исследовательская работа
Вложение | Размер |
---|---|
schitay_bystree_kompyutera.docx | 551.86 КБ |
Муниципальное бюджетное общеобразовательное учреждение
«Усть-Бюрская средняя общеобразовательная школа».
Исследовательская работа
«Считай быстрее компьютера»
Работу выполнил: ученик 5 класса
Покачалов Виталий
Руководитель: учитель математики
Шиман Ольга Алексеевна
2015г.
Содержание:
Введение
«Предмет математики настолько серьезен,
что полезно не упускать случаев, делать
его немного занимательным». Б. Паскаль
Актуальность темы:
Устный счет – гимнастика для ума. Счет в уме является самым древним способом вычисления. Освоение вычислительных навыков развивает память и помогает усваивать предметы математического цикла. Существует много приемов упрощения арифметических действий. Знание упрощенных приемов вычисления особенно важно в тех случаях, когда вычисляющий не имеет в своем распоряжении таблиц и калькулятора. Существуют способы перемножать числа без знания таблицы умножения, они не похожи на наши школьные приемы, некоторые употреблялись в обиходе великорусских крестьян и унаследованы ими от глубокой древности, некоторые используются и в наше время.
В школе изучают таблицу умножения, а затем учат детей умножать числа в столбик. Разумеется, это не единственный способ умножения. На самом деле, существует несколько десятков способов умножения многозначных чисел. В данной работе мы приведём несколько способов умножения, возможно они покажутся более простыми и вы будете ими пользоваться.
Цель: ознакомление с различными способами умножения натуральных чисел, не используемых на уроках, и их применение при вычислениях числовых выражений.
Задачи:
Гипотеза исследования
Существуют способы умножения чисел, для которых достаточно наличие карандаша и бумаги.
Задачи исследования:
1. Познакомиться со старинными способами умножения, такими как: «Ревность, или решётчатое умножение», «Маленький замок», «Русский крестьянский способ»;
2. Рассмотреть метод умножения «круги», предложенный в Интернете. Расширить круг примеров, решенных указанным способом.
Методы:
- поисковый метод с использованием научной и учебной литературы, интернета;
- исследовательский метод при определении способов умножения;
- практический метод при решении примеров.
Структура данной работы следующая:
- в первом разделе представлены старинные способы умножения;
- во втором разделе приведено исследование метода умножения «круги»;
- в заключение работы изложены основные выводы и результаты выполненного исследования;
- список литературы содержит 5 наименований.
2.Основная часть.
2.1.Прием перекрестного умножения при действии с двузначными числами
Древние греки и индусы в старину называли прием перекрестного умножения «способом молнии» или «умножение крестиком».
Пример: 52 х 23 = 1173 5 1
X
2 3
Последовательно производим следующие действия:
1. 1 х 3 = 3 – это последняя цифра результата.
2. 5 х 3 = 15; 1х 2 = 2; 15 + 2 = 17.
7 – предпоследняя цифра в ответе, единицу запоминаем.
3. 5 х 2 = 10, 10 + 1 = 11 – это первые цифры в ответе.
Ответ – 1173.
2.2.Русско-крестьянский способ умножения.
В России среди крестьян был распространен способ, который не требовал знания всей таблицы умножения. Здесь необходимо лишь умение умножать и делить числа на 2. Напишем одно число слева, а другое справа на одной строке Левое число будем делить на 2, а правое – умножать на 2 и результаты записывать в столбик.
Пример: 32 х 13
Множимое =32 | Множитель = 13 |
32 | 13 |
16 | 26 |
8 | 52 |
4 | 104 |
2 | 208 |
1 | 416 |
Таблица 1.
Деление пополам (см. левую половину Таблицы 1) продолжают до тех пор, пока в частном не получится 1, параллельно удваивая другое число (правая часть Таблицы 1). Последнее удвоенное число и дает искомый результат.
Нетрудно понять, на чем этот способ основан: произведение не изменяется, если один множитель уменьшить вдвое, а другой вдвое же увеличить. Ясно поэтому, что в результате многократного повторения этой операции получается искомое произведение: ( 32 х 13 ) = ( 1 х 416 )
Особо внимательные заметят "А как быть с нечетными числами, которые не кратны 2-м?".
Итак, пусть нам необходимо умножить два числа: 987 и 1998. Одно запишем слева, а второе - справа на одной строчке. Левое число будем делить на 2, а правое - умножать на 2 и результаты записывать в столбик. Если при делении возникнет остаток, то он отбрасывается.
Операцию продолжаем, пока слева не останется 1. Затем вычеркнем те строчки, в которых слева стоят четные числа, и сложим оставшиеся числа в правом столбце. Это и есть искомое произведение. Дана графическая иллюстрация по данному описанию. ( см. Таблицу 2.)
Таблица 2.
