонтанных абортов обусловлены хромосомным дисбалансом. Около 6% всех мертворожденных имеют хромосомные болезни. Если все случаи множественных пороков развития среди новорожденных принять за 100%, то 35 - 40% будут составлять пороки, вызванные нарушением состояния хромосом.
Все хромосомные болезни по этому признаку можно разделить на две большие группы: вызванные изменением числа хромосом при сохранении структуры последних (геномные мутации) и обусловленные изменением структуры хромосомы (хромосомные мутации). У человека описаны все известные виды мутаций обоих типов.
Численные нарушения могут состоять в изменении диплоидности хромосомного набора и в отклонении числа хромосом от диплоидного по каждой их паре в сторону уменьшения (моносомия) или увеличения (полисомия). Геномные мутации по отдельным хромосомам многочисленны, они составляют основную массу хромосомных болезней. Полные моносомии наблюдаются по X-хромосоме, приводя к развитию синдрома Шэревского-Тернера.
Этот синдром развивается при полной X-хромосомии, когда все клетки или их большинство имеют хромосомный набор. Клиническими проявлениями этого синдрома являются отсутствие у женщин обычных вторичных половых признаков, низкий рост, сближенные соски, нарушение скелета, бесплодие, разнообразные пороки внутренних органов.
Наиболее полно изучена трисомия по 21-ой хромосоме или, как ее еще называют, болезнь Дауна. Это аномалия, названная так по имени врача, впервые описавшего ее в 1866 году, вызывается нерасхождением хромосом.
К числу ее симптомов относятся задержка умственного развития, пониженная сопротивляемость болезням, врожденные сердечные аномалии, короткое коренастое туловище и толстая шея, а также характерные складки кожи над внутренними углами глаз, что создает внешнее сходство с представителями монголоидной расы. Синдром Дауна и другие сходные аномалии чаще встречаются у детей, рожденных немолодыми женщинами. Точная причина неизвестна, но, по-видимому, она как-то связана с возрастом яйцеклеток матери. Число Х-хромосом у индивида может доходить до 5 с сохранением его жизнеспособности.
Структурные перестройки хромосом, какого бы вида они ни были, вызывают нарушения развития организма вследствие или недостатка части материала по данной хромосоме (частичная моносомия) или его избытка (частичная трисомия).
Как пример можно привести Х-полисомию при отсутствии У-хромосомы. Такие организмы имеют хромосомный набор 47, ХХХ и хотя внешне женщины выглядят нормально и они плодовиты, но у них отмечается умственная отсталость.
При синдроме Клайнфельтера (47, ХХУ), мужчина обладает некоторыми вторичными женскими половыми признаками, бесплоден, яички слабо развиты, волос на лице мало, иногда развиваются молочные железы, обычно низкий уровень умственного развития.
При хромосомном наборе 47. ХХУ, мужчины имеют высокий рост, различный уровень умственного развития, иногда обладают психопатическими чертами или проявляют склонность к мелким правонарушениям. Генные болезни делятся на две большие группы: болезни с выясненным первичным биохимическим дефектом и болезни с невыясненным первичным биохимическим дефектом. К первой группе принадлежат наследственные болезни обмена веществ, биосинтеза белка, ферментов.
Болезни обмена веществ.
Примером наследственных дефектов обмена углеводов является галактоземия. Одним из путей обмена моносахаридов в организме является превращение 0-галактозы, которая поступает в организм с пищей (образуется в кишечнике при ферментативном гидролизе пищевой лактозы), в глюкозу. Процесс превращения состоит из нескольких этапов и может прерваться при недостаточности фермента галактозы-1-фосфатуридилтрансферазы. Чаще всего мутация ведет к недостаточной активности фермента (10-12% нормального уровня). Биохимический патогенез болезни включает накопление галактозы в разных тканях и в крови, что ведет к нарушению использования глюкозы в печени, почках и головном мозгу. Галактоземия встречается среди новорожденных с частотой 1 на 35-150 тыс. рождений. Заболевание развивается после рождения при вскармливании младенца, поскольку с молоком поступает лактоза - источник неметаболируемой галактозы. В результате у ребенка возникают рвота и понос, приводящие к обезвоживанию организма, и постепенное развитие умственной отсталости на фоне общей дистрофии. Если с помощью соответствующей диеты, в которой предусмотрено полное исключение молочного сахара, ребенок поправляется, в дальнейшем с возрастом появляется второй метаболический путь превращения галактозы в глюкозу - при участии фермента уридилтрансферазы.
