Реферат по биологии
Вложение | Размер |
---|---|
referat.docx | 166.23 КБ |
Реферат
по теме
«Строение и работа сердца»
Работу выполнила:
Ученица 8 класса Черненко Алина
2016 г.
План
1.Введение
2.Сердце
3.Круги кровообращения
4.Строение миокарда сердца
5. Физиологические особенности строения сердечной мышцы
6.Сердечный цикл
7. Деятельность сердечно-сосудистой системы при физической нагрузке.
8.Заключение.
Введение
В процессе эволюции у высших животных возникает проблема транспорта питательных веществ и кислорода к тканям и отвода от них продуктов метаболизма. Данная проблема была решена развитием системы кровообращения. С помощью сердца, а также широкой и развернутой сети сосудов (вен, артерий, капилляров), которые разветвляясь проникают в каждую малую точку организма кровь доставляет все необходимое к тканям и относит от них, все токсичные отходы, и продукты жизнедеятельности.
В организме позвоночных животных кровь циркулирует по замкнутой системе сосудов и полостей, названных кровеносной системой, или системой кровообращения.
Сам принцип работы системы кровообращения интересовал ученых с давней древности, но из за невозможности прямого наблюдения (in vita) и появления ошибочных, тупиковых теорий его открытие сильно затянулось во времени.
Долгий срок считалось, что центр кровообращения - это печень, кровь течет по сосудам, а по артериям кислород.
Во II веке д.н.э ученый Гален выдвинул предположение о существовании отверстия в предсердной перегородке, через которое кровь поступает из правого предсердия в левый желудочек. Попытку опровергнуть это мнение предпринял М. Сервет в XVI веке, он открыл малый круг кровообращения, и показал, что весь объем крови проходит через легкие, где и подвергается переработке (а не в печени по бытующему мнению), но Сервет был объявлен инквизиторов и вместе со своими трудами был сожжен, а его учение объявлено ересью.
Повторил его исследования, ученик Фабриция, В. Гарвей (1578-1657), который эмпирическим путем установил замкнутость системы кровообращения, доказал наличие большого и малого кругов кровообращения. Продолжил, доказал и расширил учение Гарвея М. Мальпиги. Он в 1661 году обнаружил капилляры.
Впоследствии огромнейший вклад в развитие изучения системы кровообращения вложили такие ученые как: И. П. Павлов, Э. Г. Старлинг, М. Г. Удельнова, В. Ф. Овсянников.
Сердце
Сердце центральный орган кровообращения, благодаря его работе кровы беспрерывно циркулирует внутри организма. Сердце начинает свою работу с первым вздохом новорожденного животного и заканчивает лишь с его смертью.
Сердце представляет собой мышечный мешок разбитый двумя перегородками на четыре части. Правую (содержащую венозную кровь) и левую (содержащую артериальную кровь), и на предсердия, к которым кровь подтекает из соответствующих магистралей; и желудочков, которые выталкивают кровь. Между предсердиями и желудочками в левой и правой половинах сердца находятся атриовентрикулярные отверстия снабженные Двух- и трехстворчатым клапанами, предназначенными для свободного перехода крови из предсердий в желудочки и препятствующих оттоку крови в обратную сторону. Для тех же целей (односторонняя направленность кровотока) у артерий начинающихся от желудочков (аорта и легочная артерия) имеются полулунные клапаны.
Круги кровообращения
В процессе эволюции у животных появляется два круга кровообращения, которые разделяют на большой и малый круги.
Большой круг начинается в левом желудочке, при его сокращении кровь из сердца попадает в аорту из которой кровь переходит в различной величины артерии, которые впоследствии распадаются на артериолы и капилляры в тканях организма. В капиллярах происходит обмен между кровью и прилегающими тканями. Затем крови собирается в венулы, откуда сливается в вены, и по венам попадает в полую вену и в правое предсердие, на чем путь большого круга кровообращения заканчивается.
Из правого предсердия кровь переливается в правый желудочек, с которого начинается малый круг кровообращения. Правый желудочек выталкивает кровь в легочную артерию, которая делясь на более мелкие сосуды разветвляется сетью капилляров в легких, где кровь насыщается кислородом и отдает связанный углекислый газ. После газообмена кровь собирается в легочных венах и стекает в левое предсердие, где и заканчивается малый круг кровообращения.
Разделение кругов кровообращения способствовало повышению давления в артериях и как следствие более интенсивному обмену веществ.
Строение миокарда сердца
Сердце как орган состоит из трех оболочек: эндокарда, самой глубокой оболочки представленной соединительно-тканной оболочкой, покрытой эндотелием, миокарда -- мышечной оболочки сердца и эпикарда - наружной серозной- оболочки сердца.
