Данная работа выполнена студентом первого курса Харабалинского филиала ГАОУ АО ВО "АГАСУ"
Вложение | Размер |
---|---|
matematika.pptx | 992.35 КБ |
Слайд 1
Презентация на тему: Великий математик Колмогоров Андрей Николаевич. Математическая статистика. Студентки 1 курса, 10 группы ХФ ГАОУ АО ВО АГАСУ Шукурбаевой Динары.Слайд 2
Колмогоров Андрей Николаевич. Биография. Выдающийся советский математик, доктор физико-математических наук, профессор Московского Государственного Университета (1931), академик Академии Наук СССР (1939). Колмогоров — один из основоположников современной теории вероятностей, им получены фундаментальные результаты в топологии, математической логике, теории турбулентности, теории сложности алгоритмов и ряде других областей математики и её приложений .
Слайд 3
. Мать Колмогорова — Мария Яковлевна Колмогорова (1871—1903) умерла при родах. Отец — Николай Матвеевич Катаев, по образованию агроном (окончил Петровскую ( Тимирязевскую ) академию), погиб в 1919 году во время деникинского наступления. Мальчик был усыновлён и воспитывался сестрой матери, Верой Яковлевной Колмогоровой. Тетушки Андрея в своём доме организовали школу для детей разного возраста, которые жили поблизости, занимались с ними — десятком ребятишек — по рецептам новейшей педагогики. Для ребят издавался рукописный журнал «Весенние ласточки». В нем публиковались творческие работы учеников — рисунки, стихи, рассказы. В нем же появлялись и «научные работы» Андрея — придуманные им арифметические задачи. Здесь же мальчик опубликовал в пять лет свою первую научную работу по математике. Правда, это была всего-навсего известная алгебраическая закономерность, но ведь мальчик сам её подметил, без посторонней помощи!
Слайд 4
В семь лет Колмогорова определили в частную гимназию. Она была организована кружком московской прогрессивной интеллигенции и все время находилась под угрозой закрытия. Андрей уже в те годы обнаруживает замечательные математические способности, но все-таки ещё рано говорить, что дальнейший путь его уже определился. Были ещё увлечение историей, социологией. Одно время он мечтал стать лесничим. «В 1918—1920 годах жизнь в Москве была нелёгкой, — вспоминал Андрей Николаевич. — В школах серьёзно занимались только самые настойчивые. В это время мне пришлось уехать на строительство железной дороги Казань-Екатеринбург. Одновременно с работой я продолжал заниматься самостоятельно, готовясь сдать экстерном за среднюю школу. По возвращении в Москву я испытал некоторое разочарование: удостоверение об окончании школы мне выдали, даже не потрудившись проэкзаменовать».
Слайд 6
Университет. Когда в 1920 г. Андрей Колмогоров стал думать о поступлении в институт, перед ним возник вечный вопрос: чему себя посвятить, какому делу? Влечет его на математическое отделение университета, но есть и сомнение: здесь чистая наука, а техника — дело, пожалуй, более серьёзное. Вот, допустим, металлургический факультет Менделеевского института! Настоящее мужское дело, кроме того, перспективное. Андрей решает поступать и туда и сюда. Но вскоре ему становится ясно, что чистая наука тоже очень актуальна, и он делает выбор в её пользу.
Слайд 7
В 1920 г. он поступил на математическое отделение Московского университета. «Задумав заниматься серьёзной наукой, я, конечно, стремился учиться у лучших математиков, — вспоминал позднее учёный. — Мне посчастливилось заниматься у П. С. Урысона, П. С. Александрова, В. В. Степанова и Н. Н. Лузина, которого, по-видимому, следует считать по преимуществу моим учителем в математике. Но они „находили“ меня лишь в том смысле, что оценивали приносимые мною работы. „Цель жизни“ подросток или юноша должен, мне кажется, найти себе сам. Старшие могут этому лишь помочь».