Наследственные аминоацидопатии (наследственные дефекты обмена аминокислот) составляют самую большую группу наследственных дефектов обмена. К началу 1985 года их список насчитывал около 60 различных нозологических единиц, и хотя каждая из них встречается редко (1:20000 - 1:100000 новорожденных), в сумме они составляют значительную часть наследственных дефектов обмена.
Фенилкетонурия. Клинически эта болезнь была впервые описана в 1934 году, однако лишь спустя 19 лет было установлено, что этот наследственный дефект связан с недостаточностью фенилаланин-4-гидроксилазы. В норме избыток фенилаланина, поступившего с пищей и не использованного для синтеза белка, с помощью указанного фермента превращается в тирозин. У больных фенилкетонурией эта аминокислота накапливается в крови. Повышение уровня содержания фенилаланина само по себе не опасно, но оно стимулирует необычные реакции, в результате которых в организме накапливается кетопроизводные фенилаланина. Они и вызывают повреждения нервной ткани у новорожденных и развитие умственной отсталости в дальнейшем. Поэтому, если вовремя обнаружить наличие этой болезни и исключить из пищи фенилаланин, ребенок будет развиваться нормально. Существует несколько методов диагностики фенилкетонурии. Наибольшее распространение получили микробиологические тесты.
Витамины выполняют роль кофакторов, простетических групп многих ферментов. Недостаточное поступление их с пищей резко снижает активность соответствующих обменных процессов. Возникающие при этом заболевания называют авитаминозом, и их легко лечат с помощью введения в организм недостающих витаминов. Однако существуют витаминонезависимые авитаминозы, при которых такие меры не оказывают эффекта. Причины таких заболеваний, а они, как правило, являются наследственными, были раскрыты после тщательного изучения метаболизма витаминов. Прежде чем выступить в качестве кофермента, витамин специальными транспортными белками должен быть извлечен из кишечника и переправлен в кровяное русло. Там он подвергается ферментативной модификации и только потом может связаться с коферментом (если его структура не изменена), превратив его в активный фермент. Каждый из генов, кодирующих белки, ответственные за эти превращения, может быть инактивирован соответствующей мутацией. Эти генетические нарушения порождают заболевания, для лечения которых необходимо вводить в организм готовые коферменты. Разработка методов лечения должна базироваться на точном знании путей метаболизма данного витамина. Самая трудная ситуация возникает при поражении кофермента. Сейчас нет эффективных способов, позволяющих справиться с такой патологией.
Примером наследственных дефектов циркулирующих белков является серповидно-клеточная анемия. Белковая часть любых гемоглобинов (НЬ) человека состоит из двух цепей глобина, причем каждый построен из двух альфа- и двух бета- цепей. При серповидно-клеточной анемии валин в бетаположении заменяется на глутаминовую кислоту. Эта замена обуславливает пониженную растворимость гемоглобина. Гетерозиготные носители НьS в обычных условиях клинически здоровы, т. к. в крови содержится и нормальный НьA; аномалия начинает проявлять себя лишь в условиях пониженного давления (в горах). У гомозигот с ранних лет развивается характерная картина хронической анемии с расстройствами кровообращения и тромбозами. Гемоглобин HbS часто обнаруживается у населения регионов, где распространена малярия, так как он является нечувствительным к малярийному плазмодию.
Примером наследственной болезни с невыясненным первичным биохимическим дефектом является ахондроплазия. Она представляет собой пример наследственной болезни с твердо установленным доминантным типом наследования. Однако из-за резко сниженной способности больных иметь потомство практически в 80-95% случаев это заболевание связано с новыми возникающими мутациями.
Ахондроплазия - одна из наследственных болезней костной системы, клиническая картина ее обусловлена аномальным ростом и развитием хрящевой ткани, главным образом в эпифизах трубчатых костей и основании черепа. О биохимической природе этой болезни ничего не известно, если не считать сведений о различных отклонениях в активности ряда ферментов, значение которых остается пока невыясненным.