1 2 3
4 5 6
7 8 9
Это всем известный Квадрат Пифагора, отражающий мировую систему счисления, состоящую из девяти цифр: от 1 до 9. Выражаясь современным языком – это девяти разрядная числовая матрица, в которой цифры, являющиеся основой для дальнейших вычислений любой сложности расположены в порядке возрастания. Квадрат Пифагора называют и Эннеадой, а тройку цифр - триада. Можно рассматривать тройки цифр расположенные по горизонтали (123, 456, 789) и по вертикали(147, 258, 369). Причем, записанные таким образом, тройки цифр начинают обозначать уже особые числа, подчиняющиеся законам математической пропорции и гармонии.
Вспомним главное правило древнеегипетской математики, в котором сказано, что умножение производится при помощи удвоения и сложения полученных результатов; то есть каждое удвоение есть сложение числа с самим собой. Поэтому интересно посмотреть на результат подобного удвоения цифр и чисел, но полученному современным методом складывания « в столбик», известному даже в начальных классах школы. Это будет напоминать египетскую систему счисления, по сути, с разницей в том, что все цифры либо числа записываются в один столбик (без указания того или иного действия в соседнем столбике - как у египтян).
Начнем с цифр, составляющих Квадрат Пифагора: от 1 – до 9.
1 2 3 4 5 6 7 8 9
2 4 6 8 10 12 14 16 18
3 6 9 12 15 18 21 24 27
4 8 12 16 20 24 28 32 36
5 10 15 20 25 30 35 40 45
6 12 18 24 30 36 42 48 54
7 14 21 28 35 42 49 56 63
8 16 24 32 40 48 56 64 72
9 18 27 36 45 54 63 72 81
10 20 30 40 50 60 70 80 90
Цифра 1: обычный последовательный ряд цифр.
Цифра 9: левый столбик - четкий восходящий ряд («поток»).
правый столбик - четкий нисходящий ряд последовательных цифр. Условимся называть восходящим ряд, значения чисел в котором увеличиваются сверху вниз ; в нисходящем же – наоборот: уменьшаются значения чисел сверху вниз.
Цифра 2: в правом столбике повторяются четные цифры 2,4,6,8 («в периоде»).
Цифра 8: такой же повтор - только в обратном порядке- 8,6,4,2.
Цифры 4 и 6: четные цифры «в периоде» 4,8,2,6 и 6,2,8,4.
Цифра 5: подчиняется правилу сложения цифры 5- чередование 5 и 0.
Цифра 3: правый столбик - нисходящий ряд уже не цифр, а чисел, образующих тройки вертикальных рядов в квадрате Пифагора- 369, 258, 147. Причем, отсчет идет «из правого угла квадрата» или справа налево. Здесь также действует принятое выше правило восходящего - нисходящего ряда. Но восходящий ряд – это движение от тройки чисел 147 до тройки 369; нисходящий - от 369 до 147.
Цифра 7: восходящий ряд чисел 147,258,369 из «левого угла» или слева направо. Впрочем, все зависит от того, как изображена сама девятиразрядная числовая матрица - где поставить цифру 1.
Школьники смогут научиться устно складывать и умножать миллионы, биллионы и даже секстиллионы с квадриллионами. А поможет им в этом кандидат философских наук Василий Оконешников, по совместительству изобретатель новой системы устного счёта. Учёный утверждает, что человек способен запоминать огромный запас информации, главное – как эту информацию расположить.
По мнению самого учёного, наиболее выигрышной в этом отношении является девятеричная система – все данные просто располагают в девяти ячейках, расположенных, как кнопочки на калькуляторе.
По мысли учёного, прежде чем стать вычислительным «компьютером», необходимо вызубрить созданную им таблицу. Цифры в ней распределены в девяти клетках непросто. Как утверждает Оконешников, глаз человека и его память так хитро устроены, что информация, расположенная по его методике, запоминается во-первых, быстрее, а во-вторых – намертво .
Таблица разделена на 9 частей. Расположены они по принципу мини калькулятора: слева в нижнем углу «1», справа в верхнем углу «9». Каждая часть – таблица умножения чисел от 1 до 9 (опять же в левом нижнем углу на 1, рядом правее на 2 и т.д., по той же «кнопочной» система). Как ими пользоваться?
Например, требуется умножить 9 на 842. Сразу вспоминаем большую «кнопку» 9 (она вверху справа и на ней мысленно находим маленькие кнопочки 8,4,2 (они также расположены как на калькуляторе). Им соответствуют числа 72, 36, 18. Полученные числа складываем особо: первая цифра 7 (остаётся без изменения), 2 мысленно складываем с 3, получаем 5 – это вторая цифра результата, 6 складываем с 1, получаем третью цифру -7, и остаётся последняя цифра искомого числа – 8. В результате получилось 7578.
Если при сложении двух цифр получается число, превосходящее девять, то его первая цифра прибавляется к предыдущей цифре результата, а вторая пишется на «своё» место.
С помощью матричной таблицы Оконешникова по утверждению самого автора, можно изучать и иностранные языки, и даже таблицу Менделеева. Новая методика была опробована в нескольких российских школах и университетах. Минобразования РФ разрешило публиковать в тетрадях в клеточку вместе с привычной таблицей Пифагора новую таблицу умножения – пока просто для знакомства.