Миокард построен из сердечной поперечно - полосатой мышечной ткани и имеет ряд особенностей связанных с самой функцией сердца, как в целом, так и его отделов:
- В различных отделах толщина сердечной мышцы неодинакова, например в левом желудочке стенка толще чем в правом.
- Мышцы предсердия обособлены от мышц желудочков.
- В желудочках и предсердиях существуют общие мышечные пласты.
- В области венозных устьев преддверий располагаются сфинктеры.
- Наличие в миокарде двух морфофункциональных типов мышечных волокон.
Сердечная мышца при микроскопии выглядит подобно скелетной поперечно-полосатой мускулатуре. Наблюдается четко выраженная поперечная исчерченость и саркомерное строение.
Различают два типа сердечных волокон:
1) типичные волокна - рабочего миокарда,
2) нетипичные волокна проводящей системы.
Типические волокна:
Рабочий миокард состоит из цепочки мышечных клеток - саркомеров соединенных друг с другом «конец в конец» и заключенных в общую саркоплазматическую мембрану. Соединенные саркомеры образуют миофибриллы. Контакт саркомеров осуществляется посредством вставочных дисков, благодаря чему волокна и имеют характерную поперечную исчерченность.
Строение саркомеров:
Саркомеры состоят из чередующихся темных (миозиновых) - А, и светлых (актиновых) - I полос. В центра полосы А расположена зона Н имеющая центральную Т-линию. Саркомеры соединяются между собой с помощью вставочных дисков - нексусов, которые и являются истинными границами клеток.
Миозин содержащийся в полосе А, способен расщеплять АТФ до АДФ, то есть представляет собой аденозинтрифосфатазу, а так же способен образовывать с миозином обратимый комплекс актомиозин (в присутствии Са++ и образованием АДФ), чем и обусловлена сократимость сердечной мышцы.
Нетипические волокна.
Благодаря атипическим нервным волокнам реализуется автоматия сердца.
Автоматия сердца - это способность сердца ритмически сокращаться под влиянием импульсов, зарождающихся в нем самом.
Морфологическим субстратом автоматии служат атипические сердечные волокна. - пейсмекеры, способные к периодической самогенерации мембранного потенциала.
Атипические миоциты более крупные, нежели рабочие, в них содержится больше саркоплазмы с высоким содержанием гликогена, но мало миофибрилл и митохондрий. В атипических клетках преобладают ферменты, способствующие анаэробному гликолизу.
Сами атипические клетки располагаются в строго определенных областях и образуют синатриальный (Кейт-Флерка) и атриовентрикулярный (Ашоффа-Тавара) узлы и пучек Гисса делящийся на ножки, которые разветвляются как волокна Пуркинье.
Схема работы проводящей системы сердца:
Типические миоциты во время сокращения поддерживают стабильный мембранный потенциал, в то время как потенциал нетипических миоцитов синатриального узла медленно понижается в связи с повышением проницаемости мембран для ионов натрия входящих внутрь волокон и ионов калия выходящих из них. При открытии натриевых ворот ионы Na+ лавинообразно устремляются внутрь волокон вызывая распространение нового потенциала. («дрейф» потенциала). После чего процесс повторяется.
Способность к автоматии в различных участках сердца неодинакова и у атриовентрикулярного узла она уже ниже, а у пучка Гисса настолько мала, что соответствующая частота возникновения мембранного потенциала не совместима с жизнью.
Физиологические особенности строения сердечной мышцы
Для обеспечения нормального существования организма в различных условиях сердце может работать в достаточно широком диапазоне частот (например у лошади в процессе бега частота сердечных толчков может увеличиваться в 4 - 5 раз). Такое возможно благодаря некоторым свойствам, таким как:
1 - Автоматия сердца, это способность сердца ритмически сокращаться под влиянием импульсов, зарождающихся в нем самом. Описана выше.
2 - Возбудимость сердца, это способность сердечной мышцы возбуждаться от различных раздражителей физической или химической природы, сопровождающееся изменениями физико - химических свойств ткани.
3 - Проводимость сердца, осуществляется в сердце электрическим путем вследствие образования потенциала действия в клетках пейс-мейкерах. Местом перехода возбуждения с одной клетки на другую, служат нексусы.
4 - Сократимость сердца - Сила сокращения сердечной мышцы прямо пропорциональна начальной длине мышечных волокон
5 - Рефрактерность миокарда - такое временое состояние не возбудимости тканей
При сбое сердечного ритма происходит мерцание, фибриляция - быстрые асинхронные сокращения сердца, что может привести к летальному исходу.
Сердечный цикл
Работу сердца можно разделить на несколько фаз (периодов):
Напряжения - систола,
Изгнания крови,
Расслабление - диастола.
Сердечным циклом называют согласованное чередование систолы и диастолы сердца.