Патология роста указанных костей определяет характерную клиническую картину, полностью выраженную у больных в половозрелом возрасте: 1) низкий рост (обычно 120 см) при сохранении длины туловища; 2) макроцефалия, бугристая мозговая часть черепа, и характерное лицо; 3) резкое укорочение верхних и нижних конечностей, особенно за счет бедренной и плечевой кости, с их деформацией и утолщением.
К мультифакториальным, или болезням с наследственным предрасположением, относится шизофрения. Она занимает среди эндогенных функциональных психозов ведущее место по частоте (более 1%). Семейных характер заболеваемости шизофренией и участие наследственных факторов в ее этиологии давно не вызывает сомнений, однако, как и для других болезней с наследственным предрасположением, генетическая природа предрасположения остается до конца не расшифрованной. В последние годы генетические закономерности шизофрении активно изучались советскими исследователями под руководством М. Е. Вартаняна, и эти исследования продолжаются и поныне.
Генетика очень тесно связана с экологией человека, поскольку она изучает закономерности наследования нормальных и патологических признаков в зависимости от генотипа и факторов внешней среды. Генетические нарушения, лежащие в основе развития человека, распространены очень широко.
Из-за таких нарушений около 15 % эмбрионов погибает еще до рождения, 3%-при рождении, 3% детей не доживает до взрослого возраста, 20% не вступает в брак, 10% браков остаются бездетными. К настоящему времени описано около 2000 болезней человека, вызываемых генетическими нарушениями.
Наследственные заболевания — заболевания, возникновение и развитие которых связано с дефектами в программном аппарате клеток, передаваемыми по наследству через гаметы. В основе наследственных заболеваний лежат нарушения (мутации) наследственной информации — хромосомные, генные и митохондриальные.
При своевременной диагностике и знаний в области генетики, можно полностью избежать патологических изменений. Например, если с рождения и до полового созревания ограничить поступление в организм фенилаланина с пищей, можно полностью избежать ранее необратимых изменений ткани мозга.
Некоторые из современных газированных напитков, жевательных резинок и лекарственных препаратов содержат фенилаланин, о чём производители обязаны предупреждать на этикетке. При рождении ребёнка в роддомах на 3-4 сутки берут анализ крови и проводят неонатальный скрининг для обнаружения врожденных заболеваний обмена веществ. На этом этапе возможно обнаружение фенилкетонурии, и, как следствие, возможно раннее начало лечения для предотвращения необратимых последствий. Лечение проводится в виде строгой диеты от обнаружения заболевания как минимум до полового созревания. Диета исключает мясные, рыбные, молочные продукты и другие продукты, содержащие животный и, частично, растительный белок. Это помогла выяснить генетика, и сейчас врачи хорошо это знают и передают знания родителям.
Экологическая генетика человека имеет дело с вариациями ответов организма различных людей на воздействие различных факторов среды. На основе этих фактов генетики пытаются объяснить, почему поражается только некоторая часть населения вредному воздействию окружающей среды, и как индивиды различаются по адаптации к среде.
Загрязнение атмосферы выхлопными газами автотранспорта, газообразными продуктами многочисленных фабрик и заводов представляет серьезную гигиеническую проблему глобального масштаба. В некоторых городах в атмосферу выбрасывается до 1000 кг плотных осадков на человека в год. Химические соединения и пылевые частицы попадают в организм через легкие, кожу и слизистые оболочки, вызывая патологические реакции.
Все это в широком понимании входит в среду обитания человека. С одними факторами человек соприкасается постоянно, с другими - изредка. Этим вопросом и его решением также занимается генетика, ее составная, называемая экогенетикой.
Проявления наследственных вариаций возможны в ответ на воздействие любых факторов. Часть таких факторов уже известна генетикам и врачам.
Для людей, занятых на некоторых производствах, доза (или концентрация) вредных веществ намного больше допустимых, но они переносят это без профессиональной болезни. А у некоторых индивидов даже меньшая доза ведет к профессиональному заболеванию (силикозу, антракозу, хронической пневмонии). Почему это так – на это тоже старается ответить экогенетика.
В производственных условиях рабочие контактируют с бензпиреном, ароматическими соединениями, лакокрасочными материалами, продуктами изготовления резиновых изделий, солями тяжелых металлов и другими многочисленными факторами. Как это отражается на здоровье человека? Очередной вопрос и его решение для экогенетиков.