Слайд 8
Теория вероятностей занимается большими ансамблями случайных событий. Каждое событие непредсказуемо, но все вместе они описывают некоторое вполне детерминированное распределение событий. Если взять квадратную площадь, над которой идет сильный дождь, то квадрат будет равномерно мокрым. Вероятность того, что некоторая область в центре квадрата окажется абсолютно сухой стремится к нулю, однако ничего невозможного в этом нет.
Слайд 9
Колмогоров определил вероятность как меру. То есть мы можем измерять вероятность площадью. Если считать событием попадание капли в прямоугольники A, B, C, D, то как определить вероятность этого события? Попадет ли каждая конкретная капля в один из прямоугольников, зависит только от площади этих прямоугольников. Оказалось, что такой «площадной» подход отлично работает. Например: вероятность того, что капля попадет в прямоугольник A равна 0,3×0,4= 0,12, вероятность того, что она попадет в прямоугольник D — 0,6×0,7 = 0,42 и т.д
Слайд 10
Калькутта, Индия, 1962 год
Слайд 11
Стихи и математика Колмогорова с детства привлекала поэзия. Он говорил, что для того, чтобы полюбить Гете, ему надо посчитать все его размеры. Теория колмогоровской сложности во многом выросла как раз из увлечения стиховедением. В университете Колмогоров даже вел семинар по этой дисциплине. Он понял, что информация в стихах передается не только словами, но и самой конструкцией, строением текста.
Слайд 12
Теория сложности Из интереса Колмогорова к поэзии выросла его теория сложности. Сложность объекта — это длина программы, которая его описывает. Теория сложности — одна из самых перспективных областей современной математики. Задача, которая стоит перед учеными, занимающимися этой теорией, состоит в частности в том, чтобы научиться отделять хаос от знания. Хаотические последовательности содержат максимально много информации, но не имеют смысла (человек их не понимает). Простые повторяющиеся последовательности (например, последовательность из одних нулей или из одних единиц) содержат мало информации — их смысл вырожден. Значит, существуют последовательности, которые содержат значительную информацию и имеют смысл, то есть человек может их понять. Это — область знания. Она очень мала по сравнению с областью хаоса, но именно она нам наиболее интересна. Если нам удастся эффективно отделять хаос от знания, это позволит нам сделать шаг к созданию искусственного интеллекта
Слайд 13
Математическая статистика статистика . Пространством элементарных событий называется множество исходов некоторого эксперимента. Элементарным событием называется любой элемент пространства элементарных событий. Событием называется любое подмножество пространства элементарных событий. Генеральной совокупностью называется достаточно большое, быть может, бесконечное подмножество элементарных событий. Случайной величиной называют функцию от элементарного события. Экспериментом называется функция, принимающая значение на пространстве элементарных событий.
Слайд 14
Теорема . Если F(x) непрерывна, тораспределения статистики Колмогорова Dn не зависит от F(x). Условные математические ожидания и условные распределения. Св-ва условных мат. ожиданий. Аналоги формул полной вероятности и формулы Байеса для мат. ожиданий ГММЕ 173 ШВ 91. Условным законом распределения д.с.в . h при заданном значении д.с.в . x = хk называется набор условных вероятностей l=1,…,m. Условным математическим ожиданием д.с.в . h при заданном значении д.с.в . x = хk называется сумма . Имеет место равенство M [M( x ½h )] = M h . М (Р ( h = yl | x = xk )) = P( h = yl ). Достаточные статистики. Теорема Неймана-Фишера (критерий достаточности) СКТ 221. Достаточной называется такая статистика t(x) , что для случайной величины x с распределением p(x, q ) условное распределение P( x | t( x ) = t0 ) не зависит от параметра q (то есть через нее можно определить значение параметра q )
Слайд 15
Спасибо за внимание!!!
Сказка "12 месяцев". История и современность
Гораздо больше риска в приобретении знаний, чем в покупке съестного
Басня "Две подруги"
О чем поет Шотландская волынка?
Зимовье зверей