Презентация на тему: "Правильные многогранники". Из-за большого разделена на 2 части
Вложение | Размер |
---|---|
prav_mnogogranniki_szhatoe_1_chast.ppt | 2.6 МБ |
prav_mnogogranniki_szhatoe_2_chast.ppt | 2.01 МБ |
Слайд 1
Муниципальное казенное общеобразовательное учреждение Венгеровская средняя общеобразовательная школа № 2 Проект: «Правильные многогранники» Выполнила ученица 10 «А» класса Зайцева Мария Руководитель: Зайцева Валентина Владимировна, учитель математики Венгерово 2014Слайд 2
Цель: расширить систему собственных знаний о правильных многогранниках. В рамках достижения поставленной цели мной будут решаться следующие задачи : 1) Познакомиться с информацией по теме из различных источников; 2) изучить различные теоремы о свойствах правильных многогранников и их развертках; 3) узнать, где встречаются правильные многогранники. 4) изготовить модели правильных многогранников.
Слайд 3
Многогранник называется правильным, если: 1) он выпуклый; 2) все его грани – равные друг другу правильные многоугольники; 3) в каждой его вершине сходится одинаковое число ребер; 4) все его двугранные равны.
Слайд 4
Виды правильных многогранников
Слайд 5
Правильный тетраэдр Число сторон у грани - 3 Число рёбер, примыкающих к вершине - 3 Число вершин -4 Число рёбер - 6 Число граней - 4
Слайд 6
Правильный гексаэдр или куб Число сторон у грани - 4 Число рёбер, примыкающих к вершине - 3 Число вершин -8 Число рёбер - 12 Число граней - 6
Слайд 7
Правильный октаэдр Число сторон у грани - 3 Число рёбер, примыкающих к вершине - 4 Число вершин -6 Число рёбер - 12 Число граней - 8
Слайд 8
Правильный додекаэдр Число сторон у грани - 5 Число рёбер, примыкающих к вершине - 3 Число вершин -20 Число рёбер - 30 Число граней - 12
Слайд 1
Правильный икосаэдр Число сторон у грани - 5 Число рёбер, примыкающих к вершине - 3 Число вершин -12 Число рёбер - 30 Число граней - 20Слайд 2
Почему правильные многогранники получили такие названия тетра - четыре додека – двенадцать гекса – шесть окто – восемь эдрон - грань икоси – двадцать
Слайд 3
«Жемчужины» теории многогранников Теорема Коши
Слайд 4
Теорема Эйлера Г+В=Р+2 Тетраэдр Граней 4 Вершин 4 Ребер 6 4+4=6+ 2
Слайд 5
Создание моделей правильных многогранников с помощью разверток
Слайд 6
Первые упоминания о правильных многогранниках Правильные многогранники характерны для философии Платона .Он писал о них в своём трактате Тимей , где сопоставил каждую из четырёх стихий определённому правильному многограннику.
Слайд 8
В XVI веке немецкий астроном Иоганн Кеплер пытался найти связь между пятью известными на тот момент планетами Солнечной системы и правильными многогранниками
Слайд 9
Структура Солнечной системы и отношения расстояний между планетами определялись правильными многогранниками.
Слайд 10
Сальвадор Дали «Тайная вечеря».
Слайд 11
Правильные многогранники в природе кристаллы поваренной соли - куб
Слайд 12
Минерал сильвин - куб
Слайд 13
Кристаллы пирита - додекаэдр
Слайд 14
Минерал куприт образует кристаллы в форме октаэдров
Слайд 15
Алмаз (октаэдр)
Слайд 16
Скелет одноклеточного организма феодарии представляет собой икосаэдр
Слайд 17
Здание - куб
Слайд 18
Титульный лист книги Ж. Кузена «Книга о перспективе»
Слайд 19
Заключение В ходе работы над проектом я изучила правильные многогранники, рассмотрела их модели, выделила и систематизировала свойства каждого из многогранников. Кроме этого я узнала, что правильные многогранники с древних времен привлекали внимание ученых, поэтов, художников и многих других.
Ах эта снежная зима
Анатолий Кузнецов. Как мы с Сашкой закалялись
Пейзаж
Как Дед Мороз сделал себе помощников
Агния Барто. Сережа учит уроки