В последнее время обнаружена взаимосвязь заболеваемости с производственными факторами у лиц с мутациями в группе генов глутатион-S-трансфераз и гена NAT2. Развитие таких постгеномных направлений, как протеомика, метаболомика и новые генетические методики, заложили основы изучения генетического контроля внутри цитологии – науки о клетке. Эта часть генетики называется нутригенетика.
Нутригенетика изучает влияние основных пищевых ингредиентов на геном, описывает влияние пищевых молекул на метаболические пути и контроль гомеостаза. Сегодня уже доказано, что некоторые нутриенты могут оказывать влияние на ДНК, эпигенетические (например, метилирование), транскрипционные (влияние на м - РНК) и посттрансляционные процессы (фосфорилирование, гликозилирование белков).
Нутригенетика оценивает, как индивидуальные особенности генотипа определяют ответ на пищу, т.е. как генетические вариации организмов влияют на усвоение пищи.
Галактоземия - заболевание, связанное с дефицитом галактозо- 1-фосфатуридилтрансферазы или галактокиназы, в результате чего в организме накапливается галактоза и галактозо-1-фосфат, приводя к катаракте, циррозу печени, задержке психического развития и сепсису. Исключение галактозы из пищевого рациона способствует купированию практически всех симптомов заболевания.
Еще одним из наглядных примеров нутригенетических состояний является непереносимость лактозы, приводящая к дискомфорту в кишечнике и диспепсическим явлениям после употребления молока. В кишечнике не вырабатывается лактаза, в результате чего лактоза не расщепляется и служит хорошим субстратом для размножения гнилостной микрофлоры. Мутантные аллели гена лактазы широко распространены у восточных народов (до 95-100%), среди американских индейцев и афроамериканцев (70-75%). У европейцев частота гомозигот по этим мутациям невелика (5-10%).
Один из вариантов синдрома нарушенного всасывания у детей связан с непереносимостью глютена (белок пшеницы и других злаков). Это заболевание называется целиакией. Дети тяжело заболевают, как только начинают получать прикорм пищей, содержащей злаки. При исключении злаковых продуктов (хлеба, манной каши) такие дети развиваются нормально. Близнецовым и генеалогическим методами показано значение наследственности в этих реакциях. Предрасположенность к целиакии определяется взаимодействием двух генов главного комплекса гистосовместимости II класса (α-1 и β-1). Интересно, что некоторые сорта пшеницы не вызывают патологических реакций. Они отличаются от других сортов заменой одной или нескольких аминокислотных остатков в молекуле глютена.
Катехоламины, содержащиеся в сыре, у некоторых людей могут вызывать мигрень. Это связано с пониженной конъюгацией тирамина. Иногда мигрень провоцирует шоколад, что объясняется низкой активностью моноаминоксидазы.
Известны специфические реакции людей на алкоголь. У большинства представителей монголоидных популяций после употребления малых количеств алкоголя немедленно краснеет лицо, возникают тахикардия, жжение в желудке, мышечная слабость и другие признаки отравления. Это врожденное свойство сохраняется на всю жизнь и не зависит от привыкания к алкоголю. Такая реакция на алкоголь объясняется наследственными вариациями в молекулах двух ферментов, расщепляющих этанол.
Гены ADH печени представлены тремя полиморфными локусами (ADH-1, ADH-2, ADH-3), ALDH - двумя (ALDH-1 и ALDH-2).
Указанная выше токсическая реакция на малые количества алкоголя свойственна людям, у которых отсутствует изоформа ALDH-1.
Что же касается многофакторных заболеваний, то здесь на первый план выступают полиморфизмы генов, участвующих в расщеплении, активации, детоксикации и выведении нутриентов, попадающих в организм с пищей.
Считается, что пищевые факторы ответственны примерно за 30% всех злокачественных новообразований, проявляющихся у человека.
Велика также их роль в развитии сахарного диабета 1-го и 2-го типа, ишемической болезни сердца, ожирения, гипертонической болезни, некоторых пороков развития и другой не менее часто встречаемой патологии.