Началом сердечного цикла принято считать систолу предсердий (причем левое сокращается незначительно раньше правого), при сокращении предсердий давление в них повышается, и кровь перетекает в желудочки сердца. Кровь не оттекает в вены, так как в момент систолы предсердий просвет вен сужен, а в желудочки кровь перетекает свободно, так как желудочки расслаблены, и атриовентрикулярные клапаны свободны. Время цикла 0,1 с.
Следующий этап цикла - систола желудочков. При их сокращение давление возрастает и кровь стремясь оттечь захлопывает атриовентрикулярные клапаны и устремляется в просвет артерий раскрывая полулунные клапаны. Время цикла 0,4 с.
После открытия полулунных клапанов давление в желудочках падает, а в артериях резко возрастает, полулунные клапаны захлопываются наступает диастола желудочков.
ДЕЯТЕЛЬНОСТЬ СЕРДЕЧНО-СОСУДИСТОЙ СИСТЕМЫ ПРИ ФИЗИЧЕСКОЙ РАБОТЕ
При физической нагрузке существенно возрастают потребности организма, в частности в кислороде. Наблюдается условнорефлекторное усиление работы сердца, поступление части депонированной крови в общий круг кровообращения, увеличивается выброс адреналина мозговым веществом надпочечников. Адреналин стимулирует работу сердца, суживает сосуды внутренних органов, что ведет к подъему АД, росту линейной скорости кровотока через сердце, мозг, легкие. Значительно во время физической активности возрастает кровоснабжение мышц. Причиной этого является интенсивный обмен веществ в мышце, что способствует скоплению в ней продуктов метаболизма (углекислого газа, молочной кислоты и др.), которые обладают выраженным сосудорасширяющим эффектом и способствуют более мощному раскрытию капилляров. Расширение диаметра сосудов мышц не сопровождается падением артериального давления в результате активации прессорных механизмов в ЦНС, а так же повышенной концентрации глюкокортикоидов и катехоламинов в крови. Работа скелетных мышц усиливает венозный кровоток, что способствует быстрому венозному возврату крови. А повышение содержания продуктов метаболизма в крови, в частности углекислоты ведет к стимуляции дыхательного центра, увеличению глубины и частоты дыхания. Это в свою очередь увеличивает отрицательное давление грудной клетки, важнейшего механизма способствующего увеличению венозного возврата к сердцу.
Ритмичные сокращения сердца вызываются электрическими импульсами, которые самовозникают в води теле сердечного ритма — синусовом узле сердца. Этот крохотный узелочек, величиной в 3 — 4 мм, играющий та кую важную роль в работе сердца, состоит из специфической ткани и расположен в самой верхней точке сердца, в стенке правого предсердия. Зародившийся импульс по проводниковой системе сердца, словно по линиям электропередачи, проводится вниз к желудочкам, вызывая их сокращение.
Синусовый узел способен генерировать очень частые импульсы, нередко 200 импульсов в минуту и больше. С годами способность синусового узла генерировать очень частые импульсы постепенно утрачивается. Однако физическая тренирозка увеличивает диапазон часто ты импульсов от 40 — 50 до 250 в минуту, что дает возможность сердцу работать в наиболее оптимальном ре жиме в зависимости от уровня нагрузки.
Работа сердца, а точнее сердечнососудистой системы, регулируется нервной системой. Высшим регуляторным центром, как бы «командным пунктом», является центральная нервная система. Сюда по центростремительным нервным путям поступает информация об изменениях химической среды, температуры, потребности в энергетических продуктах и т. п.
Выражаясь кибернетическим языком, этот непрерывный поток информации мгновенно обрабатывается в центральной нервной системе, и уже в зависимости от результатов этой обработки к сердцу и сосудам по центробежным путям идут нервные импульсы — приказы, определяющие работу сердца и сосудов.
Заключение
Сердце важнейший орган организма идеально приспособленное для поддержания жизнедеятельности организма. Сложно устроенное, имеющие собственную систему генерации сигнала и контроля частоты сокращений оно способно работать в течении всей жизни животного не утомляясь.
Являясь важнейшим звеном в кровообращении, а следовательно всех обменных процессов организма, работа сердца мгновенно отражает любые физические либо химические отклонения организма от нормы. Поэтому знание принципов работы и физиологических свойств сердца необходимо для нормального контроля за здоровьем животного и обеспечения помощи при каких либо нарушениях в работе этого органа.
Систолу желудочков принято делить на два периода — период напряжения и период изгнания крови, а диастолу — на три периода — протодиастолический период, период изометрического расслабления и период наполнения.
Цикл систола—диастола желудочков представлен в следующем виде.
Информационные ресурсы
http://blogmedika.ru/2008/10/11/sistola-zheludochkov/
http://5ka.su/ref/meditsina/0_object65975.html
http://www.medkurs.ru/heart/nagr/30820.html
Любили тебя без особых причин...
Алые паруса
Три загадки Солнца
Пейзаж
Фотографии кратера Королёва на Марсе