Пример: 15647 х 5
В древней Индии применяли два способа умножения: сетки и галеры. На первый взгляд они кажутся очень сложными, но если следовать шаг за шагом в предлагаемых упражнениях, то можно убедиться, что это довольно просто.
Умножаем, например, числа 6827 и 345:
1. Вычерчиваем квадратную сетку и пишем один из номеров над колонками, а второй по высоте. В предложенном примере можно использовать одну из этих сеток.
Сетка 1 Сетка 2
2. Выбрав сетку, умножаем число каждого ряда последовательно на числа каждой колонки. В этом случае последовательно умножаем 3 на 6, на 8, на 2 и на 7. Посмотри на этой схеме, как пишется произведение в соответствующей клетке.
Сетка 1
3. Посмотри, как выглядит сетка со всеми заполненными клетками.
Сетка 1
4. В заключение складываем числа, следуя диагональным полосам. Если сумма одной диагонали содержит десятки, то прибавляем их к следующей диагонали.
Сетка1
Посмотри, как из результатов сложения цифр по диагоналям (они выделены жёлтым фоном) составляется число 2355315, которое и является произведение чисел 6827 и 345, то есть 6827 х 345 = 2355315.
Древнеегипетское умножение является последовательным методом умножения двух чисел. Чтобы умножать числа, им не нужно было знать таблицы умножения, а достаточно было только уметь раскладывать числа на кратные основания, умножать эти кратные числа и складывать. Египетский метод предполагает раскладывание наименьшего из двух множителей на кратные числа и последующее их последовательное перемножение на второй множитель (см. пример). Этот метод можно и сегодня встретить в очень отдаленных регионах.
Разложение. Египтяне использовали систему разложения наименьшего множителя на кратные числа, сумма которых составляла бы исходное число.
Чтобы правильно подобрать кратное число, нужно было знать следующую таблицу значений:
1 x 2 = 2 2 x 2 = 4 4 x 2 = 8 8 x 2 = 16 16 x 2 = 32
Пример разложения числа 25: Кратный множитель для числа «25» — это 16; 25 — 16 = 9. Кратный множитель для числа «9» — это 8; 9 — 8 = 1. Кратный множитель для числа «1» — это 1; 1 — 1 = 0. Таким образом «25» — это сумма трех слагаемых: 16, 8 и 1.
Пример: умножим «13» на «238» . Известно, что 13 = 8 + 4 + 1. Каждое из этих слагаемых нужно умножить на 238. Получаем: ✔ 1 х 238 = 238 ✔ 4 х 238 = 952 ✔ 8 х 238 = 1904 13 × 238 = (8 + 4 + 1) × 238 = 8 x 238 + 4 × 238 + 1 × 238 = 1904 + 952 + 238 = 3094.
А теперь представим метод умножения, бурно обсуждаемый в Интернете, который называют китайским. При умножении чисел считаются точки пересечения прямых, которые соответствуют количеству цифр каждого разряда обоих множителей.
Пример: умножим 21 на 13. В первом множителе 2 десятка и 1единица, значит строим 2 параллельные прямые и поодаль 1 прямую.
Во втором множителе 1 десяток и 3 единицы. Строим параллельно 1 и поодаль 3 прямые, пересекающие прямые первого множителя.
Прямые пересеклись в точках, количество которых и есть ответ, то есть 21 х 13 = 273
Забавно и интересно, но проводить 9 прямых при умножении на 9 как-то долго и неинтересно, а потом еще точки пересечения считать… В общем, без таблицы умножения не обойтись!
Японский способ умножения – это графический способ с использованием кругов и линий. Не менее забавный и интересный чем китайский. Даже чем-то на него похож.
Пример: умножим 12 на 34. Так как второй множитель двузначное число, а первая цифра первого множителя 1, строим два одиночных круга в верхней строке и два двоичных круга в нижней строке, так как вторая цифра первого множителя равна 2.
12 х 34
Так как первая цифра второго множителя 3, а вторая 4, делим круги первого столбца на три части, второго столбца на четыре.
12 х 34
Количество частей, на которые разделились круги и является ответом, то есть 12 х 34 = 408.
Работая над этой темой мы узнали, что существует много различных, забавных и интересных способов умножения. Некоторыми в различных странах пользуются до сих пор. Но не все способы удобны в использовании, особенно при умножении многозначных чисел. В общем, таблицу умножения все-таки знать нужно!
Данная работа может быть использована для занятий на математических кружках, дополнительных занятиях с детьми во внеурочное время, как дополнительный материал на уроке по теме «Умножение натуральных чисел». Материал изложен доступно и интересно, что привлечёт внимание и интерес учащихся к предмету математика.
Прекрасная химия
Человек несгибаем. В.А. Сухомлинский
Злая мать и добрая тётя
Упрямый зяблик
Почта