Наиболее изученным заболеванием с этой точки зрения является сахарный диабет (1-го и 2-го типа). Генетическая предрасположенность к сахарному диабету 1-го типа, по мнению авторитетных эндокринологов, хорошо нивелируется «правильной» диетой. Заболевание можно отсрочить и даже вылечить с помощью создания «персонализированной диеты» на основании сведений о значимых полиморфизмах для этой патологии.
Так показано, что частота сахарного диабета 1-го типа, находится в прямой зависимости от энергетической ценности потребляемой пищи и в обратной - от доли растительной пищи в ежедневном рационе человека. Отмечен также выраженный протективный эффект грудного вскармливания. А неблагоприятные аллели генов DQA1 и DQB1 повышают риск заболевания при употреблении животных белков, например, мяса.
Очевидно, что в этиологии сахарного диабета 2-го типа большую роль играет воздействие окружающей среды, в частности питание. Данное заболевание относительно легко корректируется диетой. Однако не у всех пациентов изменение диеты бывает эффективным. На основании этого был сделан вывод об индивидуальных различиях в реакции пациентов на диету. Полиморфизмы затрагивают не только гены, включенные в метаболизм глюкозы, но и обмен инсулина, липидов, водно-солевой гомеостаз тканей, артериальное давление, иммунные реакции и др. Сведения обо всех значимых полиморфизмах помогут составить персонализированную диету для каждого пациента, страдающего сахарным диабетом 2-го типа.
Целый ряд заболеваний и нарушений связан с дефицитом фолиевой кислоты, которая участвует в синтезе нуклеотидов и в реакции превращения гомоцистеина в метионин. Очевидно, что дефицит фолиевой кислоты может вести к различным генетическим нарушений.
Данные о потенциальном воздействии средовых загрязнений на наследственность человека и их способность повреждать наследственные структуры, репродуктивные функции, внутриутробное развитие справедливо вызывают озабоченность мировой общественности. Необходимы глубокие разработки в области экологической генетики человека и мероприятия по охране среды его обитания.
Современные научные методологии существенно улучшили оценку вредных влияний факторов окружающей среды на наследственность человека. Оценка риска должна постоянно подвергаться коррекции, поскольку становятся доступными новые генетические технологии, а также происходит развитие клеточной биологии и информационных технологий.
Нередко высказываются предложения приблизить среду обитания человека к естественной экологии. Это невозможно, так как практически вся среда обитания современного человека в широком смысле слова выстроена самим человеком. Необходимо стремиться не к возврату в прошлое, а к оценке тех изменений, в том числе и в наследственности, которые возникают при создании новых технологий, и заранее предупреждать их.
Важность проблем, изучаемых экологической генетикой человека, со временем будет возрастать и относительно, и абсолютно. Во-первых, относительная значимость экогенетической патологии будет увеличиваться по мере улучшения медицинской помощи и успешной борьбы с распространенными болезнями. Обычные медицинские меры профилактики не снизят частоту экогенетических болезней. Во-вторых, со временем можно ожидать увеличения экогенетической патологии в абсолютном выражении, поскольку вследствие научно-технического прогресса будут появляться все новые факторы, повысится специфичность новых производственных условий и т.д.
Выявление экогенетической патологии и идентификация ее форм представляют трудную задачу, поскольку надо найти и суть биохимического полиморфизма в популяциях человека, и конкретные факторы среды, обусловливающие патологическое действие «молчащего» гена. В этом процессе познания трудно переоценить роль врача, заметившего «непонятный случай». Это особенно касается вопросов профессиональной патологии и лекарственной терапии: именно здесь можно чаще обнаружить проявление еще не описанных форм экогенетической патологии.
В профилактической медицине концепции экологической генетики человека крайне важны, поскольку они направляют усилия на создание оптимальной среды (пища, лекарства, работа) для каждого индивида с целью предупреждения патологического проявления экогенетического биохимического полиморфизма.
Работая над проектом, я осознала всю значимость генетики для современного человека. Современный человек столкнулся с большим количеством неблагоприятных внешних факторов, которые отрицательны для его здоровья и даже для его существования. И только глубокие знания процессов, которые происходят внутри организма под воздействием таких внешних факторов, помогут ему бороться с заболеваниями, преодолеть эти заболевания или избежать их. Генетика в таких случаях незаменима.
ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА:
Разноцветное дерево
Груз обид
Кто грамотней?
Н. Гумилёв. Жираф
Рисуем "Ночь в лесу"